Showing 1 - 20 results of 1,677 for search '"РЕМОДЕЛИРОВАНИЕ"', query time: 1.08s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: This work perfomed under grant of Kazan State Medical University and supported by Government program «Pryority-2030»., Исследование выполнено за счет средств гранта Федерального государственного бюджетного учреждения высшего образования "Казанский государственный медицинский университет" Минздрава России, при финансовой поддержке Государственной программы «Приоритет-2030».

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 70, № 5 (2025); 157-167 ; Российский вестник перинатологии и педиатрии; Том 70, № 5 (2025); 157-167 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2272/1642; Российский статистический ежегодник 2022: статистический сборник. Росстат. М., 2022; 691 https://rosstat.gov.ru/storage/mediabank/Ejegodnik_2022.pdf. ссылка активна на 10.06.2025; Кухарчук В.В., Ежов М.В., Сергиенко И.В., Арабидзе Г.Г., Бубнова М.Г., Балахонова Т.В. и др. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации, VII пересмотр. Атеросклероз и дислипидемии. 2020; 1(38): 7–42. DOI:10.34687/2219-8202.JAD.2020.01.0002; Majithia A.R., Altshuler D., Hirschhorn J.N. Williams Textbook of Endocrinology (Thirteenth Edition). Philadelphia: Elsivier, 2016; 1916. DOI:10.1016/C2013-0-15980-6; Gorabi A.M., Kiaie N., Hajighasemi S., Banach M., Penson P.E., Jamialahmadi T., Sahebkar A. Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J Clin Med. 2019; 8(12): 2051. DOI:10.3390/jcm8122051; Wiegman A., Gidding S.S., Watts G.F., Chapman M.J., Ginsberg H.N., Cuchel M. et al. European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J. 2015; 36(36): 2425–2437. DOI:10.1093/eurheartj/ehv157; Чубыкина У.В., Афанасьева О.И., Тмоян Н.А., Ежов М.В. Программы наблюдения и скрининга больных с семейной гиперхолестеринемией. Атеросклероз и дислипидемии. 2020; 2(39): 43–48. DOI:10.34687/2219-8202.JAD.2020.02.0006; Dharmayat K.I., Vallejo-Vaz A.J., Stevens C.A.T., Brandts J.M., Lyons A.R.M., Groselj U., et al. Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study. The Lancet 2024; 403: 55–66. DOI:10.1016/S0140–6736(23)01842–1; Catapano A.L., Graham I., De Backer G., Wiklund O., Chapman M.J., Drexel H., et al. ESC Scientific Document Group. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016; 37(39): 2999–3058. DOI:10.1093/eurheartj/ehw272; Ежов М.В., Бажан С.С., Ершова А.И., Мешков А.Н., Соколов А.А., Кухарчук В.В. и др. Клинические рекомендации по семейной гиперхолестеринемии. Атеросклероз. 2019; 15(1): 58–98.; Neunteufl T., Heher S., Katzenschlager R., Wölfl G., Kostner K., Maurer G., Weidinger F. Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol. 2000; 86(2): 207–210. DOI:10.1016/s0002-9149(00)00857-2; Suhett L.G., Hermsdorff H.M., Rocha N.P., Silva M.A., Filgueiras M.S., Milagres L.C. et al. Increased C-Reactive Protein in Brazilian Children: Association with Cardiometabolic Risk and Metabolic Syndrome Components (PASE Study). Cardiol Res Pract. 2019; 2019: 3904568. DOI:10.1155/2019/3904568; Anderson T.J., Grégoire J., Pearson G.J., Barry A.R., Couture P., Dawes M. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Can J Cardiol. 2016; 32(11): 1263–1282. DOI:10.1016/j.cjca.2016.07.510; Lampsas S., Xenou M., Oikonomou E., Pantelidis P., Lysandrou A., Sarantos S. Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules. 2023; 28(3): 969. DOI:10.3390/molecules28030969

  7. 7
    Academic Journal

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 3 (2025); 533-540 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 3 (2025); 533-540 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/2208/1641; Saxon LA, De Marco T, Schafer J, Chatterjee K, Kumar UN, Foster E; VIGOR Congestive Heart Failure Investigators. Effects of long-term biventricular stimulation for resynchronization on echocardiographic measures of remodeling. Circulation. 2002;105(11):1304–1310. PMID: 11901040 https://doi.org/10.1161/hc1102.105730; St John Sutton MG, Plappert T, Abraham WT, Smith AL, DeLurgio DB, Leon AR, et al.; Multicenter InSync Randomized Clinical Evaluation (MIRACLE) Study Group. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003;107(15):1985–1990. PMID: 12668512 https://doi.org/10.1161/01.CIR.0000065226.24159.E9; Horwich T, Foster E, De Marco T, Tseng Z, Saxon L. Effects of resynchronization therapy on cardiac function in pacemaker patients “upgraded” to biventricular devices. J Cardiovasc Electrophysiol. 2004;15(11):1284–1289. PMID: 15574179 https://doi.org/10.1046/j.1540-8167.2004.04279.x; Rao RK, Kumar UN, Schafer J, Viloria E, De Lurgio D, Foster E. Reduced ventricular volumes and improved systolic function with cardiac resynchronization therapy: a randomized trial comparing simultaneous biventricular pacing, sequential biventricular pacing, and left ventricular pacing. Circulation. 2007;115(16):2136–2144. PMID: 17420340 https://doi.org/10.1161/CIRCULATIONAHA.106.634444; Кузнецов В.А., Солдатова А.М., Криночкин Д.В., Енина Т.Н. Сердечная ресинхронизирующая терапия при хронической сердечной недостаточности: нужно ли ждать быстрого ответа? Журнал Сердечная Недостаточность. 2017;18(3):172–177. https://doi.org/10.18087/rhfj.2017.3.2341; Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al.; Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) Investigators. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–2150. PMID: 15152059 https://doi.org/10.1056/NEJMoa032423; Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al.; Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–1549. PMID: 15753115 https://doi.org/10.1056/NEJMoa050496; Yu CM, Bleeker GB, Fung JW, Schalij MJ, Zhang Q, van der Wall EE, et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation. 2005;112(11):1580–1586. PMID: 16144994 https://doi.org/10.1161/CIRCULATIONAHA.105.538272; Ypenberg C, van Bommel RJ, Borleffs CJW, Bleeker GB, Boersma E, Schalij MJ, et al. Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. J Am Coll Cardiol. 2009;53(6):483–490. PMID: 19195605 https://doi.org/10.1016/j.jacc.2008.10.032; Daubert C, Gold MR, Abraham WT, Ghio S, Hassager C, Goode G, et al.; REVERSE Study Group. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial. J Am Coll Cardiol. 2009;54(20):1837–1846. PMID: 19800193 https://doi.org/10.1016/j.jacc.2009.08.011; Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al.; Chamber Quantification Writing Group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):440–1463. PMID: 16376782 https://doi.org/10.1016/j.echo.2005.10.005; Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al.; American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802. PMID: 12835667 https://doi.org/10.1016/S0894-7317(03)00335-3; Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al.; MADIT-CRT Trial Investigators. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329– 1338. PMID: 19723701 https://doi.org/10.1056/NEJMoa0906431; Moss AJ, Brown MW, Cannom DS, Daubert JP, Estes M, Foster E, et al. Multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT): design and clinical protocol. Ann Noninvasive Electrocardiol. 2005;10(4 Suppl):34–43. PMID: 16274414 https://doi.org/10.1111/j.1542-474X.2005.00073.x; St John Sutton M, Ghio S, Plappert T, Tavazzi L, Scelsi L, Daubert C, et al.; REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) Study Group. Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure. Circulation. 2009;120(19):1858–1865. PMID: 19858419 https://doi.org/10.1161/CIRCULATIONAHA.108.818724; Zornoff LA, Skali H, Pfeffer MA, St John Sutton M, Rouleau JL, Lamas GA, et al.; SAVE Investigators. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol. 2002;39(9):1450–1455. PMID: 11985906 https://doi.org/10.1016/s0735-1097(02)01804-1; Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am J Cardiol. 2008;101(5):607–612. PMID: 18308007 https://doi.org/10.1016/j.amjcard.2007.09.115; Meris A, Amigoni M, Uno H, Thune JJ, Verma A, Køber L, et al. Left atrial remodelling in patients with myocardial infarction complicated by heart failure, left ventricular dysfunction, or both: the VALIANT Echo study. Eur Heart J. 2009;30(1):56–65. PMID: 19001474 https://doi.org/10.1093/eurheartj/ehn499; Bleeker GB, Schalij MJ, Nihoyannopoulos P, Steendijk P, Molhoek SG, van Erven L, et al. Left ventricular dyssynchrony predicts right ventricular remodeling after cardiac resynchronization therapy. J Am Coll Cardiol. 2005;46(12):2264–2269. PMID: 16360056 https://doi.org/10.1016/j.jacc.2005.04.069; Yu CM, Fang F, Zhang Q, Yip GWK, Li CM, Chan JYS, et al. Improvement of atrial function and atrial reverse remodeling after cardiac resynchronization therapy for heart failure. J Am Coll Cardiol. 2007;50(8):778–785. PMID: 17707183 https://doi.org/10.1016/j.jacc.2007.04.073; St John Sutton MG, Plappert T, Hilpisch KE, Abraham WT, Hayes DL, Chinchoy E. Sustained reverse left ventricular structural remodeling with cardiac resynchronization at 1 year is a function of etiology: quantitative Doppler echocardiography evidence from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE). Circulation. 2006;113(2):266–272. PMID: 16401777 https://doi.org/10.1161/CIRCULATIONAHA.104.520817; https://www.jnmp.ru/jour/article/view/2208

  8. 8
    Academic Journal

    Contributors: The study has no sponsorship, Исследование не имеет спонсорской поддержки

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 2 (2025); 387-397 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 2 (2025); 387-397 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/2184/1602; https://www.jnmp.ru/jour/article/view/2184/1709; Sinagra G, Elliott PM, Merlo M. Dilated cardiomyopathy: so many cardiomyopathies! Eur Heart J. 2020;41(39):3784–3786. PMID: 31872205 https://doi.org/10.1093/eurheartj/ehz908; Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, et al. Dilated cardiomyopathy. Nat Rev Dis Primers. 2019;5(1):32. PMID: 31073128 https://doi.org/10.1038/s41572-019-0084-1; Шумаков В.И., Хубутия М.Ш., Ильинский И.М. Дилатационная кардиомиопатия. Москва: Триада; 2003.; Ferreira A, Ferreira V, Antunes MM, Lousinha A, Pereira-da-Silva T, Antunes D, et al. Dilated Cardiomyopathy: A Comprehensive Approach to Diagnosis and Risk Stratification. Biomedicines. 2023;11(3):834. https://doi.org/10.3390/biomedicines11030834; Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Fail Rev. 2022;27(4):1173–1191. PMID: 34263412 https://doi.org/10.1007/s10741-021-10139-0; Hammersley DJ, Jones RE, Owen R, Mach L, Lota AS, Khalique Z, et al. Phenotype, outcomes and natural history of early-stage nonischaemic cardiomyopathy. Eur J Heart Fail. 2023;25(11):2050–2059. PMID: 37728026 https://doi.org/10.1002/ejhf.3037; Голухова Е.З., Александрова С.А., Бердибеков Б.Ш. Прогностическая роль количественной оценки миокардиального фиброза по данным магнитно-резонансной томографии с отсроченным контрастированием при неишемических дилатационных кардиомиопатиях: систематический обзор и метаанализ. Российский кардиологический журнал. 2021;26(12):189–197. https://doi.org/10.15829/1560-4071-2021-4776; Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;390(10092):400–414. PMID: 28190577 https://doi.org/10.1016/S0140-6736(16)31713-5; Xu XR, Han MM, Yang YZ, Wang X, Hou DY, Meng XC, et al. Fifteenyear mortality and prognostic factors in patients with dilated cardiomyopathy: persistent standardized application of drug therapy and strengthened management may bring about encouraging change in an aging society. J Geriatr Cardiol. 2022;19(5):335–342. PMID: 35722031 https://doi.org/10.11909/j.issn.1671-5411.2022.05.003; Merlo M, Stolfo D, Anzini M, Negri F, Pinamonti B, Barbati G, et al. Persistent recovery of normal left ventricular function and dimension in idiopathic dilated cardiomyopathy during long-term follow-up: does real healing exist? J Am Heart Assoc. 2015;4(1):e001504. PMID: 25587018 https://doi.org/10.1161/JAHA.114.000570; Leeper B. Right Ventricular Failure. AACN Adv Crit Care. 2020;31(1):49–56. PMID: 32168515 https://doi.org/10.4037/aacnacc2020172; Packer M. What causes sudden death in patients with chronic heart failure and a reduced ejection fraction? Eur Heart J. 2020;41(18):1757–1763. https://doi.org/10.1093/eurheartj/ehz553; Iovănescu ML, Florescu DR, Marcu AS, Donoiu I, Militaru S, Florescu C, et al. The Dysfunctional Right Ventricle in Dilated Cardiomyopathies: Looking from the Right Point of View. J Cardiovasc Dev Dis. 2022;9(10):359. PMID: 36286311 https://doi.org/10.3390/jcdd9100359; Becker MAJ, van der Lingen ALCJ, Wubben M, van de Ven PM, van Rossum AC, Cornel JH, et al. Characteristics and prognostic value of right ventricular (DYS)function in patients with non-ischaemic dilated cardiomyopathy assessed with cardiac magnetic resonance imaging. ESC Heart Fail. 2021;8(2):1055–1063. PMID: 33560582https://doi.org/10.1002/ehf2/13072; Vîjîiac A, Onciul S, Guzu C, Verinceanu V, Bătăilă V, Deaconu S, et al. The prognostic value of right ventricular longitudinal strain and 3D ejection fraction in patients with dilated cardiomyopathy. Int J Cardiovasc Imaging. 2021;37(11):3233–3244. PMID: 34165699 https://doi.org/10.1007/s10554-021-02322-z; Venner C, Selton-Suty C, Huttin O, Erpelding ML, Aliot E, Juillière Y. Right ventricular dysfunction in patients with idiopathic dilated cardiomyopathy: Prognostic value and predictive factors. Arch Cardiovasc Dis. 2016;109(4):231–241. PMID: 26782624 https://doi.org/10.1016/j.acvd.2015.10.006; Pathak RK, Sanders P, Deo R. Primary prevention implantable cardioverter-defibrillator and opportunities for sudden cardiac death risk assessment in non-ischaemic cardiomyopathy. Eur Heart J. 2018;39(31):2859–2866. PMID: 30020440 https://doi.org/10.1093/eurheartj/ehy344; Li Y., Guo J, Li W, Xu Y, Wan K, Xu Z, et al. Prognostic value of right atrial strain derived from cardiovascular magnetic resonance in non-ischemic dilated cardiomyopathy. J Cardiovasc Magn Reson. 2022;24(1):54. PMID: 36352424 https://doi.org/10.1186/s12968-022-00894-w; Sallach JA, Tang WH, Borowski AG, Tong W, Porter T, Martin MG, et al. Right Atrial Volume Index in Chronic Systolic Heart Failure and Prognosis. JACC Cardiovasc Imaging. 2009;2(5):527–534. PMID: 19442936 https://doi.org/10.1016/j.jcmg.2009.01.012; Marrow BA, Cook SA, Prasad SK, McCann GP. Emerging Techniques for Risk Stratification in Nonischemic Dilated Cardiomyopathy: JACC Review Topic of the Week. J Am Coll Cardiol. 2020;75(10):1196–1207. PMID: 32164893 https://doi.org/10.1016/j.jacc.2019.12.058; Boulet J, Mehra MR. Left Ventricular Reverse Remodeling in Heart Failure: Remission to Recovery. Struct Heart. 2021;5(5):466–481. https://doi.org/10.1080/24748706.2021.1954275; Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, et al. Electrical Ventricular Remodeling in Dilated Cardiomyopathy. Cells. 2021;10(10):2767. PMID: 34685747 https://doi.org/10.3390/cells10102767; Мазур В.В., Калинкин А.М., Мазур Е.С. Особенности ремоделирования сердца на разных стадиях хронической сердечной недостаточности у больных постинфарктным кардиосклерозом и дилатационной кардиомиопатией. Рациональная фармакотерапия в кардиологии. 2010;6(6):818–822.; Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol. 2006;47(6):1161–1166. PMID: 16545646 https://doi.org/10.1016/j.jacc.2005.11.045; Mikami Y, Jolly U, Heydari B, Peng M, Almehmadi F, Zahrani M, et al. Right Ventricular Ejection Fraction Is Incremental to Left Ventricular Ejection Fraction for the Prediction of Future Arrhythmic Events in Patients With Systolic Dysfunction. Circ Arrhythm Electrophysiol. 2017;10(1): e004067. PMID: 28087564 https://doi.org/10.1161/CIRCEP.116.004067; Gulati A, Ismail TF, Jabbour A, Alpendurada F, Guha K, Ismail NA, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation. 2013;128(15):1623–1633. PMID: 23965488 https://doi.org/10.1161/CIRCULATIONAHA.113.002518; Pueschner A, Chattranukulchai P, Heitner JF, Shah DJ, Hayes B, Rehwald W, et al. The Prevalence, Correlates, and Impact on Cardiac Mortality of Right Ventricular Dysfunction in Nonischemic Cardiomyopathy. JACC Cardiovasc Imaging. 2017;10(10 Pt B):1225–1236. PMID: 29025576 https://doi.org/10.1016/j.jcmg.2017.06.013; Elming MB, Hammer-Hansen S, Voges I, Nyktari E, Raja AA, Svendsen JH, et al. Right Ventricular Dysfunction and the Effect of Defibrillator Implantation in Patients With Nonischemic Systolic Heart Failure. Circ Arrhythm Electrophysiol. 2019;12(3):e007022. PMID: 30866666 https://doi.org/10.1161/CIRCEP.118.007022; Jimenez-Juan L, Ben-Dov N, Goncalves Frazao CV, Tan NS, Singh SM, Dorian P, et al. Right Ventricular Function at Cardiac MRI Predicts Cardiovascular Events in Patients with an Implantable Cardioverter-Defibrillator. Radiology. 2021;301(2):322–329. PMID: 34402663 https://doi.org/10.1148/radiol.2021210246; Di Marco A, Brown PF, Bradley J, Nucifora G, Claver E, de Frutos F, et al. Improved Risk Stratification for Ventricular Arrhythmias and Sudden Death in Patients With Nonischemic Dilated Cardiomyopathy. J Am Coll Cardiol. 2021;77(23):2890–2905. PMID: 34112317 https://doi.org/10.1016/j.jacc.2021.04.030; Alba AC, Gaztañaga J, Foroutan F, Thavendiranathan P, Merlo M, Alonso-Rodriguez D, et al. Prognostic Value of Late Gadolinium Enhancement for the Prediction of Cardiovascular Outcomes in Dilated Cardiomyopathy: An International, Multi-Institutional Study of the MINICOR Group. Circ Cardiovasc Imaging. 2020;13(4):e010105. PMID: 32312112 https://doi.org/10.1161/CIRCIMAGING.119.010105; Mandawat A, Chattranukulchai P, Mandawat A, Blood AJ, Ambati S, Hayes B, et al. Progression of Myocardial Fibrosis in Nonischemic DCM and Association With Mortality and Heart Failure Outcomes. JACC Cardiovasc Imaging. 2021;14(7):1338–1350. PMID: 33454264 https://doi.org/10.1016/j.jcmg.2020.11.006; Perone F, Dentamaro I, La Mura L, Alifragki A, Marketou M, Cavarretta E, et al. Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy. J Clin Med. 2024;13(4):1017. PMID: 38398330 https://doi.org/10.3390/jcm13041017; Tang HS, Kwan CT, He J, Ng PP, Hai SHJ, Kwok FYJ, et al. Prognostic Utility of Cardiac MRI Myocardial Strain Parameters in Patients With Ischemic and Nonischemic Dilated Cardiomyopathy: A Multicenter Study. AJR Am J Roentgenol. 2023;220(4):524–538. PMID: 36321987 https://doi.org/10.2214/AJR.22.28415; D’Andrea A, Scarafile R, Riegler L, Salerno G, Gravino R, Cocchia R, et al. Right atrial size and deformation in patients with dilated cardiomyopathy undergoing cardiac resynchronization therapy. Eur J Heart Fail. 2009;11(12):1169–1177. PMID: 19926601 https://doi.org/10.1093/eurjhf/hfp158; Liu T, Gao Y, Wang H, Zhou Z, Wang R, Chang S-S, et al. Association between right ventricular strain and outcomes in patients with dilated cardiomyopathy. Heart. 2021;107(15):1233–1239. PMID: 33139324 https://doi.org/10.1136/heartjnl-2020-317949; Liu S, Li Y, Lian J, Wang X, Li Y, Wang D, et al. Prognostic Significance of Biventricular and Biatrial Strain in Dilated Cardiomyopathy: Strain Analysis Derived from Cardiovascular Magnetic Resonance. Rev Cardiovasc Med. 2023;24(12):347. https://doi.org/10.31083/j.rcm2412347; Houard L, Benaets MB, de Meester de Ravenstein C, Rousseau MF, Ahn SA, Amzulescu M-S, et al. Additional Prognostic Value of 2D Right Ventricular Speckle-Tracking Strain for Prediction of Survival in Heart Failure and Reduced Ejection Fraction: A Comparative Study With Cardiac Magnetic Resonance. JACC Cardiovasc Imaging. 2019;12(12):2373–2385. PMID: 30772232 https://doi.org/10.1016/j.jcmg.2018.11.028; Muraru D, Badano LP, Nagata Y, Surkova E, Nabeshima Y, Genovese D, et al. Development and prognostic validation of partition values to grade right ventricular dysfunction severity using 3D echocardiography. Eur Heart J Cardiovasc Imaging. 2020;21:10–21. PMID: 31539046 https://doi.org/10.1093/ehjci/jez233; Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernandeet L, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. PMID: 25559473 https://doi.org/10.1016/j.echo.2014.10.003; Kübler J, Burgstahler C, Brendel JM, Gassenmaier S, Hagen F, Klingel K, et al. Cardiac MRI findings to differentiate athlete’s heart from hypertrophic (HCM), arrhythmogenic right ventricular (ARVC) and dilated (DCM) cardiomyopathy. Int J Cardiovasc Imaging. 2021;37(8):2501–2515. PMID: 34019206 https://doi.org/10.1007/s10554-021-02280-6; Monzo L, Tupy M, Borlaug BA, Reichenbach A, Jurcova I, Benes J, et al. Pressure overload is associated with right ventricular dyssynchrony in heart failure with reduced ejection fraction. ESC Heart Fail. 2024;11(2):1097–1109. PMID: 38263857 https://doi.org/10.1002/ehf2.14682; Golwala H, Bajaj NS, Arora G, Arora P. Implantable cardioverter-defibrillator for nonischemic cardiomyopathy: An updated meta-analysis. Circulation. 2017;135(2):201–203. PMID: 27993908 https://doi.org/10.1161/CIRCULATIONAHA.116.026056; O’Keefe JH Jr, Magalski A, Stevens TL, Bresnahan DR Jr, Alaswad K, Krueger SK, et al. Predictors of improvement in left ventricular ejection fraction with carvedilol for congestive heart failure. J Nucl Cardiol. 2000;7(1):3–7. PMID: 10698228 https://doi.org/10.1067/mnc.2000.102678; Theerasuwipakorn N, Chokesuwattanaskul R, Phannajit J, Marsukjai A, Thapanasuta M, Klem I, et al. Impact of late gadolinium-enhanced cardiac MRI on arrhythmic and mortality outcomes in nonischemic dilated cardiomyopathy: updated systematic review and meta-analysis. Sci Rep. 2023;13(1):13775. PMID: 37612359 https://doi.org/10.1038/s41598-023-41087-4; Tong X, Shen L, Zhou X, Wang Y, Chang S, Lu S. Comparative Efficacy of Different Drugs for the Treatment of Dilated Cardiomyopathy: A Systematic Review and Network Meta-analysis. Drugs RD. 2023;23(3):197–210. PMID: 37556093 https://doi.org/10.1007/s40268-023-00435-5; https://www.jnmp.ru/jour/article/view/2184

  9. 9
    Academic Journal

    Source: International Journal of Scientific Pediatrics; Vol. 4 No. 5 (2025): September-October; 1072-1077 ; Международный журнал научной педиатрии; Том 4 № 5 (2025): Сентябрь-Октябрь; 1072-1077 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 4 No. 5 (2025): Sentabr-Oktabr; 1072-1077 ; 2181-2926

    File Description: application/pdf

  10. 10
    Academic Journal

    Contributors: Авторы заявляют об отсутствии финансирования исследования.

    Source: Complex Issues of Cardiovascular Diseases; Online First ; Комплексные проблемы сердечно-сосудистых заболеваний; Online First ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1714/1062; Mensah GA, Fuster V, Roth GA. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. J Am Coll Cardiol. 2023;82(25):2343-2349. doi:10.1016/j.jacc.2023.11.003.; Косолапов ВП, Ярмонова МВ. Анализ высокой сердечно-сосудистой заболеваемости и смертности взрослого населения как медико-социальной проблемы и поиск путей ее решения. Уральский медицинский журнал. 2021;20(1):58-64. https://doi.org/10.52420/2071-5943-2021-20-1-58-64; Боровкова Н.Ю., Токарева А.С., Савицкая Н.Н., и др. Современное состояние проблемы сердечно-сосудистых заболеваний в Нижегородском регионе: возможные пути снижения смертности. Российский кардиологический журнал. 2022;27(5):5024. https://doi.org/10.15829/1560-4071-2022-5024; Фозилов Х.Г., Атаниязов Х.Х., Хамидуллаева Г.А., и др. Раннее выявление и контроль факторов риска сердечно-сосудистых заболеваний в приаралье: опыт Узбекистана. Кардиология. 2024;64(1):37-43. https://doi.org/10.18087/cardio.2024.1.n2614; Li C, Zheng Y, Liu Y, et al. The interaction protein of SORBS2 in myocardial tissue to find out the pathogenic mechanism of LVNC disease. Aging (Albany NY). 2022;14(2):800-810. doi:10.18632/aging.203841; Zhang S, Tong Y. Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother. 2022;155:113853. doi:10.1016/j.biopha.2022.113853.; Jaufmann J, Franke FC, Sperlich A, et al. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J. 2021;35(4):e21470. doi:10.1096/fj.202002495R.; Ichikawa T, Kita M, Matsui TS, et al. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci. 2017;130(20):3517-3531. doi:10.1242/jcs.200691.; Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells. 2022;11(23):3815. doi:10.3390/cells11233815.; Murase K, Ito H, Kanoh H, et al. Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform. Med Mol Morphol. 2012;45(1):22-8. doi:10.1007/s00795-010-0537-9.; Zhang Q, Gao X, Li C, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36(7):2247-60. doi:10.1523/JNEUROSCI.2528-15.2016.; Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol. 2020;92(5):e12951. doi:10.1111/sji.12951.; GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)–Analysis Working Group; Statistical Methods groups–Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site–NDRI; Biospecimen Collection Source Site–RPCI; Biospecimen Core Resource–VARI; Brain Bank Repository–University of Miami Brain Endowment Bank; Leidos Biomedical–Project Management; ELSI Study; Genome Browser Data Integration &Visualization–EBI; Genome Browser Data Integration &Visualization–UCSC Genomics Institute, University of California Santa Cruz; Lead analysts:; Laboratory, Data Analysis &Coordinating Center (LDACC):; NIH program management:; Biospecimen collection:; Pathology:; eQTL manuscript working group:; Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213. doi:10.1038/nature24277.; Lv Q, Dong F, Zhou Y, et al. RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by enhancing MTUS1 mRNA stability. Cell Death Dis. 2020;11(12):1056. doi:10.1038/s41419-020-03268-1.; Ding Y, Yang J, Chen P, et al. Knockout of SORBS2 Protein Disrupts the Structural Integrity of Intercalated Disc and Manifests Features of Arrhythmogenic Cardiomyopathy. J Am Heart Assoc. 2020;9(17):e017055. doi:10.1161/JAHA.119.017055.; Sanger JM, Wang J, Gleason LM, et al. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken). 2010;67(12):808-23. doi:10.1002/cm.20490.; Qian LL, Sun X, Yang J, et al. Changes in ion channel expression and function associated with cardiac arrhythmogenic remodeling by Sorbs2. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166247. doi:10.1016/j.bbadis.2021.166247.; Sun X, Lee HC, Lu T. Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes. Circ Res. 2024;134(7):858-871. doi:10.1161/CIRCRESAHA.123.323538.; Zhao L, Wang W, Huang S, et al. The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts. Genome Biol. 2018;19(1):35. doi:10.1186/s13059-018-1412-6.; Van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711-719. doi:10.1038/s41586-020-2077-3.; Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185-198. doi:10.1038/s41576-020-00302-y.; Timmer LT, den Hertog E, Versteeg D, et al. Cardiomyocyte SORBS2 expression increases in heart failure and regulates integrin interactions and extracellular matrix composition. Cardiovasc Res. 2025;121(4):585-600. doi:10.1093/cvr/cvaf021.; Dovinova I, Kvandová M, Balis P, et al. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases. Physiol Res. 2020;69(Suppl 4):S541-S553. doi:10.33549/physiolres.934612.; Zhu L, Choudhary K, Gonzalez-Teran B, et al. Transcription Factor GATA4 Regulates Cell Type-Specific Splicing Through Direct Interaction With RNA in Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitors. Circulation. 2022;146(10):770-787. doi:10.1161/CIRCULATIONAHA.121.057620.; Lu T, Sun X, Li Y, et al. Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes. 2017;66(10):2681-2690. doi:10.2337/db17-0181.; Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, et al. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel). 2022; 11(2):235. doi:10.3390/antiox11020235.; Артеменков АА. Дислипидемии плазмы крови: патогенез и диагностическое значение. Обзор литературы. Пермский медицинский журнал (сетевое издание "Perm medical journal"). 2023;40(1):78-93. doi:10.17816/pmj40178-93; Liu MM, Peng J, Guo YL, et al. SORBS2 as a molecular target for atherosclerosis in patients with familial hypercholesterolemia. J Transl Med. 2022;20(1):233. doi:10.1186/s12967-022-03381-z.; Feng X, Yu W, Li X, et al. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017 Jul 15;136:136-149. doi:10.1016/j.bcp.2017.04.014.; Ren K, Li H, Zhou HF, et al. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging (Albany NY). 2019;11(23):10992-11009. doi:10.18632/aging.102498.; Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun. 2017;482(4):849-856. doi:10.1016/j.bbrc.2016.11.123.; Калашников В.Ю., Мичурова М.С. Атеросклеротические сердечно-сосудистые заболевания и сахарный диабет 2‑го типа. Как учесть все нюансы в выборе терапии? Кардиология. 2021;61(1):78-86. https://doi.org/10.18087/cardio.2021.1.n1148; Xiong X, Zhou J, Fu Q, et al. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy. Lipids Health Dis. 2022;21(1):60. doi:10.1186/s12944-022-01673-3.; Каширских Д.А., Хотина В.А., Сухоруков В.Н., и др. Клеточные и тканевые маркеры атеросклероза. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(2):102-113. https://doi.org/10.17802/2306-1278-2020-9-2-102-113; Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243-1252. doi:10.1042/CS20180306.; Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8(3):80. doi:10.3390/biom8030080.; Badimon L, Peña E, Arderiu G, et al. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol. 2018;9:430. doi:10.3389/fimmu.2018.00430.; Akinyelure OP, Colantonio LD, Chaudhary NS, et al. Inflammation biomarkers and incident coronary heart disease: the Reasons for Geographic And Racial Differences in Stroke Study. Am Heart J. 2022;253:39-47. doi:10.1016/j.ahj.2022.07.001; Kumari P, Kumar H. Dimensions of inflammation in host defense and diseases. Int Rev Immunol. 2022;41(1):1-3. doi:10.1080/08830185.2022.2014174.; Vdovenko D, Bachmann M, Wijnen WJ, et al. The adaptor protein c-Cbl-associated protein (CAP) limits pro-inflammatory cytokine expression by inhibiting the NF-κB pathway. Int Immunopharmacol. 2020;87:106822. doi:10.1016/j.intimp.2020.106822.; Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136-46. doi:10.1172/JCI70577.; Wang H, Bei Y, Shen S, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 2016;94:43-53. doi:10.1016/j.yjmcc.2016.03.014.; Shan B, Li JY, Liu YJ, et al. LncRNA H19 Inhibits the Progression of Sepsis-Induced Myocardial Injury via Regulation of the miR-93-5p/SORBS2 Axis. Inflammation. 2021;44(1):344-357. doi:10.1007/s10753-020-01340-8.; Алиева АМ, Алмазова ИИ, Резник ЕВ, и др. Гипертрофическая кардиомиопатия: современный взгляд на проблему. CardioСоматика. 2020;11(1):39-45. doi:10.26442/22217185.2020.1.200116; Галеева З.М., Галявич А.С., Балеева Л.В., и др. О причинах дилатационной кардиомиопатии в молодом возрасте. Южно-Российский журнал терапевтической практики. 2022;3(3):85-90. https://doi.org/10.21886/2712-8156-2022-3-3-85-90; McLendon JM, Zhang X, Matasic DS, et al. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc. 2022;11(13):e025687. doi:10.1161/JAHA.122.025687.; Gagliano Taliun SA, VandeHaar P, Boughton AP, et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat Genet. 2020;52(6):550-552. doi:10.1038/s41588-020-0622-5.; Ashar FN, Mitchell RN, Albert CM, et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018;39(44):3961-3969. doi:10.1093/eurheartj/ehy474.; Li C, Liu F, Liu S, et al. Elevated myocardial SORBS2 and the underlying implications in left ventricular noncompaction cardiomyopathy. EBioMedicine. 2020;53:102695. doi:10.1016/j.ebiom.2020.102695.; Li C, Zhang L, Hu X, et al. SORBS2 upregulation may contribute to dysfunction in LVNC via the Notch pathway. Acta Biochim Biophys Sin (Shanghai). 2022;55(2):327-329. doi:10.3724/abbs.2022177; Guo A, Wang Y, Chen B, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362(6421):eaan3303. doi:10.1126/science.aan3303; Prins KW, Asp ML, Zhang H, et al. Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci. 2016;1(3):122-130. doi:10.1016/j.jacbts.2016.02.002; Халиков А.А., Кузнецов К.О., Искужина Л.Р., Халикова Л.В. Судебно-медицинские аспекты внезапной аутопсия-отрицательной сердечной смерти. Судебно-медицинская экспертиза. 2021;64(3):59‑63. https://doi.org/10.17116/sudmed20216403159; Петрова Е.А., Кольцова Е.А. Нарушения ритма сердца и инсульт. Consilium Medicum. 2017; 19 (2): 30–34.; Канорский С.Г. Фибрилляция предсердий в старческом возрасте: современные возможности лечения. Южно-Российский журнал терапевтической практики. 2022;3(1):7-14. https://doi.org/10.21886/2712-8156-2022-3-1-7-14; Антипов Г.Н., Постол А.С., Котов С.Н., и др. Сравнение ремоделирования предсердий после процедур «лабиринт-3» и «криолабиринт» при сочетанных вмешательствах на сердце: ретроспективное исследование. Кубанский научный медицинский вестник. 2022;29(2):14-27. https://doi.org/10.25207/1608-6228-2022-29-2-14-27; Nattel S, Dobrev D. Controversies About Atrial Fibrillation Mechanisms: Aiming for Order in Chaos and Whether it Matters. Circ Res. 2017 ;120(9):1396-1398. doi:10.1161/CIRCRESAHA.116.310489.; Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234-1239. doi:10.1038/s41588-018-0171-3.; Roselli C, Rienstra M, Ellinor PT. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ Res. 2020;127(1):21-33. doi:10.1161/CIRCRESAHA.120.316575.; Kim JA, Chelu MG, Li N. Genetics of atrial fibrillation. Curr Opin Cardiol. 2021;36(3):281-287. doi:10.1097/HCO.0000000000000840.; Sheng Y, Wang YY, Chang Y, et al. Deciphering mechanisms of cardiomyocytes and non-cardiomyocyte transformation in myocardial remodeling of permanent atrial fibrillation. J Adv Res. 2024;61:101-117. doi:10.1016/j.jare.2023.09.012.; Поморцев А.В., Карахалис М.Н., Матулевич С.А., и др. Пороки развития сердца плода: факторы риска и возможности ультразвукового метода при первом скрининге. Инновационная медицина Кубани. 2023;(4):51-59. https://doi.org/10.35401/2541-9897-2023-8-4-51-59; Molck MC, Simioni M, Paiva Vieira T, et al. Genomic imbalances in syndromic congenital heart disease. J Pediatr (Rio J). 2017;93(5):497-507. doi:10.1016/j.jped.2016.11.007.; Xu W, Ahmad A, Dagenais S, Iyer RK, Innis JW. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A. 2012;158A(3):635-40. doi:10.1002/ajmg.a.34425.; Strehle EM, Yu L, Rosenfeld JA, et al. Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region. Am J Med Genet A. 2012;158A(9):2139-51. doi:10.1002/ajmg.a.35502.; Liang F, Wang B, Geng J, et al. SORBS2 is a genetic factor contributing to cardiac malformation of 4q deletion syndrome patients. Elife. 2021;10:e67481. doi:10.7554/eLife.67481.; Бондарь И.А., Демин А.А., Гражданкина Д.В. Сахарный диабет 2 типа: взаимосвязь исходных клинико-лабораторных и эхокардиографических показателей с отдалёнными неблагоприятными сердечно-сосудистыми событиями. Сахарный диабет. 2022;25(2):136-144. https://doi.org/10.14341/DM12823; Lu T, Chai Q, Jiao G, et al. Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovasc Res. 2019;115(1):145-153. doi:10.1093/cvr/cvy137.; Vujkovic M, Keaton JM, Lynch JA, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680-691. doi:10.1038/s41588-020-0637-y.; Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582(7811):240-245. doi:10.1038/s41586-020-2263-3.; Lu T, Lee HC. Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus. Front Physiol. 2021;12:750618. doi:10.3389/fphys.2021.750618.; Nystoriak MA, Nieves-Cintrón M, Nygren PJ, et al. AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res. 2014;114(4):607-15. doi:10.1161/CIRCRESAHA.114.302168.; Yi F, Wang H, Chai Q, et al. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem. 2014;289(15):10853-10864. doi:10.1074/jbc.M113.520940; Sun X, Qian LL, Li Y, et al. Regulation of KCNMA1 transcription by Nrf2 in coronary arterial smooth muscle cells. J Mol Cell Cardiol. 2020;140:68-76. doi:10.1016/j.yjmcc.2020.03.001.; Турушева А.В., Котовская Ю.В., Фролова Е.В., и др. Влияние артериальной гипертензии на смертность и развитие гериатрических синдромов. Артериальная гипертензия. 2022;28(4):419-427. https://doi.org/10.18705/1607-419X-2022-28-4-419-427; Hoffmann TJ, Ehret GB, Nandakumar P, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49(1):54-64. doi:10.1038/ng.3715.; Кобалава Ж.Д., Конради А.О., Недогода С.В., и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(9):6117. https://doi.org/10.15829/1560-4071-2024-6117. EDN: GUEWLU; Wang D, Uhrin P, Mocan A, Waltenberger B, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv. 2018;36(6):1586-1607. doi:10.1016/j.biotechadv.2018.04.006.; Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res. 2021;44(2):129-146. doi:10.1038/s41440-020-00553-6.; Zheng F, Ye C, Ge R, et al. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci. 2023;330:122023. doi:10.1016/j.lfs.2023.122023.; Holtzclaw JD, Grimm PR, Sansom SC. Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens. 2011;20(5):512-7. doi:10.1097/MNH.0b013e3283488889.; Yang Y, Li PY, Cheng J, et al. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension. 2013;61(2):519-25. doi:10.1161/HYPERTENSIONAHA.111.00211.; Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med. 2023;55(12):2519-2530. doi:10.1038/s12276-023-01130-w.; Pinard A, Jones GT, Milewicz DM. Genetics of Thoracic and Abdominal Aortic Diseases. Circ Res. 2019;124(4):588-606. doi:10.1161/CIRCRESAHA.118.312436.; Wang C, Qu B, Wang Z, et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238(2):201-6. doi:10.1016/j.atherosclerosis.2014.11.027.

  11. 11
    Academic Journal

    Contributors: Работа выполнена при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2024-0001 «Разработка новых фармакологических подходов к экспериментальной терапии атеросклероза, технологий серийного производства реактивов и расходных материалов для изучения физиологии и патофизиологии сердечно-сосудистой системы и программного обеспечения на основе искусственного интеллекта для автоматизированной диагностики патологий системы кровообращения и автоматизированного расчета сердечно-сосудистого риска» при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках национального проекта «Наука и университеты».

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 216-227 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 216-227 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1719/1064; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2142; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2143; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2144; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2145; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2146; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2147; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2148; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2149; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1719/2150; Bracale UM, Peluso A, Di Mauro E, Del Guercio L, Di Taranto MD, Giannotta N, Ielapi N, Provenzano M, Andreucci M, Serra R. Carotid Endarterectomy versus Carotid Artery Stenting With Double-Layer Micromesh Carotid Stent: Contemporary Results of a Single-Center Retrospective Study. Ann Vasc Surg. 2022;82:41-46. doi:10.1016/j.avsg.2021.10.073.; Oushy SH, Essibayi MA, Savastano LE, Lanzino G. Carotid artery revascularization: endarterectomy versus endovascular therapy. J Neurosurg Sci. 2021;65(3):322-326. doi:10.23736/S0390-5616.20.05207-8.; Saw J. Carotid artery stenting for stroke prevention. Can J Cardiol. 2014;30(1):22-34. doi:10.1016/j.cjca.2013.09.030.; Thomas MA, Pearce WH, Rodriguez HE, Helenowski IB, Eskandari MK. Durability of Stroke Prevention with Carotid Endarterectomy and Carotid Stenting. Surgery. 2018; 164(6):1271-1278. doi:10.1016/j.surg.2018.06.041.; Gabrielli R, Siani A, Smedile G, Rizzo AR, Accrocca F, Bartoli S. Carotid Artery Stenting versus Carotid Endarterectomy in Terms of Neuroprotection DW-MRI Detected and Neuropsychological Assessment Impairment. Ann Vasc Surg. 2024;98:68-74. doi:10.1016/j.avsg.2023.05.046.; Jácome F, Oliveira-Pinto J, Dionísio A, Coelho A, Ramos JF, Mansilha A. Mini-skin longitudinal incision versus traditional longitudinal incision for carotid endarterectomy in patients with carotid artery stenosis: a systematic review and meta-analysis. Int Angiol. 2024;43(5):533-540. doi:10.23736/S0392-9590.24.05300-8.; Park S, Kim BJ, Choi HY, Chang DI, Woo HG, Heo SH. Risk factors of in-stent restenosis after carotid angioplasty and stenting: long-term follow-up study. Front Neurol. 2024;15:1411045. doi:10.3389/fneur.2024.1411045.; Kumar R, Batchelder A, Saratzis A, AbuRahma AF, Ringleb P, Lal BK, Mas JL, Steinbauer M, Naylor AR. Restenosis after Carotid Interventions and Its Relationship with Recurrent Ipsilateral Stroke: A Systematic Review and Meta-analysis. Eur J Vasc Endovasc Surg. 2017;53(6):766-775. doi:10.1016/j.ejvs.2017.02.016.; Texakalidis P, Tzoumas A, Giannopoulos S, Jonnalagadda AK, Jabbour P, Rangel-Castilla L, Machinis T, Rivet DJ, Reavey-Cantwell J. Risk Factors for Restenosis After Carotid Revascularization: A Meta-Analysis of Hazard Ratios. World Neurosurg. 2019;125:414-424. doi:10.1016/j.wneu.2019.02.065.; Achim A, Lackó D, Hüttl A, Csobay-Novák C, Csavajda Á, Sótonyi P, Merkely B, Nemes B, Ruzsa Z. Impact of Diabetes Mellitus on Early Clinical Outcome and Stent Restenosis after Carotid Artery Stenting. J Diabetes Res. 2022;2022:4196195. doi:10.1155/2022/4196195.; Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol. 2023;13:1081881. doi:10.3389/fphys.2022.1081881.; Haybar H, Pezeshki SMS, Saki N. Platelets in In-stent Restenosis: From Fundamental Role to Possible Prognostic Application. Curr Cardiol Rev. 2020;16(4):285-291. doi:10.2174/1573403X15666190620141129.; Datz JC, Steinbrecher I, Meier C, Hagmeyer N, Engel LC, Popp A, Pfaller MR, Schunkert H, Wall WA. Patient-specific coronary angioplasty simulations - A mixed-dimensional finite element modeling approach. Comput Biol Med. 2025;189:109914. doi:10.1016/j.compbiomed.2025.109914.; Gharaibeh Y, Lee J, Zimin VN, Kolluru C, Dallan LAP, Pereira GTR, Vergara-Martel A, Kim JN, Hoori A, Dong P, Gamage PT, Gu L, Bezerra HG, Al-Kindi S, Wilson DL. Prediction of stent under-expansion in calcified coronary arteries using machine learning on intravascular optical coherence tomography images. Sci Rep. 2023;13(1):18110. doi:10.1038/s41598-023-44610-9.; Tan RP, Hung JC, Chan AHP, Grant AJ, Moore MJ, Lam YT, Michael P, Wise SG. Highly reproducible rat arterial injury model of neointimal hyperplasia. PLoS One. 2023; 18(8): e0290342. doi:10.1371/journal.pone.0290342.; Inoue T, Uchida T, Yaguchi I, Sakai Y, Takayanagi K, Morooka S. Stent-induced expression and activation of the leukocyte integrin Mac-1 is associated with neointimal thickening and restenosis. Circulation. 2003;107(13):1757-63. doi:10.1161.; Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci. 2021;2:79-94. doi:10.1016/j.jvssci.2021.04.001.; Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res. 2021;117(13):2525-2536. doi:10.1093/cvr/cvab303.; Kapnisis K, Stylianou A, Kokkinidou D, Martin A, Wang D, Anderson PG, Prokopi M, Papastefanou C, Brott BC, Lemons JE, Anayiotos A. Multilevel Assessment of Stent-Induced Inflammation in the Adjacent Vascular Tissue. ACS Biomater Sci Eng. 2023;9(8):4747-4760. doi:10.1021/acsbiomaterials.3c00540.; Данилович А.И., Тарасов Р.С. Отдаленные исходы реваскуляризации миокарда и мозга при помощи чрескожных коронарных вмешательств и каротидной эндартерэктомии в гибридном и поэтапном режимах. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(1):42-51. doi:10.17802/2306-1278-2020-9-1-42-51.

  12. 12
    Academic Journal

    Contributors: Авторы заявляют об отсутствии финансирования исследования.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 37-46 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 37-46 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1726/1081; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1726/2171; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1726/2172; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1726/2173; Вайсман Д.Ш., Енина Е.Н. Показатели смертности от ишемической болезни сердца в Российской Федерации и ряде регионов: особенности динамики и структу-ры. Кардиоваскулярная терапия и профилактика. 2024;23(7):3975. https://doi.org/10.15829/1728-8800-2024-3975; Khan MA, Hashim MJ, Mustafa H, et al. Global Epidemiology of Ischemic Heart Dis-ease: Results from the Global Burden of Disease Study. Cureus. Published online July 23, 2020. doi:10.7759/cureus.9349; Hansson GK. Inflammation, Atherosclerosis, and Coronary Artery Disease. N Engl J Med. 2005;352(16):1685-1695. doi:10.1056/NEJMra043430; Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Au-toimmunity Reviews. 2010;9(12):830-834. doi:10.1016/j.autrev.2010.07.016; Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022;387(3):391-398. doi:10.1007/s00441- 021- 03471-2; Tsigkou V, Oikonomou E, Anastasiou A, et al. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. IJMS. 2023;24(5):4321. doi:10.3390/ijms24054321; Murphy SP, Kakkar R, McCarthy CP, Januzzi JL. Inflammation in Heart Failure. Journal of the American College of Cardiology. 2020;75(11):1324-1340. doi:10.1016/j.jacc.2020.01.014; Vasan RS, Sullivan LM, Roubenoff R, et al. Inflammatory Markers and Risk of Heart Failure in Elderly Subjects Without Prior Myocardial Infarction: The Framingham Heart Study. Circulation. 2003;107(11):1486-1491. doi:10.1161/01.CIR.0000057810.48709.F6; Fish-Trotter H, Ferguson JF, Patel N, et al. Inflammation and Circulating Natriuretic Pep-tide Levels. Circ: Heart Failure. 2020;13(7):e006570. doi:10.1161/CIRCHEARTFAILURE.119.006570; Aimo A, Januzzi JL, Bayes-Genis A, et al. Clinical and Prognostic Significance of sST2 in Heart Failure. Journal of the American College of Cardiology. 2019;74(17):2193-2203. doi:10.1016/j.jacc.2019.08.1039; Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467.; Alexander Y, Osto E, Schmidt-Trucksäss A, et al. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Athero-sclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiol-ogy and Microcirculation, and Thrombosis. Cardiovascular Research. 2021;117(1):29-42. doi:10.1093/cvr/cvaa085; Сагайдачный А.А. Окклюзионная проба: методы анализа, механизмы реакции, перспективы применения. Регионарное кровообращение и микроциркуляция. 2018;17(3):5-22. https://doi.org/10.24884/1682-6655-2018-17-3-5-22; Hellmann M, Roustit M, Cracowski JL. Skin microvascular endothelial function as a bi-omarker in cardiovascular diseases? Pharmacological Reports. 2015;67(4):803-810. doi:10.1016/j.pharep.2015.05.008; Барбараш О.Л., Дупляков Д.В., Затейщиков Д.А. и др. Острый коронарный син-дром без подъема сегмента ST электрокардиограммы. Клинические рекомендации 2020. Российский кардиологический журнал. 2021;26(4):4449. https://doi.org/10.15829/1560-4071-2021-4449; Российское кардиологическое общество (РКО). Острый инфаркт миокарда с подъ-емом сегмента ST электрокардиограммы. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4103. https://doi.org/10.15829/29/1560-4071-2020-4103; Matsuzawa Y, Lerman A. Endothelial dysfunction and coronary artery disease: assess-ment, prognosis, and treatment. Coron Artery Dis. 2014;25(8):713-724. doi:10.1097/MCA.0000000000000178; Фозилов Х.Г., Шек А.Б., Бекметова Ф.М., Алиева Р.Б., Мухамедова М.Г., Муллаба-ева Г.У. и др. Особенности деформационных свойств левого желудочка у больных c пора-жением коронарных артерий. Клиническая и экспериментальная хирургия. Журнал име-ни академика Б.В. Петровского. 2021; 9(3):118-124. doi:10.33029/2308-1198-2021-9-3-118-124; Хомякова Д.А., Сайганов С.А., Гришкин Ю.Н. Особенности диастолической функ-ции левого желудочка у больных острым инфарктом миокарда без зубца Q после чрескожного вмешательства. Вестник Северо-Западного государственного медицинского университета им. И. И. Мечникова. 2017;9(2):44-50; Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F. Endo-thelial dysfunction over the course of coronary artery disease. European Heart Journal. 2013;34(41):3175-3181. doi:10.1093/eurheartj/eht351; Bonetti PO, Pumper GM, Higano ST, Holmes DR, Kuvin JT, Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hy-peremia. Journal of the American College of Cardiology. 2004;44(11):2137-2141. doi:10.1016/j.jacc.2004.08.062; Selthofer-Relatić K, Stupin M, Drenjančević I, Bošnjak I. From Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA) to Chronic Coronary Syndrome: Clinical Diagnostic Use of Laser Doppler Flowmetry in Coronary Microvascular Dysfunction. Am J Case Rep. 2020;21. doi:10.12659/AJCR.924984; Zhang J, Chen Z, Ma M, He Y. Soluble ST2 in coronary artery disease: Clinical bi-omarkers and treatment guidance. Front Cardiovasc Med. 2022;9:924461. doi:10.3389/fcvm.2022.924461; Miura-Takahashi E, Tsudome R, Suematsu Y, et al. An elevated level of soluble suppres-sion of tumorigenicity 2, but not galectin-3, is associated with the presence of coronary artery disease in hypertensive patients. Hypertens Res. 2025;48(2):650-661. doi:10.1038/s41440- 024- 01934-x; Hbaieb MA, Charfeddine S, Driss T, et al. Endothelial Dysfunction in Acute Myocardial Infarction: A Complex Association With Sleep Health, Traditional Cardiovascular Risk Factors and Prognostic Markers. Clinical Cardiology. 2025;48(1):e70080. doi:10.1002/clc.70080; Patti G, Pasceri V, Melfi R, et al. Impaired Flow-Mediated Dilation and Risk of Resteno-sis in Patients Undergoing Coronary Stent Implantation. Circulation. 2005;111(1):70-75. doi:10.1161/01.CIR.0000151308.06673.D2; Guazzi M, Reina G, Gripari P, Tumminello G, Vicenzi M, Arena R. Prognostic value of flow-mediated dilatation following myocardial infarction. International Journal of Cardiology. 2009;132(1):45-50. doi:10.1016/j.ijcard.2007.10.036

  13. 13
    Academic Journal

    Contributors: Работа выполнена в рамках фундаментального научного исследования № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 3 (2025); 163-179 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 3 (2025); 163-179 ; 2587-9537 ; 2306-1278 ; undefined

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1647/1048; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/1996; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/1997; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/1998; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/1999; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/2000; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/2001; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/2002; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/2003; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/2004; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1647/2005; Wang X., Bakhuis W., Veen K.M., Bogers A.J.J.C., Etnel J.R.G., van Der Ven C.C.E.M., Roos-Hesselink J.W., Andrinopoulou E.R., Takkenberg J.J.M. Outcomes after right ventricular outflow tract reconstruction with valve substitutes: A systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:897946. doi:10.3389/fcvm.2022.897946.; Carrel T. Past, present, and future options for right ventricular outflow tract reconstruction. Front Surg. 2023;10:1185324. doi:10.3389/fsurg.2023.1185324.; Geva T., Wald R.M., Bucholz E., Cnota J.F., McElhinney D.B., Mercer-Rosa L.M., Mery C.M., Miles A.L., Moore J.; American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular Surgery and Anesthesia; Council on Clinical Cardiology; and Council on Cardiovascular and Stroke Nursing. Long-Term Management of Right Ventricular Outflow Tract Dysfunction in Repaired Tetralogy of Fallot: A Scientific Statement From the American Heart Association. Circulation. 2024;150(25):e689-e707. doi:10.1161/CIR.0000000000001291.; Blais S., Marelli A., Blais S., Marelli A., Vanasse A., Dahdah N., Dancea A., Drolet C., Dallaire F. Comparison of Long-term Outcomes of Valve-Sparing and Transannular Patch Procedures for Correction of Tetralogy of Fallot. JAMA Netw Open. 2021;4(7):e2118141. doi:10.1001/jamanetworkopen.2021.18141.; Wei X., Li T., Ling Y., Chai Z., Cao Z., Chen K., Qian Y. Transannular patch repair of tetralogy of Fallot with or without monocusp valve reconstruction: a meta-analysis. BMC Surg. 2022;22(1):18. doi:10.1186/s12893-022-01474-6.; Martins R.S., Fatimi A.S., Mahmud O., Qureshi S., Nasim M.T., Virani S.S., Tameezuddin A., Yasin F., Malik M.A. Comparing clinical and echocardiographic outcomes following valve-sparing versus transannular patch repair of tetralogy of Fallot: a systematic review and meta-analysis. Interdiscip Cardiovasc Thorac Surg. 2024;39(1):ivae124. doi:10.1093/icvts/ivae124.; Bejleri D., Davis M.E. Decellularized Extracellular Matrix Materials for Cardiac Repair and Regeneration. Adv Healthc Mater. 2019;8(5):e1801217. doi:10.1002/adhm.201801217.; Patukale A., Daley M., Betts K., Justo R., Dhannapuneni R., Venugopal P., Karl T.R., Alphonso N. Outcomes of pulmonary valve leaflet augmentation for transannular repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2021;162(5):1313-1320. doi:10.1016/j.jtcvs.2020.12.145.; Шабаев И.Ф., Халивопуло И.К., Сизова И.Н., Шабалдин А.В. Отдалённые результаты хирургического лечения дефекта межжелудочковой перегородки у детей с применением эпоксиобработанного ксеноперикардиального лоскута «КЕМПЕРИПЛАС-НЕО». Комплексные проблемы сердечно-сосудистых заболеваний. 2024;13(4):55-61. doi:10.17802/2306-1278-2024-13-4-55-61.; Севостьянова В.В., Миронов А.В., Антонова Л.В., Тарасов Р.С. Применение сосудистых заплат для артериальной реконструкции, проблемы и перспективные технологии. Комплексные проблемы сердечно-сосудистых заболеваний. 2019;8(3):116-129. doi:10.17802/2306-1278-2019-8-3-116-129.; Мухамадияров Р.А., Халивопуло И.К., Евтушенко А.В., Ляпин А.А., Кутихин А.Г. 11-летняя эффективность ксеноперикардиальной заплаты «КемПериплас» для пластики легочной артерии при радикальной коррекции тетрады Фалло. Клиническая и экспериментальная хирургия. Журнал имени академика Б.В. Петровского. 2023;11(4):145-154. doi:10.33029/2308-1198-2023-11-4-145-154.; Мухамадияров Р.А., Кутихин А.Г. Исследование нормальной и патологической микроскопической анатомии кровеносных сосудов при помощи сканирующей электронной микроскопии в обратно-рассеянных электронах. Фундаментальная и клиническая медицина. 2019;4(1):6-14. doi:10.23946/2500-0764-2019-4-1-6-14. doi:10.23946/2500-0764-2019-4-1-6-14.; Мухамадияров Р.А., Кошелев В.А., Фролов А.В., Миронов А.В., Шабаев А.Р., Евтушенко А.В., Ляпин А.А., Кутихин А.Г. Ультраструктура неоинтимы нативных и искусственных элементов системы кровообращения. Архив патологии. 2022;84(3):14-23. doi:10.17116/patol20228403114.; Мухамадияров Р.А., Евтушенко А.В., Тарасов Р.С., Халивопуло И.К., Ляпин А.А., Кутихин А.Г. Различия структуры неоинтимы на голометаллическом стенте и заплате из политетрафторэтилена у детей после двухэтапной хирургической коррекции тетрады Фалло. Клиническая и экспериментальная хирургия. Журнал имени академика Б.В. Петровского. 2022;10(3):64-75. doi:10.33029/2308-1198-2022-10-3-64-75.; Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A., Shabaev A.R., Frolov A.V., Stasev A.N., Lyapin A.A., Kutikhin A.G. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med. 2021;8:739549. doi:10.3389/fcvm.2021.739549.; Chen K., Xu M., Lu F., He Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med. 2023;20(5):661-670. doi:10.1007/s13770-023-00536-x.; Mead T.J., Bhutada S., Martin D.R., Apte S.S. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol. 2022;323(3):C651-C665. doi:10.1152/ajpcell.00215.2022.; Jariwala N., Ozols M., Bell M., Bradley E., Gilmore A., Debelle L., Sherratt M.J. Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev. 2022;185:114240. doi:10.1016/j.addr.2022.114240.; Perepletchikova D., Kuchur P., Basovich L., Khvorova I., Lobov A., Azarkina K., Aksenov N., Bozhkova S., Karelkin V., Malashicheva A. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Cell Commun Signal. 2025;23(1):100. doi:10.1186/s12964-025-02096-0.; Kostina A., Semenova D., Kostina D., Uspensky V., Kostareva A., Malashicheva A. Human aortic endothelial cells have osteogenic Notch-dependent properties in co-culture with aortic smooth muscle cells. Biochem Biophys Res Commun. 2019;514(2):462-468. doi:10.1016/j.bbrc.2019.04.177.; Rutkovskiy A., Lund M., Siamansour T.S., Reine T.M., Kolset S.O., Sand K.L., Ignatieva E., Gordeev M.L., Stensløkken K.O., Valen G., Vaage J., Malashicheva A. Mechanical stress alters the expression of calcification-related genes in vascular interstitial and endothelial cells. Interact Cardiovasc Thorac Surg. 2019;28(5):803-811. doi:10.1093/icvts/ivy339.; Tan Y., Zhang M., Kong Y., Zhang F., Wang Y., Huang Y., Song W., Li Z. et al. Fibroblasts and endothelial cells interplay drives hypertrophic scar formation: Insights from in vitro and in vivo models. Bioeng Transl Med. 2023;9(2):e10630. doi:10.1002/btm2.10630.; Šalingová B., Červenák Z., Adamičková A., Chomanicová N., Valášková S., Gažová A., Kyselovič J. Endothelial-Mesenchymal Transition or Functional Tissue Regeneration - Two Outcomes of Heart Remodeling. Physiol Res. 2021;70(Suppl 1):S13-S20. doi:10.33549/physiolres.934780.; Méndez-Barbero N., Gutiérrez-Muñoz C., Blanco-Colio L.M. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci. 2021;22(14):7284. doi:10.3390/ijms22147284.; Randles M.J., Humphries M.J., Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 2017;57-58:12-28. doi:10.1016/j.matbio.2016.08.006.; Lau S., Gossen M., Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci. 2021;22(23):13120. doi:10.3390/ijms222313120.; Lin P.K., Davis G.E. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol. 2023;43(9):1599-1616. doi:10.1161/ATVBAHA.123.318237.; Moncla L.M., Briend M., Bossé Y., Mathieu P. Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol. 2023;20(8):546-559. doi:10.1038/s41569-023-00845-7.; Kostyunin A.E., Glushkova T.V., Lobov A.A., Ovcharenko E.A., Zainullina B.R., Bogdanov L.A., Shishkova D.K., Markova V.E. et al. Proteolytic Degradation Is a Major Contributor to Bioprosthetic Heart Valve Failure. J Am Heart Assoc. 2023;12(1):e028215. doi:10.1161/JAHA.122.028215.; Kostyunin A., Mukhamadiyarov R., Glushkova T., Bogdanov L., Shishkova D., Osyaev N., Ovcharenko E., Kutikhin A. Ultrastructural Pathology of Atherosclerosis, Calcific Aortic Valve Disease, and Bioprosthetic Heart Valve Degeneration: Commonalities and Differences. Int J Mol Sci. 2020;21(20):7434. doi:10.3390/ijms21207434.; Kostyunin A.E., Yuzhalin A.E., Rezvova M.A., Ovcharenko E.A., Glushkova T.V., Kutikhin A.G. Degeneration of Bioprosthetic Heart Valves: Update 2020. J Am Heart Assoc. 2020;9(19):e018506. doi:10.1161/JAHA.120.018506.; Костюнин А.Е., Глушкова Т.В., Шишкова Д.К., Маркова В.Е., Овчаренко Е.А. Скрининговый анализ протеолитических ферментов и их ингибиторов в створках эпоксиобработанных биопротезных клапанов сердца, эксплантированных по причине дисфункций. Биомедицинская химия. 2022;68(1):68-75. doi:10.18097/PBMC20226801068.; Костюнин А.Е., Глушкова Т.В. Первые результаты изучения экспрессии матриксных металлопротеиназ-1/-2/-9/-12 в ксеногенных тканях эпоксиобработанных биопротезов клапанов сердца, эксплантированных по причине дисфункций. Российский кардиологический журнал. 2020;25(10):49-55. doi:10.15829/1560-4071-2020-3978.; Костюнин А.Е., Глушкова Т.В., Богданов Л.А., Кутихин А.Г., Овчаренко Е.А. Особенности экспрессии цистеиновых катепсинов B/K/L/S/V/Z в биопротезах клапанов сердца, эксплантированных по причине дисфункции. Сибирский журнал клинической и экспериментальной медицины. 2023;38(2):166-173. doi:10.29001/2073-8552-2023-38-2-166-173.; Костюнин А.Е., Глушкова Т.В., Богданов Л.А., Овчаренко Е.А. Экспрессия тканевых ингибиторов металлопротеиназ типа 1 и 2 в створках эксплантированных биопротезов клапанов сердца - новая патогенетическая параллель между структурной дегенерацией клапана и кальцинирующим аортальным стенозом. Вестник трансплантологии и искусственных органов. 2021;23(3):115-121. doi:10.15825/1995-1191-2021-3-115-121.

  14. 14
    Academic Journal

    Contributors: Исследование выполнено в рамках фундаментальной темы НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 3 (2025); 27-39 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 3 (2025); 27-39 ; 2587-9537 ; 2306-1278 ; undefined

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1471/1038; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1471/1616; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1471/1617; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1471/1618; Di Francesco D., Pigliafreddo A., Casarella S., Di Nunno L., Mantovani D., Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules. 2023; 13:1389. doi:10.3390/biom13091389.; Wang Z., Mithieux S.M., Weiss A.S. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv. Healthc. Mater. 2019; 8(19):1900742. doi:10.1002/adhm.201900742.; Leal B.B.J., Wakabayashi N., Oyama K., Kamiya H.; Braghirolli D.I., Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front. Cardiovasc. Med. 2021; 7:592361. doi:10.3389/fcvm.2020.592361.; Watanabe T., Sassi S., Ulziibayar A., Hama R., Kitsuka T., Shinoka T. The Application of Porous Scaffolds for Cardiovascular Tissues. Bioengineering 2023;10:236. doi:10.3390/bioengineering10020236.; Dimitrievska S., Niklason L. E. Historical perspective and future direction of blood vessel developments. Cold Spring Harb. Perspect. Med. 2018; 8(2):a025742. doi:10.1101/cshperspect.a025742.; Nelson R. A., Rhee E. K., Alaeddine M., Nikkhah M. Advances in Biomaterials for Promoting Vascularization. Current Stem Cell Reports. 2022; 8:184-196. doi:10.1007/s40778-022-00217-w.; Antonova L.V., Sevostyanova V.V., Mironov A.V., Krivkina E.O., Velikanova E.A., Matveeva V.G., Glushkova T.V., Elgudin Ya.L., Barbarash L.S. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases. 2018; 7(2):25-36. doi:10.17802/2306-1278-2018-7-2-25-36. (In Russian); Антонова Л.В., Миронов А.В., Шабаев А.Р., Сильников В.Н., Кривкина Е.О., Матвеева В.Г., Великанова Е.А., Сенокосова Е.А., Ханова М.Ю., Севостьянова В.В., Глушкова Т.В., Мухамадияров Р.А., Барбараш Л.С. Тканеинженерные сосудистые заплаты – сравнительная характеристика и результаты преклинических испытаний на модели овцы. Вестник трансплантологии и искусственных органов. 2022;24(4):94-108. doi:10.15825/1995-1191-2022-4-94-108.; Кривкина Е.О., Миронов А.В., Шабаев А.Р., Великанова Е.А., Ханова М.Ю., Синицкая А.В., Антонова Л.В., Барбараш Л.С. Особенности ремоделирования новообразованной сосудистой ткани на базе биодеградируемых сосудистых протезов, имплантированных в сонную артерию овец: морфогенетический анализ. Сибирский журнал клинической и экспериментальной медицины. 2023;38(1):152-159. doi:10.29001/2073-8552-2023-38-1-151-159.; Antonova L., Kutikhin A., Sevostianova V., Lobov A., Repkin E., Krivkina E., Velikanova E., Mironov A., Mukhamadiyarov R., Senokosova E., Khanova M., Shishkova D., Markova V., Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers. 2022;14(23):5149. doi:10.3390/polym14235149.; Yarinich L.A., Burakova E.A., Zakharov B.A., Boldyreva E.V., Babkina I.N., Tikunova N.V., Silnikov V.N. Synthesis and structure-activity relationship of novel 1,4-diazabicyclo[2.2.2]octane derivatives as potent antimicrobial agents. Eur J Med Chem. 2015;95:563-73. doi:10.1016/j.ejmech.2015.03.033.; Antonova L.V., Sevostianova V.V., Silnikov V.N., Krivkina E.O., Velikanova E.A., Mironov A.V., Shabaev A.R., Senokosova E.A., Khanova M.Y., Glushkova T.V., Akentieva T.N., Sinitskaya A.V., Markova V.E., Shishkova D.K., Lobov A.A., Repkin E.A., Stepanov A.D., Kutikhin A.G., Barbarash L.S. Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model. Int J Mol Sci. 2023;24(10): 8540. doi:10.3390/ijms24108540.; Antonova L.V., Sevostyanova V.V., Mironov A.V., Krivkina E.O., Velikanova E.A., Matveeva V.G., Glushkova T.V., Elgudin Ya.L., Barbarash L.S. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases. 2018;7(2):25-36. doi:10.17802/2306-1278-2018-7-2-25-36.; Roh J.D., Sawh-Martinez R., Brennan M.P., Jay S.M., Devine L., Rao D.A., Yi T., Mirensky T.L., Nalbandian A., Udelsman B., Hibino N., Shinoka T., Saltzman W.M., Snyder E., Kyriakides T.R., Pober J.S., Breuer C.K. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010;107(10):4669-4674. doi:10.1073/pnas.0911465107.; Wei Q., Becherer T., Angioletti-Uberti S., Dzubiella J., Wischke C., Neffe A.T., Lendlein A., Ballauff M., Haag R. Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed Engl. 2014;53(31):8004-31. doi:10.1002/anie.201400546.; Planas-Rigol E., Terrades-Garcia N., Corbera-Bellalta M., Lozano E., Alba M.A., Segarra M., Espígol-Frigolé G., Prieto-González S., Hernández-Rodríguez J., Preciado S., Lavilla R., Cid M.C. Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann Rheum Dis. 2017;76(9):1624-1634. doi:10.1136/annrheumdis-2016-210792.; Lee K.W., Gade P.S., Dong L., Zhang Z., Aral A.M., Gao J., Ding X., Stowell C.E.T., Nisar M.U., Kim K., Reinhardt D.P., Solari M.G., Gorantla V.S., Robertson A.M., Wang Y. A biodegradable synthetic graft for small arteries matches the performance of autologous vein in rat carotid arteries. Biomaterials. 2018;181:67-80. doi:10.1016/j.biomaterials.2018.07.037.; Hibino N., Yi T., Duncan D.R., Rathore A., Dean E., Naito Y., Dardik A., Kyriakides T., Madri J., Pober J.S., Shinoka T., Breuer C.K. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J. 2011;25(12):4253-63. doi:10.1096/fj.11-186585.; Zhang F., King M.W. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater. 2022;11(12):e2200045. doi:10.1002/adhm.202200045.; Ajith T. А. Macrophage Polarization: An Ideal Therapeutic Strategy Remains to be Explored in Atherosclerotic Cardiovascular Disease. Journal of Advanced Health Research & Clinical Medicine. 2024;1(1):3-12. doi:10.4103/JHCR.JHCR_10_23.; Li D.W., Liu Z.Q., Wei J., Liu Y., Hu L.S. Contribution of endothelial progenitor cells to neovascularization (Review). Int. J. Mol. Med. 2012;30(5):1000-1006. doi:10.3892/ijmm.2012.1108.; Черток В.М., Черток А.Г., Зенкина В.Г. Эндотелиозависимая регуляция ангиогенеза. Цитология. 2017;59(4):243-258 [Chertok V.M., Chertok A.G., Zenkina V.G. Endotelial-dependent of the regulation of angiogenesis. Tsitologiia. 2017;59(4):243-258 (In Russian)]; Kiewisz J., Kaczmarek M.M., Pawlowska A., Kmiec Z., Stompor T. Endothelial progenitor cells participation in cardiovascular and kidney diseases: a systematic review. Acta Biochim. Pol. 2016;63(3):475-482. doi:10.18388/abp.2016_1284.; Cheng M., Huang K., Zhou J., Yan D., Tang Y.-L., Zhao T.C. et al. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart. J. Mol. Cell. Cardiol. 2015;81:49-53. doi:10.1016/j.yjmcc.2015.01.024.; Liu Z.-J., Velazquez O.C. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid. Redox. Signal. 2008;10(11):1869-1882. doi:10.1089/ars.2008.2121.; Pilard M., Ollivier E.L., Gourdou-Latyszenok V., Couturaud F., Lemarié C.A. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front Cardiovasc Med. 2022;9:864735. doi:10.3389/fcvm.2022.864735.; Asai R., Kurihara Y., Fujisawa K., Sato T., Kawamura Y., Kokubo H., Tonami K., Nishiyama K., Uchijima Y., Miyagawa-Tomita S., Kurihara H. Endothelin receptor type A expression defines a distinct cardiac subdomain within the heart field and is later implicated in chamber myocardium formation. Development. 2010;137(22):3823-3833. doi:10.1242/dev.054015.; Ghaleb A.M., Yang V.W. Krüppel-like factor 4 (KLF4): What we currently know. Gene. 2017;611:27-37. doi:10.1016/j.gene.2017.02.025.; Шишкова Д.К., Синицкая А.В., Синицкий М.Ю., Матвеева В.Г., Великанова Е.А., Маркова В.Е., Кутихин А.Г. Случай спонтанного эндотелиально-мезенхимального перехода в культуре первичных эндотелиальных клеток пупочной вены человека. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(3):97-114. doi:10.17802/2306-1278-2022-11-3-97-114.

  15. 15
  16. 16
    Academic Journal

    Contributors: The study was supported by the Russian Science Foundation grant No. 23-65-10017. The section on post-infarction cardiac remodeling was prepared in the framework of the state assignment 122020300042-4, Работа выполнена при финансовой поддержке гранта Российского научного фонда №2365-10017. Раздел, посвященный постинфарктному ремоделированию сердца, подготовлен в рамках государственного задания 122020300042-4

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 40, № 1 (2025); 11-18 ; Сибирский журнал клинической и экспериментальной медицины; Том 40, № 1 (2025); 11-18 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2628/1043; Currey E.M., Falconer N., Isoardi K.Z., Barras M. Impact of pharmacists during in-hospital resuscitation or medical emergency response events: A systematic review. Am. J. Emerg. Med. 2024;75:98–110. https://doi.org/10.1016/j.ajem.2023.10.020; Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R. et al. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1_Pt_B):102049. https://doi.org/10.1016/j.cpcardiol.2023.102049; Nanavaty D., Sinha R., Kaul D., Sanghvi A., Kumar V., Vachhani B. et al. Impact of COVID-19 on acute myocardial infarction: A national inpatient sample analysis. Curr. Probl. Cardiol. 2024;49(1_Pt_A):102030. https://doi.org/10.1016/j.cpcardiol.2023.102030; Hti Lar Seng N.S., Zeratsion G., Pena Zapata O.Y., Tufail M.U., Jim B. Utility of cardiac troponins in patients with chronic kidney disease. Cardiol. Rev. 2024;32(1):62–70. https://doi.org/10.1097/CRD.0000000000000461; Luo Q., Sun W., Li Z., Sun J., Xiao Y., Zhang J. et al. Biomaterialsmediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials. 2023;303:122368. https://doi.org/10.1016/j.biomaterials.2023.122368; Мотова А.В., Каретникова В.Н., Осокина А.В., Поликутина О.М., Барбараш О.Л. Инфаркт миокарда 2-го типа: особенности диагностики в реальной клинической практике. Сибирский журнал клинической и экспериментальной медицины. 2022;37(3):75–82. https://doi.org/10.29001/2073-8552-2022-37-3-75-82; Вышлов Е.В., Алексеева Я.В., Усов В.Ю., Мочула О.В., Рябов В.В. Синдром микрососудистого повреждения миокарда у пациентов с первичным инфарктом миокарда с подъемом сегмента ST: распространенность и связь с клиническими характеристиками. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):36–46. https://doi.org/10.29001/2073-8552-2021-36-4-36-46; Li M., Hu L., Li L. Research progress of intra-aortic balloon counterpulsation in the treatment of acute myocardial infarction with cardiogenic shock: A review. Medicine (Baltimore). 2023;102(49):e36500. https://doi.org/10.1097/MD.0000000000036500; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Cur. Cardiol. Rev. 2022;18(5):63–79. https://doi.org/10.2174/1573403X18666220413121730; Reimer K.A., Jennings R.B. Verapamil in two reperfusion models of myocardial infarction. Temporary protection of severely ischemic myocardium without limitation of ultimate infarct size. Lab. Invest. 1984;51(6):655–666.; Kitamura K., Kangawa K., Kawamoto M., Ichiki Y., Nakamura S., Matsuo H. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 1993a;192(2):553–560. https://doi.org/10.1006/bbrc.1993.1451; Sugo S., Minamino N., Kangawa K., Miyamoto K., Kitamura K., Sakata J. et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 1994;201(3):1160–1166. https://doi.org/10.1006/bbrc.1994.1827; Kitamura K., Sakata J., Kangawa K., Kojima M., Matsuo H., Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem. Biophys. Res. Commun. 1993b; 194(2):720– 725. https://doi.org/10.1006/bbrc.1993.1881; Ishiyama Y., Kitamura K., Ichiki Y., Sakata J., Kida O., Kangawa K. et al. Haemodynamic responses to rat adrenomedullin in anaesthetized spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1995;22(9):614–618. https://doi.org/10.1111/j.1440-1681.1995.tb02075.x; Meeran K., O'Shea D., Upton P.D., Small C.J., Ghatei M.A., Byfield P.H. et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J. Clin. Endocrinol. Metab. 1997;82(1):95–100. https://doi.org/10.1210/jcem.82.1.3656; Sandoval D.A., D'Alessio D.A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015;95(2):513–548. https://doi.org/10.1152/physrev.00013.2014; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. https://doi.org/10.1016/j.bmcl.2020.127499; Naot D., Musson D.S., Cornish J. The activity of peptides of the calcitonin family in bone. Physiol. Rev. 2019;99(1):781–805. https://doi.org/10.1152/physrev.00066.2017; Woolley M.J., Reynolds C.A., Simms J., Walker C.S., Mobarec J.C., Garelja M.L. et al. Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochem. Pharmacol. 2017;142:96–110. https://doi.org/10.1016/j.bcp.2017.07.005; Sekine N., Takano K., Kimata-Hayashi N., Kadowaki T., Fujita T. Adrenomedullin inhibits insulin exocytosis via pertussis toxin-sensitive G protein-coupled mechanism. Am. J. Physiol. Endocrinol. Metab. 2006;291(1):E9–E14. https://doi.org/10.1152/ajpendo.00213.2005; Mittra S. Bourreau J.P. Gs and Gi coupling of adrenomedullin in adult rat ventricular myocytes. Am J. Physiol. Heart Circ. Physiol. 2006;290(5):H1842–H1847. https://doi.org/10.1152/ajpheart.00388.2005; Berenguer C., Boudouresque F., Dussert C., Daniel L., Muracciole X., Grino M. et al. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Oncogene. 2008;27(4):506–518. https://doi.org/10.1038/sj.onc.1210656; Bell D., Campbell M., McAleer S.F., Ferguson M., Donaghy L., Harbinson M.T. Endothelium-derived intermedin/adrenomedullin-2 protects human ventricular cardiomyocytes from ischaemiareoxygenation injury predominantly via the AM1 receptor. Peptides. 2016;76:1–13. https://doi.org/10.1016/j.peptides.2015.12.005; Xian X., Sakurai T., Kamiyoshi A., Ichikawa-Shindo Y., Tanaka M., Koyama T. et al. Vasoprotective activities of the adrenomedullin-RAMP2 system in endothelial cells. Endocrinology. 2017;158(5):1359–1372. https://doi.org/10.1210/en.2016-1531; Josiassen J., Frydland M., Holmvang L., Lerche Helgestad O.K., Okkels Jensen L., Goetze J.P. et al. Mortality in cardiogenic shock is stronger associated to clinical factors than contemporary biomarkers reflecting neurohormonal stress and inflammatory activation. Biomarkers. 2020;25(6):506–512. https://doi.org/10.1080/1354750X.2020.1795265; Nagaya N., Nishikimi T., Uematsu M., Yoshitomi Y., Miyao Y., Miyazaki S. et al. Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction. Heart. 1999;81(5):483–487. https://doi.org/10.1136/hrt.81.5.483; Hartopo A.B., Puspitawati I., Anggraeni V.Y. High level of mid-regional proadrenomedullin during ST-segment elevation myocardial infarction is an independent predictor of adverse cardiac events within 90-day follow-up. Medicina (Kaunas). 2022;58(7):861. https://doi.org/10.3390/medicina58070861; Vijay P., Szekely L., Aufiero T.X., Sharp T.G. Coronary sinus adrenomedullin rises in response to myocardial injury. Clin. Sci. (Lond). 1999;96(4):415–420. https://doi.org/10.1042/cs0960415; Oie E., Vinge L.E., Yndestad A., Sandberg C., Grøgaard H.K., Attramadal H. Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation. 2000;101(4):415–422. https://doi.org/10.1161/01.cir.101.4.415; Nagaya N., Nishikimi T., Yoshihara F., Horio T., Morimoto A., Kangawa K. Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278(4):R1019–R1026. https://doi.org/10.1152/ajpregu.2000.278.4.R1019; Belloni A.S., Guidolin D., Ceretta S., Bova S., Nussdorfer G.G. Acute effect of ischemia on adrenomedullin immunoreactivity in the rat heart: an immunocytochemical study. Int. J. Mol. Med. 2004;14(1):71–73. https://doi.org/10.3892/ijmm.14.1.71; Hinrichs S., Scherschel K., Krüger S., Neumann J.T., Schwarz M., Yan I. et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proc. Natl. Acad. Sci USA. 2018;115(37):E8727–E8736. https://doi.org/1073/pnas.1721635115; Kato K., Yin H., Agata J., Yoshida H., Chao L., Chao J. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J. Physiol. Heart. Circ. Physiol. 2003;285(4):H1506– H1514. https://doi.org/10.1152/ajpheart.00270.2003; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis L.V.M., Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. https://doi.org/10.2174/1570161119666201120160619; Yin H., Chao L., Chao J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension. 2004;43(1):109–116. https://doi.org/10.1161/01.HYP.0000103696.60047.55; An R., Xi C., Xu J., Liu Y., Zhang S., Wang Y. et al. Intramyocardial injection of recombinant adeno-associated viral vector coexpressing PR39/adrenomedullin enhances angiogenesis and reduces apoptosis in a rat myocardial infarction model. Oxid. Med. Cell. Longev. 2017;2017:1271670. https://doi.org/10.1155/2017/1271670; Naryzhnaya N.V., Maslov L.N., Derkachev I.A., Ma H., Zhang Y., Prasad N.R. et al. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J. Biomed. Res. 2022;37(4):230–254. https://doi.org/10.7555/JBR.36.20220125; Moradi M., Mousavi A., Emamgholipour Z., Giovannini J., Moghimi S., Peytam F. et al. Quinazoline-based VEGFR-2 inhibitors as potential antiangiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur. J. Med. Chem. 2023;259:115626. https://doi.org/10.1016/j.ejmech.2023.115626; Okumura H., Nagaya N., Itoh T., Okano I., Hino J., Mori K. et al. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation. 2004;109(2):242–248. https://doi.org/10.1161/01.CIR.0000109214.30211.7C; Hamid S.A., Baxter G.F. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res. Cardiol. 2005;100(5):387– 396. https://doi.org/10.1007/s00395-005-0538-3; Hamid S.A., Baxter G.F. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J. Mol. Cell. Cardiol. 2006;41(2):360–363. https://doi.org/10.1016/j.yjmcc.2006.05.017; Hamid S.A., Totzeck M., Drexhage C., Thompson I., Fowkes R.C., Rassaf T. et al. Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res. Cardiol. 2010;105(2):257–266. https://doi.org/10.1007/s00395-009-0058-7; Nishida H., Sato T., Miyazaki M., Nakaya H. Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels. Cardiovasc. Res. 2008;77(2):398–405. https://doi.org/10.1016/j.cardiores.2007.07.015; Torigoe Y., Takahashi N., Hara M., Yoshimatsu H., Saikawa T. Adrenomedullin improves cardiac expression of heat-shock protein 72 and tolerance against ischemia/reperfusion injury in insulin-resistant rats. Endocrinology. 2009;150(3):1450–1455. https://doi.org/10.1210/en.2008-1052; Karakas M., Akin I., Burdelski C., Clemmensen P., Grahn H., Jarczak D. et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, doubleblinded, placebo-controlled, multicentre trial. Lancet Respir. Med. 2022;10(3):247–254. https://doi.org/10.1016/S2213-2600(21)00439-2; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Marutsuka K. et al. Beneficial effects of adrenomedullin on left ventricular remodeling after myocardial infarction in rats. Cardiovasc. Res. 2002;56(3):373–380. https://doi.org/10.1016/s0008-6363(02)00594-1; Okumura H., Nagaya N., Kangawa K. Adrenomedullin infusion during ischemia/reperfusion attenuates left ventricular remodeling and myocardial fibrosis in rats. Hypertens. Res. 2003;26_Suppl:S99–S104. https://doi.org/10.1291/hypres.26.s99; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Cao Y. et al. Adrenomedullin administration immediately after myocardial infarction ameliorates progression of heart failure in rats. Circulation. 2004;110(4):426–431. https://doi.org/10.1161/01.CIR.0000136085.34185.83; Dong W., Yu P., Zhang T., Zhu C., Qi J., Liang J. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor-1α-associated mechanism. Mol. Med. Rep. 2018;17(3):4547–4553. https://doi.org/10.3892/mmr.2018.8450; Dou L., Lu E., Tian D., Li F., Deng L., Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. J. Transl. Int. Med. 2023;11(2):169–177. https://doi.org/10.2478/jtim-2023-0091; Wang X., Jia J.H., Zhang M., Meng Q.S., Yan B.W., Ma Z.Y. et al. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J. 2023;37(10):e23143. https://doi.org/10.1096/fj.202300474R; https://www.sibjcem.ru/jour/article/view/2628

  17. 17
  18. 18
  19. 19
  20. 20