Showing 1 - 20 results of 52 for search '"РЕЗУС-ФАКТОР"', query time: 0.67s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Contributors: This work was supported by the grant of the Russian Science Foundation № 17-15-01384

    Source: Siberian journal of oncology; Том 19, № 1 (2020); 31-39 ; Сибирский онкологический журнал; Том 19, № 1 (2020); 31-39 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-1

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1319/708; Hatch S.B., Lightfoot H.M.Jr., Garwacki C.P., Moore D.T., Calvo B.F., Woosley J.T., Sciarrotta J., Funkhouser W.K., Farber R.A. Microsatellite instability testing in colorectal carcinoma: choice of markers affects sensitivity of detection of mismatch repair‑deficient tumors. Clin Cancer Res. 2005 Mar 15; 11(6): 2180–7.; Morandi L., de Biase D., Visani M., Monzoni A., Tosi A., Brulatti M., Turchetti D., Baccarini P., Tallini G., Pession A. T([20]) repeat in the 3’‑untranslated region of the MT1X gene: a marker with high sensitivity and specificity to detect microsatellite instability in colorectal cancer. Int J Colorectal Dis. 2012 May; 27(5): 647–56. doi:10.1007/s00384‑011‑1365‑7.; Piñol V., Castells A., Andreu M., Castellví-Bel S., Alenda C., Llor X., Xicola R.M., Rodríguez-Moranta F., Payá A., Jover R., Bessa X.; Gastrointestinal Oncology Group of the Spanish Gastroenterological Association. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA. 2005 Apr 27; 293(16): 1986–94. doi:10.1001/jama.293.16.1986.; Vilar E., Gruber S.B. Microsatellite instability in colorectal cancer‑ the stable evidence. Nat Rev Clin Oncol. 2010 Mar; 7(3): 153–62. doi:10.1038/nrclinonc.2009.237.; Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010; 138(6): 2073–2087. doi:10.1053/j.gastro.2009.12.064.; Buecher B., Cacheux W., Rouleau E., Dieumegard B., Mitry E., Lièvre A. Role of microsatellite instability in the management of colorectal cancers. Dig Liver Dis. 2013 Jun; 45(6): 441–9. doi:10.1016/j.dld.2012.10.006.; Geiersbach K.B., Samowitz W.S. Microsatellite instability and colorectal cancer. Pathol Lab Med. 2011 Oct; 135(10): 1269–77. doi:10.5858/arpa.2011‑0035‑RA.; Heinimann K. Toward a molecular classification of colorectal cancer: the role of microsatellite instability status. Front Oncol. 2013 Oct 31; 3: 272. doi:10.3389/fonc.2013.00272.; Kane M.F., Loda M., Gaida G.M., Lipman J., Mishra R., Goldman H., Jessup J.M., Kolodner R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair‑defective human tumor cell lines. Cancer Res. 1997 Mar 1; 57(5): 808–11.; Parsons M.T., Buchanan D.D., Thompson B., Young J.P., Spurdle A.B. Correlation of tumor BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumor features for MMR variant classification. J Med Genet. 2012 Mar; 49(3): 151–7. doi:10.1136/jmedgenet‑2011‑100714.; Vilar E., Tabernero J. Molecular dissection of microsatellite instable colorectal cancer. Cancer Discov. 2013; 3(5): 502–11. doi:10.1158/2159‑8290.CD‑12‑0471.; Banerjea A., Bustin S.A., Dorudi S. The immunogenicity of colorectal cancers with high‑degree microsatellite instability. World J Surg Oncol. 2005 May 12; 3:26.; Bauer K., Nelius N., Reuschenbach M., Koch M., Weitz J., Steinert G., Kopitz J., Beckhove P., Tariverdian M., von Knebel Doeberitz M., Kloor M. T cell responses against microsatellite instability‑induced frameshift peptides and influence of regulatory T cells in colorectal cancer. Cancer Immunol Immunother. 2013 Jan; 62(1): 27–37. doi:10.1007/s00262‑012‑1303‑8.; Bustin S.A., Li S.R., Phillips S., Dorudi S. Expression of HLA class II in colorectal cancer: evidence for enhanced immunogenicity of microsatellite‑instability‑positive tumours. Tumour Biol. 2001 Sep‑Oct; 22(5): 294. doi:10.1159/000050630.; Deschoolmeester V., Baay M., Lardon F., Pauwels P., Peeters M. Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. Cancer Microenviron. 2011 Dec; 4(3): 377–92. doi:10.1007/s12307‑011‑0068‑5.; Drescher K.M., Sharma P., Watson P., Gatalica Z., Thibodeau S.N., Lynch H.T. Lymphocyte recruitment into the tumor site is altered in patients with MSI‑H colon cancer. Fam Cancer. 2009; 8(3): 231–9. doi:10.1007/s10689‑009‑9233‑0.; Jass J.R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007 Jan; 50(1): 113–30. doi:10.1111/j.1365‑2559.2006.02549.x.; Kloor M., Michel S., von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer. 2010 Sep 1; 127(5): 1001–10. doi:10.1002/ijc.25283.; Malesci A., Laghi L., Bianchi P., Delconte G., Randolph A., Torri V., Carnaghi C., Doci R., Rosati R., Montorsi M., Roncalli M., Gennari L., Santoro A. Reduced likelihood of metastases in patients with microsatellite‑unstable colorectal cancer. Clin Cancer Res. 2007; 13(13): 3831–9. doi:10.1158/1078‑0432.CCR‑07‑0366.; Michel S., Benner A., Tariverdian M., Wentzensen N., Hoefler P., Pommerencke T., Grabe N., von Knebel Doeberitz M., Kloor M. High density of FOXP3‑positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer. 2008 Dec 2; 99(11): 1867–73. doi:10.1038/sj.bjc.6604756.; Ogino S., Nosho K., Irahara N., Meyerhardt J.A., Baba Y., Shima K., Glickman J.N., Ferrone C.R., Mino-Kenudson M., Tanaka N., Dranoff G., Giovannucci E.L., Fuchs C.S. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res. 2009 Oct 15; 15(20): 6412–20. doi:10.1158/1078‑0432.CCR‑09‑1438.; von Knebel Doeberitz M., Kloor M. Towards a vaccine to prevent cancer in Lynch syndrome patients. Fam Cancer. 2013 Jun; 12(2): 307–12. doi:10.1007/s10689‑013‑9662‑7.; Mandal R., Samstein R.M., Lee K.W., Havel J.J., Wang H., Krishna C., Sabio E.Y., Makarov V., Kuo F., Blecua P., Ramaswamy A.T., Durham J.N., Bartlett B., Ma X., Srivastava R., Middha S., Zehir A., Hechtman J.F., Morris L.G., Weinhold N., Riaz N., Le D.T., Diaz L.A.Jr., Chan T.A. Genetic diversity of tumors with mismatch repair deficiency influences anti‑PD‑1 immunotherapy response. Science. 2019 May 3; 364(6439): 485–491. doi:10.1126/science.aau0447.; Yuza K., Nagahashi M., Watanabe S., Takabe K., Wakai T. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget. 2017 Dec 1; 8(67): 112103–112115. doi:10.18632/oncotar‑get.22783.; López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013 Jun 6; 153(6): 1194–217. doi:10.1016/j.cell.2013.05.039.; Yanus G.A., Belyaeva A.V., Ivantsov A.O., Kuligina E.Sh., Suspitsin E.N., Mitiushkina N.V., Aleksakhina S.N., Iyevleva A.G., Zaitseva O.A., Yatsuk O.S., Gorodnova T.V., Strelkova T.N., Efremova S.A., Lepenchuk A.Y., Ochir-Garyaev A.N., Paneyah M.B., Matsko D.E., Togo A.V., Imyanitov E.N. Pattern of clinically relevant mutations in consecutive series of Russian colorectal cancer patients. Med Oncol. 2013; 30(3): 686. doi:10.1007/s12032‑013‑0686‑5.; Flegel W.A. Molecular genetics and clinical applications for RH. Transfus Apher Sci. 2011 Feb; 44(1): 81–91. doi:10.1016/j.transci.2010.12.013.; Kustu S., Inwood W. Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol. 2006 Mar‑Apr; 13(1–2): 103–10. doi:10.1016/j.tracli.2006.03.001.; Van Kim C.L., Colin Y., Cartron J.P. Rh proteins: key structural and functional components of the red cell membrane. Blood Rev. 2006 Mar; 20(2): 93–110. doi:10.1016/j.blre.2005.04.002.; Flegr J., Hoffmann R., Dammann M. Worse Health Status and Higher Incidence of Health Disorders in Rhesus Negative Subjects. PLoS One. 2015 Oct 23; 10(10): e0141362. doi:10.1371/journal.pone.0141362.; https://www.siboncoj.ru/jour/article/view/1319

  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 62, № 2 (2017); 39-44 ; Российский вестник перинатологии и педиатрии; Том 62, № 2 (2017); 39-44 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2017-62-2

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/470/477; Савельева Г.М. Некоторые актуальные вопросы акушерства. Акушерство и гинекология 2006; (3): 3–7. [Savel’eva G.M. Some actual problems of obstetrics. Akusherstvo i ginekologija 2006; (3): 3–7. (in Russ)]; Urgessa F., Tsegaye А., Gebrehiwot Y., Birhanu A. Assessment of feto-maternal hemorrhage among rhesus D negative pregnant mothers using the kleihauer-betke test (KBT) and flow cytometry (FCM) in Addis Ababa, Ethiopia. BMC Pregnancy Childbirth 2014; 14: 1: 358. DOI:10.1186/1471-2393-14-358.; British Committee for Standards in Haematology. http://www.bcshguidelines.com/documents/AntiD_bcsh_07062006.pdf.; Айламазян Э.К., Павлова Н.Г. Изоиммунизация при беременности. Санкт-Петербург: Н-Л, 2012; 27. [Ajlamazjan Je.K., Pavlova N.G. Of isoimmunisation during pregnancy. St. Petersburg: N-L, 2012; 27. (in Russ)]; Papantoniou N., Sifakis S., Antsaklis A. Therapeutic management of fetal anemia: review of standard practice and alternative treatment options. J Perinat Med 2013; 41: 1: 71-82. DOI:10.1515/jpm-2012-0093.; Ожерельева М.А., Кравченко Е.Н., Ветров В.В., Иванов Д.О., Куклина Л.В. Профилактика гемолитической болезни плода и новорожденного и ее тяжелых форм при резус-конфликте (обзор литературы). Детская медицина Северо-Запада 2015; 6: (3): 42–48. [Ozherel’eva M.A., Kravchenko E.N., Vetrov V.V., Ivanov D.O., Kuklina L.V. Prevention of hemolytic disease of the fetus and newborn and its severe forms with RH conflict (literature review). Detskaja medicina Severo-Zapada 2015; 6: (3): 42–48. (in Russ)]; Павлова Н.Г., Шелаев Е.В., Нагорнева С.В. Доплерометрия мозгового кровотока плода для диагностики тяжелых форм гемолитической болезни. Пренатальная диагностика 2007; 6: (3):175–179. [Pavlova N.G., Shelaev E.V., Nagorneva S.V. Doppler study of fetal cerebral blood flow for the diagnosis of severe forms of hemolytic disease. Prenatal’naja diagnostika 2007; 6: (3): 175–179. (in Russ)]; Picklesimer A.H.1 , Oepkes D., Moise K.J. Determinants of the middle cerebral artery peak systolic velocity in the human fetus. Am J Obstet Gynecol 2007; 197: (526): 1–4. DOI:10.1016/j.ajog.2007.04.002.; Mari G., Deter R.L., Carpenter R.L. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic. N Engl J Med 2000; 342: (1): 9–14. DOI:10.1056/NEJM200001063420102.; Samson J., Block D., Mari G. Middle cerebral artery Doppler for managing fetal anemia. Clin. Obstet. Gynecol 2010; 53: (4): 851–857. DOI:10.1097/GRF.0b013e3181fbaf6d.; Пренатальная эхография. Под ред. М.В. Медведева. Москва: Реальное время 2005; 560. [Prenatal echography. Editor M. V. Medvedev. Moscow: Real’noe vremja 2005; 560. (in Russ)]; Lubuský M., Procházka M., Santavý J. Actual management of pregnancies at risk for fetal anemia. Ceska Gynekol 2006; 71: (4): 272–280.; Mari G., Zimmermann R., Moise K.J.Jr. Correlation between middle cerebral artery peak systolic velocity and fetal hemoglobin after 2 previous intrauterine transfusions. Am J Obstet Gynecol 2005; 193: (3): 1117–1120. DOI: http://dx.doi.org/10.1016/j.ajog.2005.06.078.; Mandic V., Mikovic Z., Filimonović D. Noninvasive diagnosis of fetal anemia in Rh-alloimmunized pregnancies by color Doppler. Med Pregl 2005; 58: (5–6): 275-278.; Moise K.J., Moise K.J.Jr. The usefulness of middle cerebral artery Doppler assessment in the treatment of the fetus at risk for anemia. Am J Obstet Gynecol 2008; 198: (2): 161. DOI: http://dx.doi.org/10.1016/j.ajog.2007.10.788.; Oepkes D., Seaward P. G., Frank P. Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Eng J Med 2006; 355 (2): 156–164. DOI:10.1056/NEJMoa052855.; Moise K.J.Jr., Moise K.J. Diagnosing hemolytic disease of the fetus – time to put the needles away? N Eng J Med 2006; 355 (2): 192–194. DOI:10.1056/NEJMe068071.; Bennardello F., Coluzzi S., Curciarello G. Recommendations for the prevention and treatment of haemolytic disease of the foetus and newborn. Blood Transfus 2015; 13: (1): 109–134. DOI:10.2450/2014.0119–14.; Абдрахманова Л.Р., Токтарова О.А., Ситарская М.В., Мусина Д.М. Анализ результатов доплерометрического исследования кровотока в средней мозговой артерии у плода при резус-иммунизации. Практическая медицина 2015; 4(89); 7–9. [Abdrahmanova L.R., Toktarova O.A., Sitarskaja M.V., Musina D.M. Аnalysis of the results diplomaticheskogo the study of blood flow in the middle cerebral artery in a fetus with RH-immunization. Prakticheskaja medicina 2015; 4(89); 7–9. (in Russ)]; Найденова И.Е., Сичинава Л.Г. Диагностическая ценность изменений максимальной систолической скорости кровотока в средней мозговой артерии при гемолитической болезни плода. Вопр гинекол, акуш перинатол 2012; (5): 13–18. [Najdenova I.E., Sichinava L.G. The diagnostic value of changes the maximum systolic blood flow velocity in the middle cerebral artery in hemolytic disease of the fetus. Vopr ginekol, akush perinatol 2012; (5): 13–18. (in Russ)]; Зайцев В.М., Лифляндский В.Г., Маринкин В.И. Прикладная медицинская статистика. СПб: Фолиант 2003; 432. [Zajcev V.M., Lifljandskij V.G., Marinkin V.I. Applied medical statistics. SPb.: Foliant, 2003; 432. (in Russ)]

  9. 9
    Academic Journal

    Source: Medical Genetics; Том 14, № 10 (2015); 3-13 ; Медицинская генетика; Том 14, № 10 (2015); 3-13 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/55/3; Баранов В.С. Проблемы пренатальной диагностики наследственных болезней и возможные пути их коррекции // Биополимеры и клетка. - 1990. - Т. 6, № 1. - С. 46.; Баранов В.С., Кузнецова Т.В. Пренатальная диагностика в акушерстве: современное состояние, методы, перспективы. - СПб.: Изд-во Н-Л (ООО), 2003.; Горелов П., Балацкий А. Количественное определение ДНК в кровотоке матери на амплификаторе qtower 2.2. // Методология (аналитика). - 2013. - Т. 8, № 1. - С. 6-8.; Золотухина Т.В., Шилова Н.В. Использование бессортироовочных методов сепарации клеток плода из крови беременных женщин в целях неинвазивной пренатальной диагностики хромосомных болезней. Информационное письмо № 17. - 2001. - НПЦ ЭМП, тираж 100 экз.; Малышева О.В., Баранов В.С. Неинвазивная пренатальная диагностика. Проблемы, подходы и перспективы // Журнал акушерства и женских болезней. - 2012. - Т. LXI, № 3. - С. 83-93.; Маркелова А.Н., Тюмина О.В., Тороповский А.Н. Новый подход к ведению беременных женщин с резус-отрицательной кровью с ранних сроков беременности // Medical sciences. - 2011. - № 11. - С. 330-332.; Михайлов А.В. Внутриматочные вмешательства под ультразвуковым контролем во время беременности // Клиническое руководство по ультразвуковой диагностике. - М.: ВИДАР, 1996. - Т. 2. - С. 280-302.; Скрябин Н.А., Лебедев И.Н., Артюхова В.Г. и др. Молекулярное кариотипирование по внеклеточной ДНК из жидкости бластоцеля как основа неинвазивного преимплантационного генетического скрининга анеуплоидий // Генетика. - В печати.; Токарева А.Г., Лебедев И.Н., Назаренко С.А. Концентрация циркулирующей и связанной с клеточной поверхностью внеклеточной ДНК матери и плода в крови беременных женщин // Медицинская генетика. - 2007. - Т. 6, № 8. - C. 24-29.; Bianchi D.W., Platt L.D., Goldberg J.D. et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing // Obstet. Gynecol. - 2012. - Vol. 119, № 5. - P. 890-901.; Chan L.Y.S., Leung T.N., Allen Chan K.C. et al. Serial analysis of fetal DNA concentrations in maternal plasma in late pregnancy // Clin. Chem. - 2003. - Vol. 49. - P. 678-680.; Chim S.S., Jin S., Lee T.Y. et al. Systematic search for placental DNA-methylation markers on chromosome 21: toward a maternal plasma-based epigenetic test for fetal trisomy 21 // Clin. Chem. - 2008. - Vol. 54, № 3. - Р. 500-511.; Chiu R.W.K., Lo Y.M.D. Non-invasive prenatal diagnosis by fetal nucleic acid analysis in maternal plasma: the coming of age // Semin. Fetal. Neonatal. Med. - 2011. - Vol. 16, № 2. - Р. 88-93.; Dan S., Wang W., Ren J. et al. Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11 105 pregnancies with mixed risk factors // Prenat. Diagn. - 2012. - Vol. 32, № 13. - P. 1225-1232.; Daniels G., Kirstin F., Martin P. et al. Noninvasive prenatal diagnosis of fetal blood group phenotypes: current practice and future prospects // Prenat. Diagn. - 2009. - Vol. 9, № 2. - P. 101-107.; Deng Y.H., Yin A.H., He Q. et al. Non-invasive prenatal diagnosis of trisomy 21 by reverse transcriptase multiplex ligation-dependent probe amplification // Clin. Chem. Lab. Med. - 2011. - Vol. 49, № 4. - P. 641-646.; Devaney S.A., Palomaki G.E., Scott J.A. et al. Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis // JAMA. - 2011. - Vol. 306, № 6. - P. 627-636.; Fan H.C., Blumenfeld Y.J., Chitkara U. et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood // Proc. Natl. Acad. Sci. USA. - 2008. - Vol. 105, № 42. - P. 16266-16271.; Farina A., LeShane E. S., Romero R.et al. High levels of fetal cell-free DNA in maternal serum: a risk factor for spontaneous preterm delivery // Am. J. Obstet. Gynecol. - 2005. - Vol. 193, № 2. - P. 421-425.; Gianaroli L., Magli M. C., Pomante A. et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study // Fertil. Steril. - 2014. - Vol. 102, № 6. - P. 1692-1699.; Gil M.M., Akolekar R., Quezada M.S. et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis // Ultrasound. Obstet. Gynecol. - 2015. - Vol. 45, № 3. - P. 249-266.; Go A.T., Visser A., Mulder M.A. et al. Detection of placental transcription factor mRNA in maternal plasma // Clin. Chem. - 2004. - Vol. 50, № 8. - P. 1413-1414.; Go A.T., Visser A., Mulder M.A. et al. 44 single-nucleotide polymorphisms expressed by placental RNA: assessment for use in noninvasive prenatal diagnosis of trisomy 21 // Clin. Chem. - 2007. - Vol. 53, № 12. - P. 2223-2224.; Go A.T., Visser A., Mulder M.A. et al. C21ORF105, A chromosome 21-encoded mRNA, is not a discriminative marker gene for prediction of Down syndrome in maternal plasma // Prenat. Diagn. - 2007. - Vol. 27, № 2. - P. 146-149.; Go A.T., van Vugt J.M.G., Oudejans C.B.M. Non-invasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities // Hum. Reprod. Update. - 2010. - Vol. 17, № 3. - P. 1-12.; Hall M. P., Hill M., Zimmermann B. et al. Non-invasive prenatal detection of trisomy 13 using a single nucleotide polymorphism-and informatics-based approach // PloS one. - 2014. - Vol. 9, № 5. - P. e96677.; Hill M., Finning K., Martin P. et al. Non-invasive prenatal determination of fetal sex: translating research into clinical practice // Clin. Genet. - 2011. - Vol. 80, № 1. - P. 68-75.; Kitzman J.O., Snyder M.W., Ventura M. et al. Non-invasive whole genome sequencing of a human fetus // Sci. Transl. Med. - 2012. - Vol. 4, № 137. - P. 137ra76.; Liao G.J., Chan K.C., Jiang P. et al. Non-invasive prenatal diagnosis of fetal trisomy 21 by allelic ratio analysis using targets massively parallel sequencing of maternal plasma DNA // PLoS ONE. - 2012. - Vol. 7, № 5. - P. e38154.; Lo Y.M.D., Corbetta N., Chamberlain P.F. et al. Presence of fetal DNA in maternal plasma and serum // The Lancet. - 1997. - Vol. 350, № 9076. - P. 485-487.; Lo Y.M.D., Tein M.S., Lau T.K. et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis // Am. J. Hum. Genet. - 1998. - Vol. 62, № 4. - P. 768-775.; Lo Y.M.D., Lau T.K., Zhang J. et al. Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21 // Clin. Chem. - 1999. - Vol. 45, № 10. - P. 1747-1751.; Lo Y.M.D., Chan K.C., Sun H. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus // Sci. Transl. Med. - 2010. - Vol. 2, № 61. - P. 61ra91.; Lo Y.M.D., Chiu R.W.K. Genomic analysis of fetal nucleic acids in maternal blood // Annu. Rev. Genomics Hum. Genet. - 2012. - Vol. 13. - P. 285-306.; Lun F.M., Chiu R.W., Chan K.A. et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma // Clin. Chem. - 2008. - Vol. 54, № 10. - P. 1664-1672.; Mujezinovic F., Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review // Obstet. Gynecol. - 2007. - Vol. 110, № 3. - P. 687-694.; Ng E.K.O., Tsui N.B.Y., Lau T.K. et al. From the Cover Medical Sciences mRNA of placental origin is readily detectable in maternal plasma // Proc. Natl. Acad. Sci. USA. - 2003. - Vol. 100, № 8. - Р. 4748-4753.; Nicolaides K.H., Syngelaki A., Ashoor G. et al. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population // Am. J. Obstet. Gynecol. - 2012. - Vol. 207, № 5. - P. 374:e1-e6.; Nicolaides K.H., Syngelaki A., Gil M., Atanasova V., Markova D. Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y // Prenat. Diagn. - 2013 - № 33. - P. 575-579; Oudejans C.B.M., Go A.T., Visser A. et al. Detection of chromosome 21-encoded mRNA of placental origin in maternal plasma // Clin. Chem. - 2003. - Vol. 49, № 9. - P. 1445-1449.; Palini S., Galluzzi L., De Stefani S. et al. Genomic DNA in human blastocoele fluid // Reprod. Biomed. Online. - 2013. - Vol. 26, № 6. - P. 603-610.; Papageorgiou E.A., Karagrigoriou A., Tsaliki E. et al. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21 // Nature. - 2011. - Vol. 17, № 4. - P. 510-514.; Poon L.L., Leung T.N., Lau T.K. et al. Presence of fetal RNA in maternal plasma // Clin. Chem. - 2000. - Vol. 46, № 11. - P. 1832-1834.; Poon L.L., Leung T.N., Lau T.K. et al. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma // Clinical chemistry. - 2002. - Vol. 48, № 1. - P. 35-41.; Rijnders R.J., Christiaens G.C., Bossers B. et al. Clinical applications of cell-free fetal DNA from maternal plasma // Obst. Gynecol. - 2004. - Vol. 103, № 1. - P. 157-164.; Scheffer P.G., van der Schoot C.E., Page-Christiaens G.C. et al. Reliability of Fetal Sex Determination Using Maternal Plasma // Obstet. Ginecol. - 2010. - Vol. 115, № 1. - P. 117-126.; Sekizawa A., Jimbo M., Saito H. et al. Increased cell-free fetal DNA in plasma of two women with invasive placenta // Clin. Chem. - 2002. - Vol. 48, № 2. - P. 353-354.; Sparks A.B., Struble C.A., Wang E.T. et al. Non-invasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18 // Am. J. Obstet. Gynecol. - 2012. - Vol. 206, № 4. - P. 319. e1-9.; Tong Y.K., Jin S., Chiu R.W. et al. Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach // Clin. Chem. - 2010. - Vol. 56, № 1. - P. 90-98.; Tsui N.B., Chim S.S., Chiu R.W. et al. Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling // J. Med. Genet. - 2004. - Vol. 41, № 6. - P. 461-467.; Tsui N.B., Akolekar R., Chiu R.W. et al. Synergy of total PLAC4 RNA concentration and measurement of the RNA single-nucleotide polymorphism allelic ratio for the noninvasive prenatal detection of trisomy 21 // Clin. Chem. - 2010. - Vol. 56, № 1. - P. 73-81.; Vlasov V.V., Laktionov P.P., Rykova E.Y. Extracellular nucleic acids // Bioessays. - 2007. - Vol. 29, № 7. - P. 654-667.; Wataganara T., LeShane E.S., Farina A. et al. Maternal serum cell-free fetal DNA levels are increased in cases of trisomy 13 but not trisomy 18 // Hum. Genet. - 2003. - Vol. 112, № 2. - P. 204-208.; Wright C.F., Burton H. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis // Hum. Reprod. Update. - 2009. - Vol. 15, № 1. - P. 139-151.; Zhong X.Y., Holzgreve W., Hahn S. Risk free simultaneous prenatal identification of fetal Rhesus D status and sex by multiplex real-time PCR using cell free fetal DNA in maternal plasma // Swiss Med. Wkly. - 2001. - Vol. 131, № 5-6. - P. 70-74.; Zhong X.Y., Holzgreve W., Hahn S. The levels of circulatory fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia // Hypertension in Pregnancy. - 2002. - Vol. 21, № 1. - P. 77-83.; Zimmermann B., Hill M., Gemelos G. et al. Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y using targeted sequencing of polymorphic loci // Prenat. Diag. - 2012. - Vol. 32, № 13. - P. 1233-1241.; Zolotukhina T.V., Shilova N.V., Voskoboeva E.Y. Analysis of cell-free fetal DNA in plasma and serum of pregnant women // J. Histochem. Cytochem. - 2005. - Vol. 53, № 3. - P. 297-299.

  10. 10
    Academic Journal

    Relation: Зависимость риска развития острых лейкозов от группы крови и резус-фактора / З. В. Грекова [и др.] // Актуальные проблемы медицины : сб. науч. ст. Респ. науч.-практ. конф. с междунар. участием, Гомель, 11 нояб. 2021 г. : в 3 т. / Гомел. гос. мед. ун-т; редкол. : И. О. Стома [и др.]. – Гомель : ГомГМУ, 2021. – Т. 1. – С. 84–86. – 1 электрон. опт. диск (CD-ROM).; http://elib.gsmu.by/handle/GomSMU/9481

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20