Εμφανίζονται 1 - 20 Αποτελέσματα από 31 για την αναζήτηση '"РЕДОКС-СТАТУС"', χρόνος αναζήτησης: 0,62δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 4 (2023); 55-62 ; Фармакокинетика и Фармакодинамика; № 4 (2023); 55-62 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/393/356; Sifuentes-Franco S, Sánchez-Macías DC, Carrillo-Ibarra S, et al. Antioxidant and Anti-Inflammatory Effects of Coenzyme Q10 Supplementation on Infectious Diseases. Healthcare (Basel). 2022 Mar 7; 10(3):487. DOI:10.3390/healthcare10030487.; Testai L, Martelli A, Flori L, et al. Coenzyme Q10: Clinical Applications beyond Cardiovascular Diseases. Nutrients. 2021 May 17;13(5):1697. DOI:10.3390/nu13051697.; Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez- Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr. 2019;59(14):2240–2257. DOI:10.1080/10408398.2018.1442316.; Tang PH, Miles MV, DeGrauw A, Hershey A, Pesce A. HPLC analysis of reduced and oxidized coenzyme Q(10) in human plasma. Clin Chem. 2001 Feb;47(2):256-65.; Hargreaves IP. Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol. 2014 Apr;49:105–111. DOI:10.1016/j.biocel.2014.01.020.; Yubero D, Montero R, Martín MA, et al. Secondary coenzyme Q10 deficiencies in oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders. Mitochondrion. 2016 Sep;30:51–58. DOI:10.1016/j.mito.2016.06.007.; Ates O, Bilen H, Keles S, et al. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy. Int J Ophthalmol. 2013 Oct 18;6(5):675– 679. DOI:10.3980/j.issn.2222-3959.2013.05.24.; Shen Q, Pierce JD. Supplementation of Coenzyme Q10 among Patients with Type 2 Diabetes Mellitus. Healthcare (Basel). 2015 May 21;3(2):296–309. DOI:10.3390/healthcare3020296.; Ayer A, Macdonald P, Stocker R. CoQ Function and Role in Heart Failure and Ischemic Heart Disease. Annu Rev Nutr. 2015;35:175–213. DOI:10.1146/annurev-nutr-071714-034258.; Cocchi MN, Giberson B, Berg K, et al. Coenzyme Q10 levels are low and associated with increased mortality in post-cardiac arrest patients. Resuscitation. 2012 Aug;83(8):991–995. DOI:10.1016/j.resuscitation.2012.03.023.; Xu Y, Liu J, Han E, et al. Efficacy of coenzyme Q10 in patients with chronic kidney disease: protocol for a systematic review. BMJ Open. 2019 May 14;9(5):e029053. DOI:10.1136/bmjopen-2019-029053.; Zhao S, Wu W, Liao J, et al. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett. 2022 Jul 22;27(1):57. DOI:10.1186/s11658-022-00361-5.; Mantle D, Hargreaves I. Coenzyme Q10 and Degenerative Disorders Affecting Longevity: An Overview. Antioxidants (Basel). 2019 Feb 16;8(2):44. DOI:10.3390/antiox8020044.; DiNicolantonio JJ, Bhutani J, McCarty MF, O'Keefe JH. Coenzyme Q10 for the treatment of heart failure: a review of the literature. Open Heart. 2015 Oct 19;2(1):e000326. DOI:10.1136/openhrt-2015-000326.; Yamamoto Y, Yamashita S. Ubiquinol/ubiquinone ratio as a marker of oxidative stress. Methods Mol Biol. 2002;186:241–246. DOI:10.1385/1-59259-173-6:241.; Shikh E, Zozina V, Kondratenko S, et al. The particulars of certain drugs' effect on the endogenous coenzyme Q10 plasma level in patients with cardiovascular diseases. Drug Metab Pers Ther. 2020 Jun 30;35(2):/ j/dmdi.2020.35.issue-2/dmpt-2020-0106/dmpt-2020-0106.xml. DOI:10.1515/dmpt-2020-0106.; Zozina V, Melnikov E, Krasnykh L, et al. The impact of cardiovascular and bronchopulmonary diseases on Coenzyme Q10 plasma concentration. Sechenov Medical Journal. 2019;10(1):16–21. DOI:10.47093/22187332.2019.1.16-21.; Zozina VI, Melnikov ES, Goroshko OA, et al. Analytical Method Development for Coq10 Determination in Human Plasma Using HPLC-UV and HPLC/MS/MS. Current Pharmaceutical Analysis. 2019;15(7):795–807. DOI:10.2174/1573412915666190328215854.; ЕМА Guideline on bioanalytical method validation. European Medicines Agency Committee for medicinal products for human use: London. 2011. Available at: https://clck.ru/36DvaY Accessed May 5, 2003.; FDA Guidance for Industry: Bioanalytical method validation (draft guidance). US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evolution and Research (CDER) 2013;U.S. Government Printing Office: Washington, DC. Available at: https://clck.ru/36DvbS. Accessed May 5, 2003.; Бондарева И.Б., Бунятян Н.Д., Жердев В.П. и др. Методические указания: оценка биоэквивалентности лекарственных средств. 2008. Bondareva IB, Bunyatyan ND, Zherdev VP et al. Metodicheskie ukazaniya: ocenka bioekvivalentnosti lekarstvennyh sredstv. 2008. (In Russ.).; Miles MV, Horn PS, Tang PH, et al. Age-related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adults. Clin Chim Acta. 2004 Sep;347(1-2):139–144. DOI:10.1016/j.cccn.2004.04.003.; Niklowitz P, Onur S, Fischer A, Laudes M, Palussen M, Menke T, Döring F. Coenzyme Q10 serum concentration and redox status in European adults: influence of age, sex, and lipoprotein concentration. J Clin Biochem Nutr. 2016 May;58(3):240–245. DOI:10.3164/jcbn.15-73.; Quinzii CM, López LC, Von-Moltke J, et al. Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J. 2008 Jun;22(6):1874–1885. DOI:10.1096/fj.07-100149.; Ulla A, Mohamed MK, Sikder B, et al. Coenzyme Q10 prevents oxidative stress and fibrosis in isoprenaline induced cardiac remodeling in aged rats. BMC Pharmacol Toxicol. 2017 Apr 20;18(1):29. DOI:10.1186/s40360-017-0136-7.; Cirilli I, Damiani E, Dludla PV, et al. Role of Coenzyme Q10 in Health and Disease: An Update on the Last 10 Years (2010-2020). Antioxidants (Basel). 2021 Aug 23;10(8):1325. DOI:10.3390/antiox10081325.; Khan NA, Abid M, Ahmad A, Abuzinadah MF, Basheikh M, Kishore K. Cardioprotective Effect of Coenzyme Q10 on Apoptotic Myocardial Cell Death by Regulation of Bcl-2 Gene Expression. J Pharmacol Pharmacother. 2017 Jul-Sep;8(3):122–127. DOI:10.4103/jpp.JPP_47_17.; Мареев В.Ю, Минина Ю.В., Беграмбекова Ю.Л. Кудесан® (капли 3 % для приема внутрь) в лечении больных сердечной недостаточностью: эффективность и безопасность в комбинации со стандартной терапией (Кудесник). Дизайн и результаты проспективного рандомизированного двойного слепого исследования Кудесник. Сердечная Недостаточность. 2016;17:236–249. DOI:10.18087/rhfj.2016.4.2257. Mareev VYu, Minina YuV, Begrambekova YuL. Kudesan® (kapli 3% dlya priema vnutr') v lechenii bol'nyh serdechnoj nedostatochnost'yu: effektivnost' i bezopasnost' v kombinacii so standartnoj terapiej (Kudesnik). Dizajn i rezul'taty prospektivnogo randomizirovannogo dvojnogo slepogo issledovaniya Kudesnik. Serdechnaya Nedostatochnost'. 2016;17:236–249. (In Russ.). DOI:10.18087/rhfj.2016.4.2257.; Кукес В.Г., Парфенова О.К., Романов Б.К. и др. Механизм действия Этоксидола на показатели окислительного стресса при сердечной недостаточности и гипертонии. Современные технологии медицины. 2020;12(2):67–72. DOI:10.17691/stm2020.12.2.08. Kukes VG, Parfenova OK, Romanov BK. Stress Indices in Heart Failure and Hypotension. Sovrem Tekhnologii Med. 2020;12(2):67–72. (In Russ.). DOI:10.17691/stm2020.12.2.08.; Gupta S, Sodhi S, Mahajan V. Correlation of antioxidants with lipid peroxidation and lipid profile in patients suffering from coronary artery disease. Expert Opin Ther Targets. 2009 Aug;13(8):889–894. DOI:10.1517/14728220903099668.; Lee BJ, Lin YC, Huang YC, et al. The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. ScientificWorldJournal. 2012;2012:792756. DOI:10.1100/2012/792756.; https://www.pharmacokinetica.ru/jour/article/view/393

  2. 2
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 26, № 4 (2024); 671-676 ; Медицинская иммунология; Том 26, № 4 (2024); 671-676 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3032/1961; Бекман Э.М., Баранова О.А., Губарева Е.В., Шуленина Л.В., Москвина С.Н., Данилогорская Ю.А., Азизова О.А. Оценка устойчивости к оксидативному стрессу плазмы крови по уровню окисляемости белков и липидов при металлкатализируемом окислении // Бюллетень экспериментальной биологии и медицины, 2006. Т. 142, № 9. С. 268-272.; Карпищенко А.И. Медицинские лабораторные технологии. CПб.: Интермедика, 1998. Т. 2. 656 c.; Носарева О.Л., Степовая Е.А., Шахристова Е.В., Алексеева О.Н., Кузьменко Д.И., Садыкова А.А., Новицкий В.В. Роль редокс-статуса и окислительной модификации белков в реализации апоптоза лимфоцитов крови человека в норме и при экспериментальном окислительном стрессе // Российский физиологический журнал им. И.М. Сеченова, 2019. Т. 105, № 3. С. 327-338. doi:10.1134/S0869813919030063.; Burchill B.R., Oliver J.M., Pearson C.B., Leinbach E.D., Berlin R.D. Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. J. Cell Biol., 1978, Vol. 76, no. 2, pp. 439-447.; Cohen G.M. Caspases: the executioners of apoptosis. Biochem. J., 1997, Vol. 326, pp. 1-16.; Davies K.J. Protein damage and degradation by oxygen radicals. 1. General aspects. J. Biol. Chem., 1987, Vol. 262, pp. 9895-9901.; Halliwell B., Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol., 2004, Vol. 142, no. 2, pp. 231-255.; Kojima S., Nakayama K., Ishida H. Low dose gamma-rays activate immune functions via induction of glutathione and delay tumor growth. J. Radiat. Res., 2004, Vol. 45, no. 1, pp. 33-39.; Laragione T., Bonetto V., Casoni F., Massignan T., Bianchi G., Gianazza E., Ghezzi P. Redox regulation of surface protein thiols: identification of integrin-4 as a molecular target by using redox proteomics. Proc. Natl. Acad. Sci. USA, 2003, Vol. 100, no. 25, pp. 14737-14741. doi:10.1073/pnas.2434516100.; Nicholson D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death and Differ., 1999, Vol. 6, pp. 1028-1042.; Thom S.R., Elbuken M.E. Oxygen-dependent antagonism of lipid peroxidation. Free Radic. Biol. Med., 1991, Vol. 10, no. 6, pp. 413-426.; Todosenko N., Khaziakhmatova O., Malashchenko V., Yurova K., Bograya M., Beletskaya M., Vulf M., Mikhailova L., Minchenko A., Soroko I., Khlusov I., Litvinova L. Adipocyte- and monocyte-mediated vicious circle of inflammation and obesity (review of cellular and molecular mechanisms). Int. J. Mol. Sci., 2023, Vol., 24, no. 15, 12259. doi:10.3390/ijms241512259.; Worthington D.J., Rosemeyer M.A. Glutathione reductase from human erythrocytes. Catalytic properties and aggregation. Eur. J. Biochem., 1976, Vol. 67, no. 1, pp. 231-238.; Zhang Z., Zhao L., Zhou X., Meng X., Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front. Immunol., 2023, Vol. 13, 1098725. doi:10.3389/ fimmu.2022.1098725.; Zhou J., Zhu Z., Bai C., Sun H., Wang X. Proteomic profiling of lymphocytes in autoimmunity, inflammation and cancer. J. Transl. Med., 2014, Vol. 12, 6. doi:10.1186/1479-5876-12-6.; https://www.mimmun.ru/mimmun/article/view/3032

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 19, № 2 (2020); 72-77 ; Бюллетень сибирской медицины; Том 19, № 2 (2020); 72-77 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2863/1743; https://bulletin.tomsk.ru/jour/article/view/2863/1768; Sinha K., Das J., Pal P.B., Sil P.C. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Archives of Toxicology. 2013; 87 (7): 1157–1180. DOI:10.1007/s00204-013-1034-4.; Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016; 1863 (12): 2977–2992. DOI:10.1016/j.bbamcr.2016.09.012.; Moldogazieva N.T., Mokhosoev I.M., Feldman N.B., Lutsenko S.V. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research. 2018; 52 (5): 507–543. DOI:10.1080/10715762.2018.1457217.; Tew K.D., Manevich Y., Grek C., Xiong Y., Uys J., Townsend D.M. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radical Biology and Medicine. 2011; 51 (2): 299–313. DOI:10.1016/j.freeradbiomed.2011.04.013.; Степовая Е.А., Рязанцева Н.В., Носарева О.Л., Закирова Е.В., Наумова А.И., Веснина О.Н., Орлов Д.С., Шахристова Е.В., Иванов В.В., Новицкий В.В. Роль окислительной модификации белков в редокс-зависимой регуляции апоптоза опухолевых клеток. Молекулярная медицина. 2015; 4: 60–64.; Patwardhan R.S., Sharma D., Checker R., Thoh M., Sandur S.K. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance. Free Radical Research. 2015; 49 (10): 1218–1232. DOI:10.3109/10715762.2015.1056180.; Shakhristova E.V., Stepovaya E.A., Ryazantseva N.V., Nosareva O.L., Yakushina V.D., Ivanov V.V., Novitskii V.V. Role of glutathione system redox potential in apoptosis dysregulation in MCF-7 breast adenocarcinoma. Bulletin of Experimental Biology and Medicine. 2016; 160 (3): 364–367. DOI:10.1007/s10517-016-3172-1.; Shashova E.E., Astakhova T.M., Plekhanova A.S., Bogomyagkova Y.V., Lyupina Y.V., Sumedi I.R., Slonimskaya E.M., Erokhov P.A., Abramova E.B., Rodoman G.V., Kuznetsov N.A., Kondakova I.V., Sharova N.P., Choinzonov E.L. Changes in; proteasome chymotrypsin-like activity during the development of human mammary and thyroid carcinomas. Bulletin of Experimental Biology and Medicine. 2013; 156 (2): 242–244.; Kondakova I.V., Spirina L.V., Koval V.D., Shashova E.E., Choinzonov E.L., Ivanova E.V., Kolomiets L.A., Chernyshova A.L., Slonimskaya E.M., Usynin E.A., Afanasev S.G. Chymotrypsin-like activity and subunit composition of proteasomes in human cancers. Molecular Biology. 2014; 48 (3): 384–389.; Ryazantseva N.V., Stepovaya E.A., Nosareva O.L., Konovalova E.V., Orlov D.S., Naumova A.I., Didenko S.A., Vesnina O.N., Shakhristova E.V., Zima A.P., Novitskii V.V. Role of heat shock protein 27 in regulation of glutathione system and apoptosis of Jurkat tumor cells and blood lymphocytes. Bulletin of Experimental Biology and Medicine. 2015; 158 (3): 377–379. DOI:10.1007/s10517-015-2766-3.; Marengo B., Nitti M., Furfaro A.L., Colla R., Ciucis C.D., Marinari U.M., Pronzato M.A., Traverso N., Domenicotti C. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxidative Medicine and Cellular Longevity. 2016; 2016: 6235641. DOI:10.1155/2016/6235641.; Zhang T., Suo C., Zheng C., Zhang H. Hypoxia and metabolism in metastasis. Advances in Experimental Medicine and Biology. 2019; 1136: 87–95. DOI:10.1007/978-3-030-12734-3_6.; Степовая Е.А., Шахристова Е.В., Рязанцева Н.В., Носарева О.Л., Чильчигашев Р.И., Егорова М.Ю. Система тиоредоксина в регуляции пролиферации клеток линии MCF-7 при модуляции редокс-статуса. Сибирский онкологический журнал. 2016; 15 (4): 50–55. DOI:10.21294/1814-4861-2016-15-4-50-55.; Sahaf B., Heydari K., Herzenberg L.A. Lymphocyte surface thiol levels. Proc. Natl. Acad. Sci. USA. 2003; 100 (7): 4001–4005. DOI:10.1073/pnas.2628032100; Brunelli L., Crow J.P., Beckman J.S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Archives of Biochemistry and Biophysics. 1995; 316 (1): 327–334. DOI:10.1006/abbi.1995.1044; Thom S.R., Elbuken M.E. Oxygen-dependent antagonism of lipid peroxidation. Free Radical Biology and Medicine. 1991; 10 (6): 413–426. DOI:10.1016/0891-5849(91)90050-d; Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н. Методы оценки свободнорадикального окисления и антиоксидантной защиты организма. СПб.: Фолиант, 2000: 103.; Kojima S., Nakayama K., Ishida H. Low dose gamma-rays activate immune functions via induction of glutathione and delay tumor growth. Journal of Radiation Research. 2004; 45 (1): 33–39. DOI:10.1269/jrr.45.33.; Burchill B.R., Oliver J.M., Pearson C.B., Leinbach E.D., Berlin R.D. Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. Journal of Cell Biology. 1978; 76 (2): 439–447. DOI:10.1083/jcb.76.2.439.; Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72: 248–254. DOI:10.1006/abio.1976.9999.; Merritt J.E., McCarthy S.A., Davies M.P., Moores K.E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2+. The Biochemical Journal. 1990; 269 (2): 513–519. DOI:10.1042/bj2690513.; Munro D., Treberg J.R. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. The Journal of Experimental Biology. 2017; 220 (Pt 7): 1170–1180. DOI:10.1242/jeb.132142.; Зенков Н.К., Меньщикова Е.Б., Ткачев В.О. Некоторые принципы и механизмы редокс-регуляции. Кислород и антиоксиданты. 2009; 1: 3–64.; Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., Бондарь И.А., Труфакин В.А. Окислительный стресс. Патологические состояния и заболевания. Новосибирск: Сибирское университетское издательство, 2017: 284.; Орлов Д.С., Рязанцева Н.В., Степовая Е.А., Носарева О.Л., Шахристова Е.В., Иванов В.В. Редокс-зависимые механизмы дизрегуляции апоптоза опухолевых клеток при гипоксии. Сибирский научный медицинский журнал. 2017; 37 (1): 21–26.; https://bulletin.tomsk.ru/jour/article/view/2863

  7. 7
  8. 8
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей IV Международной научно-практической конференции молодых учёных и студентов, IV Всероссийского форума медицинских и фармацевтических вузов «За качественное образование», (Екатеринбург, 10-12 апреля 2019): в 3-х т. - Екатеринбург: УГМУ, CD-ROM.; http://elib.usma.ru/handle/usma/4012

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/4012

  9. 9
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00154-19-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590049-0)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00154-19-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590049-0).

    Πηγή: Regulatory Research and Medicine Evaluation; Том 9, № 3 (2019); 146-152 ; Регуляторные исследования и экспертиза лекарственных средств; Том 9, № 3 (2019); 146-152 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2019-9-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/251/258; Crane FL. Biochemical functions of Coenzyme Q10. J Am Coll Nutr. 2001;20(6):591–98. PMID: 11771674; Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995;1271(1):195– 204. https://doi.org/10.1016/0925-4439(95)00028-3; Belliere J, Devun F, Cottet-Rousselle C, Batandier C, Leverve X, Fontaine E. Prerequisites for ubiquinone analogs to prevent mitochondrial permeability transition-induced cell death. J Bioenerg Biomembr. 2012;44(1):207–12. https://doi.org/10.1007/s10863-012-9434-3; Stocker R, Bowry VW, Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci USA. 1991;88(5):1646–50. https://doi.org/10.1073/pnas.88.5.1646; Мартинович ГГ, Черенкевич СН. Окислительно-восстановительные процессы в клетках: Монография. Минск: БГУ; 2008.; Miles MV, Horn PS, Morrison JA, Tang PH, DeGrauw T, Pesce AJ. Plasma coenzyme Q10 reference intervals, but not redox status, are affected by gender and race in self-reported healthy adults. Clin Chim Acta. 2003;332(1–2):123–32. https://doi.org/10.1016/S0009-8981(03)00137-2; Niklowitz P, Menke T, Andler W, Okun JG. Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin Chim Acta. 2004;342(1–2):219–26. https://doi.org/10.1016/j.cccn.2003.12.020; Tomasetti M, Alleva R, Solenghi MD, Littarru GP. Distribution of antioxidants among blood components and lipoproteins: significance of lipids/CoQ10 ratio as a possible marker of increased risk for atherosclerosis. Biofactors. 1999;9(2–4):231–40. https://doi.org/10.1002/biof.5520090218; Черенкевич СН, Мартинович ГГ, Мартинович ИВ, Горудко ИВ, Шамова ЕВ. Редокс-регуляция клеточной активности: концепции и механизмы. Весцi Нацыянальнай акадэмii навук Беларусi. Серыя бiялагiчных навук. 2013;(1):92–108.; Jones DP. Redox theory of aging. Redox Biol. 2015;5(2):71–9. https://doi.org/10.1016/j.redox.2015.03.004; Прадедова ЕВ, Нимаева ОД, Саляев РК. Редокс-процессы в биологических системах. Физиология растений. 2017;64(6):433–45. https://doi.org/10.1134/S1021443717050107; Николаева ЕА, Харабадзе МН, Золкина ИВ, Кулагина ТЕ, Васина ТН, Ставцева СН и др. Диагностическое значение уровня коэнзима Q10 в крови у детей с митохондриальными заболеваниями. Российский вестник перинатологии и педиатрии. 2015;60(5):71–5.; Contin M, Flor S, Martinefski M, Lucangioli S, Tripodi V. New analytical strategies applied to the determination of Coenzyme Q10 in biological matrix. Methods Mol Biol. 2015;1208:409–20. https://doi.org/10.1007/978-1-4939-1441-8_29; Giordano FJ. Oxygen, oxidative stress, hypoxia and heart failure. J Clin Invest. 2005; 115(3):500–8. https://doi.org/10.1172/JCI24408; Mortensen SA. Overview on Coenzyme Q10 as adjunctive therapy in chronic heart failure. Rationale, design and end-points of «Q-symbio» — a multinational trial. Biofactors. 2003;18(1–4):79–89. https://doi.org/10.1172/JCI24408; Molyneux SL, Florkowski CM, George PM, Pilbrow AP, Frampton CM, Lever M., et al. Coenzyme Q10: an independent predictor of mortality in chronic heart failure. J Am Coll Cardiol. 2008;52(18):1435–41. https://doi.org/10.1016/j.jacc.2008.07.044; Pepe S, Marasco SF, Haas SJ, Sheeran FL, Krum H, Rosenfeldt FL. Coenzyme Q10 in cardiovascular disease. Mitochondrion. 2007;(7):154–67. https://doi.org/10.1016/j.mito.2007.02.005; Yalcin A, Kilin E, Sagcan A, Kultursa H. Coenzyme Q10 concentrations in coronary artery disease. Clin Biochem. 2004;37:706–9. https://doi.org/10.1016/j.clinbiochem.2004.02.008; Kaya Y, Çebi A, Söylemez N, Demir H, Alp HH, Bakan E. Correlations between oxidative DNA damage, oxidative stress and coenzyme Q10 in patients with coronary artery disease. Int J Med Sci. 2012;9(8):621–26. https://doi.org/10.7150/ijms.4768; Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT. The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. Scientific World Journal. 2012;2012:1–8. http://doi.org/10.1100/2012/792756; Kontush A, Schippling S, Spranger T, Beisiegel U. Plasma ubiquinol-10 as a marker for disease: is the assay worthwhile? Biofactors. 1999;9(2–4):225–9. https://doi.org/10.1002/biof.5520090217; Sharma A, Fonarow GC, Butler J, Ezekowitz JA, Felker GM. Coenzyme Q10 and heart failure: a state-of-the-art review. Circ Heart Fail. 2016;9(4):e002639. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002639; Драпкина ОМ, Чернова ЕМ, Корнеева ОН. Статины и миопатия: молекулярные механизмы. Рациональная фармакотерапия в кардиологии. 2012;8(3):469–73.; Румянцев НА, Кукес ВГ, Казаков РЕ, Румянцев АА, Сычев ДА. Использование фармакогенетического тестирования для предотвращения нежелательных лекарственных реакций при терапии статинами. Терапевтический архив. 2017;89(1):82–7. https://doi.org/10.17116/terarkh201789182-87; Mabuchi H, Higashikata T, Kawashiri M, Katsuda S, Mizuno M, Nohara A, et al. Reduction of serum ubiquinol-10 and ubiquinone-10 levels by atorvastatin in hypercholesterolemic patients. J Atheroscler Thromb. 2005;12(2):111–9. https://doi.org/10.5551/jat.12.111; Rundek T, Naini A, Sacco R, Coates K, DiMauro S. Atorvastatin decreases the Coenzyme Q10 level in the blood of patients at risk for cardiovascular disease and stroke. Arch Neurol. 2004;61(6):889–92. https://doi.org/10.1001/archneur.61.6.889; Larsen S, Stride N, Hey-Mogensen M, Hansen CN. Bang LE, Bundgaard H, et al. Simvastatin effects on skeletal muscle relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol. 2013;61(1):44–53. https://doi.org/10.1016/j.jacc.2012.09.036; Caso G, Kelly P, McNurlan MA, Lawson WE . Effect of coenzyme Q10 on myopathic symptoms in patients treated with statins. Am J Cardiol. 2007;99(10):1409–12. https://doi.org/10.1016/j.amjcard.2006.12.063; Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49(23):2231–7. https://doi.org/10.1016/j.jacc.2007.02.049; Blescke B, Wllis R, Anthony M, Casselberry N, Datwani M, Uhley VE. The effect of pravastatin and atorvastatin on coenzyme Q10. Am Heart J. 2001;142(2):E2. https://doi.org/10.1067/mhj.2001.116762; Qu H, Meng Y, Chai H, Liang F, Zhang JY, Gao Z, Shi DZ. The effect of statin treatment on circulating coenzyme Q10 concentrations: an updated meta-analysis of randomized controlled trials. Eur J Med Res. 2018;23(1):57. https://doi.org/10.1186/s40001-018-0353-6; Sourris KC, Harcourt BE, Tang PH, Morley AL, Huynh K, Penfold SA, et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med. 2012;52(3):716–23. https://doi.org/10.1016/j.freeradbiomed.2011.11.017; Ates O, Bilen H, Keles S, Alp HH, Keleş MS, Yildirim K, et al. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy. Int J Ophthalmol. 2013;6(5):675–9. https://doi.org/10.3980/j.issn.2222-3959.2013.05.24; https://www.vedomostincesmp.ru/jour/article/view/251

  10. 10
    Dissertation/ Thesis

    Συγγραφείς: Zrnić-Ćirić, Milica

    Συνεισφορές: Stanković, Ivan, Ostojić, Miodrag, Đorđević, Brižita, Kotur-Stevuljević, Jelena, Baralić Knežević, Ivana

    Πηγή: Универзитет у Београду

    Περιγραφή αρχείου: application/pdf

  11. 11
    Dissertation/ Thesis

    Συγγραφείς: Zrnić-Ćirić, Milica

    Συνεισφορές: Stanković, Ivan, Ostojić, Miodrag, Đorđević, Brižita, Kotur-Stevuljević, Jelena, Baralić Knežević, Ivana

    Πηγή: Универзитет у Београду

    Περιγραφή αρχείου: application/pdf

  12. 12
    Academic Journal

    Συνεισφορές: Российский гуманитарный научный фонд (проект № 15-36-01289).

    Πηγή: Siberian journal of oncology; Том 15, № 4 (2016); 50-55 ; Сибирский онкологический журнал; Том 15, № 4 (2016); 50-55 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2016-15-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/386/362; Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., Бондарь И.А., Труфакин В.А. Окислительный стресс: Патологические состояния и заболевания. Новосибирск; 2008. 284 с.; Murphy M.P., Holmgren A., Larsson N.G., Halliwell B., Chang C.J., Kalyanaraman B., Rhee S.G., Thornalley P.J., Partridge L., Gems D., Nystrom T., Belousov V., Schumacker P.T., Winterbourn C.C. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011; 13 (4): 361–366. doi:10.1016/j.cmet.2011.03.010.; Ryazantseva N.V., Stepovaya E.A., Nosareva O.L., Konovalova E.V., Orlov D.S., Naumova A.I., Didenko S.A., Vesnina O.N., Shakhristova E.V., Zima A.P., Novitskii V.V. Role of heat shock protein 27 in regulation of glutathione system and apoptosis of Jurkat tumor cells and blood lymphocytes. Bull Exp Biol Med. 2015; 158 (3): 377–379. doi:10.1007/ s10517-015-2766-3.; Shakhristova E.V., Stepovaya E.A., Ryazantseva N.V., Nosareva O.L., Yakushina V.D., Ivanov V.V., Novitskii V.V. Role of Glutathione System Redox Potential in Apoptosis Dysregulation in MCF-7 Breast Adenocarcinoma. Bull Exp Biol Med. 2016; 160 (3): 364–367. doi:10.1007/s10517-016-3172-1.; Дубинина Е.Е. Продукты метаболизма кислорода в функциональной активности клеток (жизнь и смерть, созидание и разрушение): физиологические и клинико-биохимические аспекты. СПб., 2006. 397 с.; Калинина Е.В., Чернов Н.Н., Алеид Р., Новичкова М.Д., Саприн А.Н., Березов Т.Т. Современные представления об антиоксидантной роли глутатиона и глутатионзависимых ферментов. Вестник Российской академии медицинских наук. 2010; 3: 46–54.; Калинина Е.В., Чернов Н.Н., Саприн А.Н. Участие тио-, пероксии глутаредоксинов в клеточных редокс-зависимых процессах. Успехи биологической химии. 2008; 48: 319–358.; Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012; 24 (5): 981–990. doi:10.1016/j.cellsig.2012.01.008.; Sahaf B., Heydari K., Herzenberg L.A. Lymphocyte surface thiol levels. Proc. Natl. Acad. Sci. USA. 2003; 100 (7): 4001–4005.; Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976; 7 (1, 2): 248–254.; Anderson M.E. Determination of glutathione and glutathione sulfide in biological samples. Methods Enzymol. 1985; 113: 548–555.; Rahman I., Kode A., Biswas S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 2006; 1 (6): 3159–3165.; Tamura T., Stadtman T.C. A new selenoprotein from human lung adenocarcinoma cells: рurification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA. 1996; 93: 1006–1011.; https://www.siboncoj.ru/jour/article/view/386

  13. 13
    Academic Journal

    Πηγή: Acta Biomedica Scientifica; Том 1, № 3(2) (2016); 135-137 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/206/207; Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н. Методы оценки свободнорадикального окисления и антиоксидантной защиты организма. - СПб.: Фолиант, 2000. - 103 с; Владимиров Ю.А. Свободные радикалы в биологических системах // Соросовский образовательный журнал. - 2000. - Т. 6, № 12. - С. 13-19; Дубинина Е.Е. Продукты метаболизма кислорода в функциональной активности клеток (жизнь и смерть, созидание и разрушение). Физиологические и клинико-биохимические аспекты. - СПб.: Медицинская пресса, 2006. - 400 с; Лущак В.И. Свободнорадикальное окисление белков и его связь с функциональным состоянием организма // Биохимия. - 2007. - Т. 72, № 8. - С. 995-1015; Halliwell B (2007). Biochemistry of oxidative stress. Biochem. Soc. Trans., (5), 1147-1150.; Rahman I, Kode A, Biswas SK (2006). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc, 1 (6), 3159-3165.; Rajnai Z, Méhn D, Beéry E, Okyar A, Jani M, Tóth GK, Fülöp F, Lévi F, Krajcsi P (2010). ATP-binding cassette B1 transports seliciclib (R-roscovitine), a cyclin-dependent kinase inhibitor. DrugMetab. Dispos., 38 (11), 2000-2006.; Stadtman ER, Levine RL (2000). Protein oxidation. Ann. N. Y. Acad. Sci., (899), 191-208.; https://www.actabiomedica.ru/jour/article/view/206

  14. 14
    Academic Journal

    Πηγή: Acta Biomedica Scientifica; Том 1, № 3(2) (2016); 58-64 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/188/189; Бак П. Теория самоорганизованной критичности. - М.: ЛИБРОКОМ, 2014. - С. 276.; Закс Л. Статистическое оценивание; пер. с нем. - М.: Статистика, 1976. - С. 598.; Argüello JM (2003). Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. Journal of Membrane Biology, 195, 93-108.; Argüello JM, Eren E, Gonzalez-Guerrero M (2007). The structure and function of heavy metal transport P(lB)-ATPases. BioMetals, 20, 233-248.; Axelsen KB, Palmgren MG (1998). Evolution of substrate specificities in Р-type ATPase superfamily. Journal of Molecular Evolution, 46, 84-101.; Bratic A, Larsson NG (2013). The role of mitochondria in aging. J. Clinical Investigation, Mar l, 123 (3), 951-957.; Kolesnikova LI, Darenskaya MA, Grebenkina LA et al. (2013). The state of the antioxidant status of children of different ages. Voprosy pitaniya, (4), 27-33.; Kumerova AO, Lece AG, Skesters AP, Orlikov GA, Seleznev JV, Rainsford KD (2000). Antioxidant defense and trace element imbalance in patients with postradiation syndrome: first report on phase I studies. Biological Trace Element Research, 77, 1-12.; Lambert AJ et al. (2007). Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homertherms. Aging Cell, 6 (5), 607-618.; Petukhov VI, Baumane L, Dmitriev EV, Vanin AF (2014). Nitric oxide and electrogenic metals (Ca, Na, К) in epidermic cells. Biochemistry (Moscow] SupplementSeries B Biomedical Chemistry, 8 (4), З4З-З48.; Petukhov VI, Baumane LK, Reste ED, Zvagule Т, Romanova MA, Shushkevich N1, Sushkova TL, Skavronskii SV, Shchukov AN (2013). Diagnosis of nitrosative stress by quantitative EPR-spectroscopy of epidermal stress. Bulletin of Experimental Biology and Medicine, 154, 7З4-7З6.; Petukhov VI, Dmitriev EV, Kalvinsh I, Baumane LK, Reste ED, Zvagule Т, Skesters АР, Skalny AV (2011). Metal-ligand homeostasis in epidermic cells of Chernobyl accident liquidators. Vitamins & Trace Elements, 1 (2), 1-8.; https://www.actabiomedica.ru/jour/article/view/188

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Dissertation/ Thesis

    Συγγραφείς: Kekić, Dušan

    Συνεισφορές: Ranin, Lazar, Gopčević, Kristina, Vučković Opavski, Nataša, Izrael-Živković, Lidija, Šmitran, Aleksandra

    Πηγή: Универзитет у Београду

    Περιγραφή αρχείου: application/pdf