Showing 1 - 20 results of 46 for search '"РЕДКОЗЕМЕЛЬНЫЕ ИОНЫ"', query time: 0.78s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: Исследование выполнено в рамках Госзадания МИФИ: «Новые явления при взаимодействии лазерного излучения, плазмы, корпускулярных и радиационных потоков с конденсированными средами как основа инновационных технологий» мнемокод 0723–2020–0035, 2020–2022 гг.

    Source: Biomedical Photonics; Том 10, № 4 (2021); 23-34 ; 2413-9432 ; 10.24931/2413-9432-2021-10-4

    File Description: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/515/358; https://www.pdt-journal.com/jour/article/view/515/374; Algorri, J. F., Ochoa, M., Roldán-Varona, P., Rodríguez-Cobo, L., López-Higuera, J.M. Photodynamic Therapy: A Compendium of Latest Reviews//Cancers. – 2021. – Vol. 13. – P. 4447. https://doi.org/10.3390/cancers13174447; Филоненко Е.В., Трушина О.И., Новикова Е. Г., Зароченцева Н.В., Ровинская О.В., Иванова-Радкевич В.И., Каприн А.Д. Фотодинамическая терапия в лечении интраэпителиальных неоплазий шейки матки, вульвы и влагалища//Biomedical Photonics. – 2020. Vol. 9 (4). – P. 31–39. https://doi.org/10.24931/2413–9432–2020–9-4–31–39; Семенов Д.Ю., Васильев Ю.Л., Дыдыкин С.С., Странадко Е.Ф., Шубин В.К., Богомазов Ю.К., Морохотов В.А., Щербюк А.Н., Морозов С.В., Захаров Ю.И. Антимикробная и антимикотическая фотодинамическая терапия (обзор литературы)//Biomedical Photonics. – 2021. – Vol. 10 (1). – P. 25–31. https://doi.org/10.24931/2413–9432–2021–10–1-25–31; Filonenko E.V., Kaprin A.D., Alekseev B.Ya., Apolikhin O. I., Slovokhodov E.K., Ivanova-Radkevich V. I., Urlova A.N. 5-Aminolevulinic acid in intraoperative photodynamic therapy of bladder cancer (results of multicenter trial)//Photodiagnosis and Photodynamic Therapy.– 2016.– Т. 16. – С. 106–109. doi:10.1016/j.pdpdt.2016.09.009; Sokolov V.V., Chissov V. I., Filonenko E.V., Kozlov D.N., Smirnov V.V. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM//Proceedings of SPIE – The International Society for Optical Engineering.– 1995.– Vol. 2325.– P. 367–374. doi:10.1117/12.199169; Oleinick N. L., Morris R. L., Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how//Photochemical & Photobiolological Sciences. – 2002. – Vol. 1. – P. 1–21.; Krammer B. Vascular effects of photodynamic therapy//Anticancer Research. – 2001. – Vol. 21 (6). – P. 4271–4277.; Санарова Е.В., Ланцова А.В., Дмитриева М.В., и др Фотодинамическая терапия – способ повышения селективности и эффективности лечения опухолей//Российский биотерапевтический журнал. – 2014. – Т. 13, № 3. – С. 109–118.; Sokolov V.V., Chissov V. I., Yakubovskya R. I., Smirnov V.V., Zhitkova M.B. Photodynamic therapy (PDT) of malignant tumors by photosensitzer photosens: results of 45 clinical cases//Proceedings of SPIE – The International Society for Optical Engineering. – 1996. – Vol. 2625. – P. 281–287.; Sokolov V.V., Filonenko E.V., Telegina L.V., Boulgakova N.N., Smirnov V.V. Combination of fluorescence imaging and local spectrophotometry in fluorescence diagnostics of early cancer of larynx and bronchi//Quantum Electronics.– 2002.– Vol. 32 (11). – P. 963–969. doi:10.1070/QE2002v032n11ABEH002329; Pikin O., Filonenko E., Mironenko D., Vursol D., Amiraliev A. Fluorescence thoracoscopy in the detection of pleural malignancy//European Journal of Cardio-Thoracic Surgery. – 2012.– Т. 41, № 3.– С. 649–652. doi:10.1093/ejcts/ezr086; Панасейкин Ю.А., Филоненко Е.В., Севрюков Ф. Е., Капинус В.Н., Полькин В.В., Исаев П.А., Каприн А.Д., Иванов С.А. Возможности фотодинамической терапии при лечении злокачественных опухолей полости рта//Biomedical Photonics. – 2021. – Vol. 10 (3). – P.32–38. https://doi.org/10.24931/2413–9432–2021–10–3-32–38; Каприн А.Д., Мардынский Ю.С., Смирнов В.П., Иванов С.А., Костин А.А., Полихов С.А., Решетов И.В., Фатьянова А.С., Денисенко М.В., Эпатова Т.В., Коренев С.В., Терещенко А.В., Филоненко Е.В., Гафаров М.М., Романко Ю.С. К истории развития лучевой терапии (часть I)//Biomedical Photonics.– 2019.– Т. 8, № 1.– С. 52–62. doi:10.24931/2413–9432–2019–8–1–52–62.; Castano A.P., Mroz P., Hamblin M. R Photodynamic therapy and anti-tumour immunity//Nature Reviews Cancer. – 2006. Vol. 6 (7). – P. 535–45.; Clement M., Daniel G., Trelles M. Optimising the design of a broad band light source for the treatment of skin//Journal of Cosmetic and Laser Therapy. – 2005. – Vol. 7 (3). – P. 177–189.; Pierroz V., Folcher M. From Photobiolumination to Optogenerapy, Recent Advances in NIR Light Photomedicine Applications//Journal of molecular and genetic medicine. – 2018. – Vol. 2 (2). – P. 1–7.; Wang F., Banerjee D., Liu Y., et al. Upconversion nanoparticles in biological labeling, imaging, and therapy//Analyst. – 2010. – Vol. 135 (8). – P. 1839–1854.; Ismael F. S., Amasha H.M., Bachir W.H. Алгоритм определения оптимального числа волокон используемых при внутритканевой фотодинамической терапии рака молочной железы на основании диффузионного уравнения//Biomedical Photonics. – 2019. Vol. 8 (4). – P. 17–27.; Can T.X., Svensson N., Axelsson J., et al. Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media//Applied Physics Letters. – 2008. – Vol. 93 (17). – P. 171103.; Nyk M., Kumar R., Ohulchanskyy T.Y., et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors//Nano Letters. – 2008. – Vol. 8 (11). – P. 3834– 3838.; Jacques S. L. Optical properties of biological tissues: a review//Physics in Medicine and Biology. – 2013. – Vol. 58 (14). – P. 5007–5008.; Gallavardin T., Maurin M., Marotte S., et al Photodynamic therapy and two-photon bio-imaging applications of hydrophobic chromophores through amphiphilic polymer delivery//Photochemical and Photobiological Sciences. – 2011.– Vol. 10 (7).– P.1216–1225.; Velusamy M., Shen J.Y., Lin J.T., et al. A New Series of Quadrupolar Type Two-Photon Absorption Chromophores Bearing 11,12-Dibutoxydibenzo [a, c]-phenazine Bridged Amines; Their Applications in Two-Photon Fluorescence Imaging and TwoPhoton Photodynamic Therapy//Advanced Functional Materials. – 2009. – Vol. 19 (15). – P. 2388–2397.; Chen G., Shen J., Ohulchanskyy T.Y, et al. (alpha-NaYbF4 : Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging//ACS Nano. – 2012. – Vol. 6 (9). – P. 8280–8287.; Wang C., Cheng L., Liu Z. Upconversion nanoparticles for potential cancer theranostics//Ther. Deliv. – 2011. – Vol. 2 (10). – P. 1235–1239. doi:10.4155/tde.11.93. PMID: 22826879.; Liu W., Chen R., He S. Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity//Journal of innovative optical health sciences. – 2019. – Vol. 12 (3). – P. 1950013.; Tse W.H., Chen L., McCurdy C.M., et al. Development of biocompatible NaGdF4 : Er3+, Yb3+ upconversion nanoparticles used as contrast agents for bio‐imaging//The Canadian Journal of Chemical Engineering. – 2019. – Vol. 97 (10). – P. 2678–2684.; Xu J., Gulzar A., Yang P., et al. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging//Coordination Chemistry Reviews. – 2019. – Vol. 381. – P.104–134.; Xue X.J., Wang F., Liu X.G. Emerging functional nanomaterials for therapeutics//Journal of Materials Chemistry. – 2011. – Vol. 21 (35).– P. 13107–13127.; Mader H. S., Kele P., Saleh S.M., et al. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging//Current Opinion in Chemical Biology. – 2010 – Vol. 14 (5). – P. 582–596.; Shen, J., Zhao L., Han G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy//Advanced drug delivery reviews. – 2012. – Vol. 65 (5). – P. 744–755.; Liu Y., Meng X., Bu W. Upconversion-based photodynamic cancer therapy//Coordination chemistry reviews. – 2019. – Vol. 379. – P. 82–98.; Obaid G., Russell D.A. Nanoparticles for PDT: Handbook of Photomedicine/eds. M.R. Hamblin, Y.-Y. Huang. Boca Raton. – FL: Taylor & Francis, CRC Press. – 2013. – P. 367–378.; Shan G., Weissleder R., Hilderbrand S.A. Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy//Theranostics. – 2013. – Vol. 3 (4). – P. 267–274. doi:10.7150/thno.5226; Wang C., Cheng L., Liu Z. Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light//Advanced Functional Materials. – 2013. – Vol. 23 (24). P. 3077–3086. doi:10.1002/adfm.201202992; Zhang L., Zeng L., Pan Y. et al. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near infraredresponsive photodynamic therapy in cancers//Biomaterials. – 2015. – Vol. 44, P. 82–90. doi:10.1016/j.biomaterials.2014.12.040; Shan G., Weissleder R., Hilderbrand S.A. Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy//Theranostics. – 2013. – Vol. 3 (4). – P. 267–274.; Wang C., Cheng L., Liu Z. Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light//Advanced Functional Materials. – 2013. – Vol. 23 (24). – P. 3077–3086.; Duan X., Chan C., Lin W. Nanoparticle-mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy//Angewandte Chemie International Edition. – 2019. – Vol. 58 (3). – P. 670–680.; Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids//Chemical Reviews. – 2004. – Vol. 104 (1). – P. 139–173.; Terenin А.N. Photochemical processes in aromatic compounds//Acta physicochim. UESS. – 1943. – Vol. 18 (4). – P. 210–241.; Wang L., Yan R., Huo Z., et al. Fluorescence resonant energy transfer biosensor based on upconversionluminescent nanoparticles//Angewandte Chemie International Edition. – 2005. – Vol. 44 (37). – P. 6054–6057.; Rantanen T., Jarvenpaa M.-L., Vuojola J., et al. Upconverting phosphors in a dual-parameter LRET-based hybridization assay//Analyst. – 2009. – Vol. 134. – P. 1713–1716.; Jo E.J., Mun H., Kim M.G. Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles//Analytical Chemistry. – 2016.– Vol. 88 (5). – P. 2742–2746.; Rantanen T.; Päkkilä H.; Jämsen L., et al. Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in. homogeneous assays//Analytical Chemistry. – 2007. – Vol. 79. – P. 6312–6318.; Vetrone F., Naccache R., Morgan C.G., et al. Luminescence resonance energy transfer from an upconverting nanoparticle to a fluorescent phycobiliprotein//Nanoscale. – 2010. – Vol. 2 (7). – P. 1185–1189.; Cheng L., Yang K., Shao M., et al. Multicolor in vivo imaging of upconversion nanoparticles with emissions tuned by luminescence resonance energy transfer//The Journal of Physical Chemistry C. – 2011. – Vol. 115 (6).– P. 2686–2692.; Ding Y., Wu F., Zhang Y., et al. Interplay between Static and Dynamic Energy Transfer in Biofunctional Upconversion Nanoplatforms//Journal of Physical Chemistry Letters. – 2015. – Vol. 6. – P. 2518–2523.; Muhr V., Würth C., Kraft M., et al. Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes//Analytical Chemistry. – 2017. – Vol. 89 (9). – P. 4868–4874.; Shao W., Chen G., Kuzmin A., et al. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window//Journal of the American Chemical Society. – 2016. – Vol. 138 (50). – P. 16192–16195.; Drees C., Raj A.N., Kurre R., et al. Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells//Angewandte Chemie International Edition. – 2016. – Vol. 55 (38). – P. 11668–11672.; Pominova D., Proydakova V., Romanishkin I., et al. Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4: Yb3+, Ho3+, Er3+@NaYF4 nanothermometers//Nanomaterials. – 2020. – 10 (10). – P. 1992; Pominova, D., Romanishkin, I., Proydakova, V., et al Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating.//Methods and Applications in Fluorescence. – 2020. – Vol. 8. – P. 025006; Kuznetsova, N.A., Gretsova N. S., Yuzhakova O.A., et al. New reagents for determination of the quantum efficiency of singlet oxygen generation in aqueous media//Russian Journal of General Chemistry. – 2001. – Vol.71 (1). – P. 36–41

  5. 5
    Conference

    Contributors: Валиев, Дамир Талгатович

    File Description: application/pdf

    Relation: info:eu-repo/grantAgreement/RFBR//18-43-703014; Перспективы развития фундаментальных наук : сборник научных трудов XVII Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 21-24 апреля 2020 г. Т. 1 : Физика. — Томск, 2020; http://earchive.tpu.ru/handle/11683/62543

  6. 6
  7. 7
  8. 8
    Conference

    Contributors: Валиев, Дамир Талгатович

    Relation: Перспективы развития фундаментальных наук : сборник научных трудов XVI Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 23-26 апреля 2019 г. Т. 2 : Химия. — Томск, 2019.; http://earchive.tpu.ru/handle/11683/55895

  9. 9
    Conference

    Relation: Перспективы развития фундаментальных наук : сборник научных трудов XVI Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 23-26 апреля 2019 г. Т. 1 : Физика. — Томск, 2019.; http://earchive.tpu.ru/handle/11683/55804

  10. 10
  11. 11
  12. 12
  13. 13
    Conference

    Relation: Journal of Physics: Conference Series. Vol. 830 : Energy Fluxes and Radiation Effects 2016. — Bristol, 2017.; Hager I. Z. Compositional dependence of thermal, optical and mechanical properties of oxyfluoride glass / I. Z. Hager, H. A. Othman, D. T. Valiev // Journal of Physics: Conference Series. — 2017. — Vol. 830 : Energy Fluxes and Radiation Effects 2016 : 5th International Congress, 2–7 October 2016, Tomsk, Russian Federation : [materials]. — [012125, 7 p.].; http://earchive.tpu.ru/handle/11683/39501

  14. 14
  15. 15
  16. 16
    Academic Journal

    Contributors: Казанский (Приволжский) федеральный университет

    Relation: ИТОГОВАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПРОФЕССОРСКО-ПРЕПОДАВАТЕЛЬСКОГО СОСТАВА ИНСТИТУТА ФИЗИКИ И ХИМИЧЕСКОГО ИНСТИТУТА ИМЕНИ А.М. БУТЛЕРОВА КАЗАНСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА; http://dspace.kpfu.ru/xmlui/bitstream/net/175783/-1/ktk2022_045.pdf; https://dspace.kpfu.ru/xmlui/handle/net/175783; 535.34+535.37

  17. 17
    Academic Journal

    Contributors: Казанский (Приволжский) федеральный университет

    Relation: ИТОГОВАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПРОФЕССОРСКО-ПРЕПОДАВАТЕЛЬСКОГО СОСТАВА ИНСТИТУТА ФИЗИКИ И ХИМИЧЕСКОГО ИНСТИТУТА ИМЕНИ А.М. БУТЛЕРОВА КАЗАНСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА; http://dspace.kpfu.ru/xmlui/bitstream/net/175914/-1/F_ktk2022_032.pdf; https://dspace.kpfu.ru/xmlui/handle/net/175914; 537.9+621

  18. 18
  19. 19
  20. 20