Εμφανίζονται 1 - 20 Αποτελέσματα από 69 για την αναζήτηση '"РЕДАКТИРОВАНИЕ ГЕНОМА"', χρόνος αναζήτησης: 0,62δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 23, № 4 (2024); 152-161 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 152-161 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3201/1260; Global cancer burden growing, amidst mounting need for services. Saudi Med J. 2024; 45(3): 326–7.; Westermann L., Neubauer B., Köttgen M. Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch. 2021; 473(1): 1–2. doi:10.1007/s00424-020-02497-9.; Alseth E.O., Pursey E., Luján A.M., McLeod I., Rollie C., Westra E.R. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature. 2019; 574(7779): 549–52. doi:10.1038/s41586-019-1662-9.; Afolabi L.O., Afolabi M.O., Sani M.M., Okunowo W.O., Yan D., Chen L., Zhang Y., Wan X. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunology. 2021; 10(6). doi:10.1002/cti2.1286.; Sadeqi Nezhad M., Yazdanifar M., Abdollahpour-Alitappeh M., Sattari A., Seifalian A., Bagheri N. Strengthening the CAR-T cell therapeutic application using CRISPR/Cas9 technology. Biotechnol Bioeng. 2021; 118(10): 3691–705. doi:10.1002/bit.27882.; Xu Y., Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020; 18: 2401–15. doi:10.1016/j.csbj.2020.08.031.; Zhang D., Hussain A., Manghwar H., Xie K., Xie S., Zhao S., Larkin R.M., Qing P., Jin S., Ding F. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J. 2020; 18(8): 1651–69. doi:10.1111/pbi.13383.; Naeem M., Majeed S., Hoque M.Z., Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells. 2020; 9(7): 1608. doi:10.3390/cells9071608.; Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X., Jin S. CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects. Adv Sci (Weinh). 2020; 7(6). doi:10.1002/advs.201902312.; Javed M.R., Sadaf M., Ahmed T., Jamil A., Nawaz M., Abbas H., Ijaz A. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms. Curr Microbiol. 2018; 75(12): 1675–83. doi:10.1007/s00284-018-1547-4.; Batool A., Malik F., Andrabi K.I. Expansion of the CRISPR/Cas Genome-Sculpting Toolbox: Innovations, Applications and Challenges. Mol Diagn Ther. 2021; 25(1): 41–57. doi:10.1007/s40291-020-00500-8.; Singh V., Gohil N., Ramírez García R., Braddick D., Fofié C.K. Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations. J Cell Biochem. 2018; 119(1): 81–94. doi:10.1002/jcb.26165.; Cao J., Wu L., Zhang S.M., Lu M., Cheung W.K., Cai W., Gale M., Xu Q., Yan Q. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016; 44(19). doi:10.1093/nar/gkw660.; Morshedzadeh F., Ghanei M., Lotfi M., Ghasemi M., Ahmadi M., Najari-Hanjani P., Sharif S., Mozaffari-Jovin S., Peymani M., Abbaszadegan M.R. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol. 2024; 66(2): 179–97. doi:10.1007/s12033-023-00724-z.; Ray U., Raghavan S.C. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene. 2020; 39(41): 6393–405. doi:10.1038/s41388-020-01445-2.; Miyaoka Y., Berman J.R., Cooper S.B., Mayerl S.J., Chan A.H., Zhang B., Karlin-Neumann G.A., Conklin B.R. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. 2016; 6. doi:10.1038/srep23549.; Gruzdev A., Scott G.J., Hagler T.B., Ray M.K. CRISPR/Cas9- Assisted Genome Editing in Murine Embryonic Stem Cells. Methods Mol Biol. 2019; 1960: 1–21. doi:10.1007/978-1-4939-9167-9_1.; Chen X., Zhang T., Su W., Dou Z., Zhao D., Jin X., Lei H., Wang J., Xie X., Cheng B., Li Q., Zhang H., Di C. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022; 13(11): 974. doi:10.1038/s41419-022-05408-1.; Prior I.A., Hood F.E., Hartley J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020; 80(14): 2969–74. doi:10.1158/0008-5472.CAN-19-3682.; Nakajima E.C., Drezner N., Li X., Mishra-Kalyani P.S., Liu Y., Zhao H., Bi Y., Liu J., Rahman A., Wearne E., Ojofeitimi I., Hotaki L.T., Spillman D., Pazdur R., Beaver J.A., Singh H. FDA Approval Summary: Sotorasib for KRAS G12C-Mutated Metastatic NSCLC. Clin Cancer Res. 2022; 28(8): 1482–6. doi:10.1158/1078-0432.CCR-21-3074.; Lakshmanan V.K., Jindal S., Packirisamy G., Ojha S., Lian S., Kaushik A., Alzarooni A.I.M.A., Metwally Y.A.F., Thyagarajan S.P., Do Jung Y., Chouaib S. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther. 2021; 28(9): 911–23. doi:10.1038/s41417-021-00299-4.; Behan F.M., Iorio F., Picco G., Gonçalves E., Beaver C.M., Migliardi G., Santos R., Rao Y., Sassi F., Pinnelli M., Ansari R., Harper S., Jackson D.A., McRae R., Pooley R., Wilkinson P., van der Meer D., Dow D., Buser-Doepner C., Bertotti A., Trusolino L., Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019; 568(7753): 511–6. doi:10.1038/s41586-019-1103-9.; Kasap C., Elemento O., Kapoor T.M. DrugTargetSeqR: a genomics- and CRISPR-Cas9-based method to analyze drug targets. Nat Chem Biol. 2014; 10(8): 626–8. doi:10.1038/nchembio.1551.; Neggers J.E., Vercruysse T., Jacquemyn M., Vanstreels E., Baloglu E., Shacham S., Crochiere M., Landesman Y., Daelemans D. Identifying drugtarget selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol. 2015; 22(1): 107–16. doi:10.1016/j.chembiol.2014.11.015.; Yang X., Zhang B. A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Funct Integr Genomics. 2023; 23(2): 182. doi:10.1007/s10142-023-01117-w.; Gong X., Du J., Peng R.W., Chen C., Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel). 2024; 16(2): 460. doi:10.3390/cancers16020460.; Huang D., Miller M., Ashok B., Jain S., Peppas N.A. CRISPR/ Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Adv Drug Deliv Rev. 2020; 158: 17–35. doi:10.1016/j.addr.2020.07.015.; Stefanoudakis D., Kathuria-Prakash N., Sun A.W., Abel M., Drolen C.E., Ashbaugh C., Zhang S., Hui G., Tabatabaei Y.A., Zektser Y., Lopez L.P., Pantuck A., Drakaki A. The Potential Revolution of Cancer Treatment with CRISPR Technology. Cancers (Basel). 2023; 15(6): 1813. doi:10.3390/cancers15061813.; Yang H., Bailey P., Pilarsky C. CRISPR Cas9 in Pancreatic Cancer Research. Front Cell Dev Biol. 2019; 7: 239. doi:10.3389/ fcell.2019.00239.; Atsavapranee E.S., Billingsley M.M., Mitchell M.J. Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine. 2021; 67. doi:10.1016/j.ebiom.2021.103354.; Met Ö., Jensen K.M., Chamberlain C.A., Donia M., Svane I.M. Principles of adoptive T cell therapy in cancer. Semin Immunopathol. 2019; 41(1): 49–58. doi:10.1007/s00281-018-0703-z.; Long K.B., Young R.M., Boesteanu A.C., Davis M.M., Melenhorst J.J., Lacey S.F., DeGaramo D.A., Levine B.L., Fraietta J.A. CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Front Immunol. 2018; 9. doi:10.3389/fimmu.2018.02740.; Ottaviano G., Georgiadis C., Gkazi S.A., Syed F., Zhan H., Etuk A., Preece R., Chu J., Kubat A., Adams S., Veys P., Vora A., Rao K., Qasim W.; TT52 CRISPR-CAR group. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Sci Transl Med. 2022; 14(668). doi:10.1126/scitranslmed.abq3010.; Wang Z., Li N., Feng K., Chen M., Zhang Y., Liu Y., Yang Q., Nie J., Tang N., Zhang X., Cheng C., Shen L., He J., Ye X., Cao W., Wang H., Han W. Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell Mol Immunol. 2021; 18(9): 2188–98. doi:10.1038/s41423-021-00749-x.; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018; 556: 57–63. https://doi.org/10.1038/nature26155.; Luther D.C., Lee Y.W., Nagaraj H., Scaletti F., Rotello V.M. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert Opin Drug Deliv. 2018; 15(9): 905–13. doi:10.1080/17425247.2018.1517746.; Kornete M., Marone R., Jeker L.T. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. J Immunol. 2018; 200(7): 2489–2501. doi:10.4049/jimmunol.1701121.; Fujihara Y., Ikawa M. CRISPR/Cas9-based genome editing in mice by single plasmid injection. Methods Enzymol. 2014; 546: 319–36. doi:10.1016/B978-0-12-801185-0.00015-5.; Xu X., Wan T., Xin H., Li D., Pan H., Wu J., Ping Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J Gene Med. 2019; 21(7). doi:10.1002/jgm.3107.; Givens B.E., Naguib Y.W., Geary S.M., Devor E.J., Salem A.K. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS J. 2018; 20(6): 108. doi:10.1208/s12248-018-0267-9.; Seki A., Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018; 215(3): 985–97. doi:10.1084/jem.20171626.; Kim S., Koo T., Jee H.G., Cho H.Y., Lee G., Lim D.G., Shin H.S., Kim J.S. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018; 28(3): 367–73. doi:10.1101/gr.231936.117.; Wei T., Cheng Q., Min Y.L., Olson E.N., Siegwart D.J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020; 11(1): 3232. doi:10.1038/s41467-020-17029-3.; Lino C.A., Harper J.C., Carney J.P., Timlin J.A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018; 25(1): 1234–57. doi:10.1080/10717544.2018.1474964.; Townsend M.H., Bennion K., Robison R.A., O'Neill K.L. Paving the way towards universal treatment with allogenic T cells. Immunol Res. 2020; 68(1): 63–70. doi:10.1007/s12026-020-09119-7.; Salas-Mckee J., Kong W., Gladney W.L., Jadlowsky J.K., Plesa G., Davis M.M., Fraietta J.A. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Hum Vaccin Immunother. 2019; 15(5): 1126–32. doi:10.1080/21645515.2019.1571893.; Stenger D., Stief T.A., Kaeuferle T., Willier S., Rataj F., Schober K., Vick B., Lotfi R., Wagner B., Grünewald T.G.P., Kobold S., Busch D.H., Jeremias I., Blaeschke F., Feuchtinger T. Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood. 2020; 136(12): 1407–18. doi:10.1182/blood.2020005185.; Seliger B. Basis of PD1/PD-L1 Therapies. J Clin Med. 2019; 8(12): 2168. doi:10.3390/jcm8122168.; Rupp L.J., Schumann K., Roybal K.T., Gate R.E., Ye C.J., Lim W.A., Marson A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017; 7(1): 737. doi:10.1038/s41598-017-00462-8.; Nakazawa T., Natsume A., Nishimura F., Morimoto T., Matsuda R., Nakamura M., Yamada S., Nakagawa I., Motoyama Y., Park Y.S., Tsujimura T., Wakabayashi T., Nakase H. Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells. 2020; 9(4): 998. doi:10.3390/cells9040998.; Hu W., Zi Z., Jin Y., Li G., Shao K., Cai Q., Ma X., Wei F. CRISPR/ Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother. 2019; 68(3): 365–77. doi:10.1007/s00262-018-2281-2.; Choi B.D., Yu X., Castano A.P., Darr H., Henderson D.B., Bouffard A.A., Larson R.C., Scarfò I., Bailey S.R., Gerhard G.M., Frigault M.J., Leick M.B., Schmidts A., Sagert J.G., Curry W.T., Carter B.S., Maus M.V. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019; 7(1): 304. doi:10.1186/s40425-019-0806-7.; Yazdanifar M., Zhou R., Mukherjee P. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells. Curr Trends Immunol. 2016; 17: 95–115.; Tang N., Cheng C., Zhang X., Qiao M., Li N., Mu W., Wei X.F., Han W., Wang H. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight. 2020; 5(4). doi:10.1172/jci.insight.133977.; https://www.siboncoj.ru/jour/article/view/3201

  3. 3
  4. 4
    Academic Journal
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Συγγραφείς: A. O. Borisova, А. О. Борисова

    Πηγή: Medical Genetics; Том 22, № 12 (2023); 3-11 ; Медицинская генетика; Том 22, № 12 (2023); 3-11 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2382/1754; Bentham J. Leading Principles of a Constitutional Code, for Any State . The Works of Jeremy Bentham. Vol. 2. Edinburgh: William Tait. 1843: 267-275.; Bentham, J. Anarchical Fallacies. The Works of Jeremy Bentham. Vol. 2. Edinburgh: William Tait. 1843: 489-535; Прокофьев А. Утилитаризм. Философская антропология. 2019; 5(2): 192–215. DOI:10.21146/2414-3715-2019-5-2-192-215; Михель Д.В. Социальная антропология медицинских систем: медицинская антропология. Саратов. 2010: 20; Жуков Ю.Г. Вклад Ч. Дарвина и Г. Спенсера в становление учения об эволюционной этике. Вестник Омского государственного педагогического университета. Гуманитарные исследования. 2018; 4(21): 16-19; Дарвин Ч. Происхождение человека и половой подбор. М. RUGRAM, 2013: 464; Гребенщикова Е.Г. Биоэтика в теории и на практике: два взгляда на одну проблему. (Сводный реферат), Социальные и гуманитарные науки. Отечественная и зарубежная литература. Серия 8. Науковедение. Реферативный журнал. ИНИОН РАН. 2021: 7-19; The Crispr Baby Scientist Is Back. Here’s What He’s Doing Next. Dec 21. 2022 [Электронный ресурс]. URL: https://www.wired.com/story/the-crispr-baby-scientist-is-back-heres-what-hes-doingnext/ (дата обращения: 01.09.2023); Controversial Chinese scientist He Jiankui proposes new gene editing research. Simone McCarthy. By Simone McCarthy, CNN. Updated 4:52 AM EDT, Mon. July 3. 2023 [Электронный ресурс]. URL: https://edition.cnn.com/2023/07/03/china/he-jiankui-geneediting-proposal-china-intl-hnk-scn/index.html (дата обращения: 01.09.2023); Russian biologist plans more CRISPR-edited babies. 10 June 2019. [Электронный ресурс]. URL: https://www.nature.com/articles/d41586-019-01770-x; Введенская Е.В. Множественность морали на примере генетических экспериментов над эмбрионами. Восьмой Российский философский конгресс «Философия в полицентричном мире». Симпозиумы. Сборник научных статей. М. Российское философское общество; Институт философии РАН; МГУ им. М.В. Ломоносова. Издательство «Логос», ООО «Новые печатные технологии». М. 2020: 453-455; Human Genome Editing and a Global Socio-bioethics Approach. Hastings Center report. November-December 2020 [Электронный ресурс]. URL: https://pubmed.ncbi.nlm.nih.gov/33315259/ (дата обращения: 01.09.2023). doi:10.1002/hast.1200.; Мол А. Множественное тело. Онтология в медицинской практике. Пермь. 2017: 220; Гребенщикова Е.Г., Андреюк Д.С., Волчков П.Ю., Воронцова М.В., Гинтер Е.К., Ижевская В.Л., Лагунин А.А., Поляков А.В., Попова О.В., Смирнихина С.А., Тищенко П.Д., Трофимов Д.Ю., Куцев С.И. Редактирование генома эмбрионов человека: междисциплинарный подход. Вестник РАМН. 2021; 76(1): 86–92. doi: https://doi.org/10.15690/vramn1269; Рабиноу П. Социобиология и биосоциальность. Человек. 2019; 30(6):8-26. doi:10.31857/S023620070007663-6; Ребриков Д. В. Редактирование генома человека. Вестник РГМУ. 2016;3:4-15. doi:10.24075/brsmu.2016-03-01; Townsend Beverley A. Human genome editing: how to prevent rogue actors Townsend BMC. Medical Ethics. Oct 6. 2020 [Электронный ресурс]. URL: https://pubmed.ncbi.nlm.nih.gov/33023591/ (дата обращения: 01.09.2023). doi:10.1186/s12910-020-00527-w; Трикоз Е.Н., Мустафина-Бредихина Д.М., Гуляева Е.Е. Правовое регулирование процедуры генного редактирования: опыт США и стран ЕС. Вестник РУДН. Серия: Юридические науки. 2021; 25(1): 67–86. doi:10.22363/2313-2337-2021-25-1-67-86; Statement on NIH funding of research using gene-editing technologies in human embryos. April 28. 2015 [Сайт]. URL: https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statementnih-funding-research-using-gene-editing-technologies-humanembryos (дата обращения: 06.09.2023); International Summit on Human Gene Editing: A Global Discussion [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/books/NBK343651/ (дата обращения: 06.09.2023); Second International Summit on Human Genome Editing: Continuing the Global Discussion. Proceedings of a Workshop—in Brief. National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs. Washington (DC): National Academies Press (US). Jan 10. 2019 [Электронный ресурс]. URL: https:// www.ncbi.nlm.nih.gov/books/NBK535994/ (дата обращения: 01.09.2023); WHO launches global registry on human genome editing. 29 August 2019 [Сайт]. URL: https://www.who.int/news/item/29-08-2019who-launches-global-registry-on-human-genome-editing (дата обращения: 06.09.2023); WHO issues new recommendations on human genome editing for the advancement of public health.12 July 2021[Электронный ресурс]. URL: https://www.who.int/ru/news/item/12-07-2021who-issues-new-recommendations-on-human-genome-editing-forthe-advancement-of-public-health (дата обращения: 06.09.2023)

  9. 9
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of publicly funded research project No. 056-00052-23-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121021800098-4), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00052-23-00 на проведение прикладных научных исследований (номер государственного учета НИР 121021800098-4)

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 3 (2023); 247-261 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 3 (2023); 247-261 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/499/739; https://www.biopreparations.ru/jour/article/downloadSuppFile/499/656; https://www.biopreparations.ru/jour/article/downloadSuppFile/499/657; https://www.biopreparations.ru/jour/article/downloadSuppFile/499/739; Ребриков ДВ. Редактирование генома человека. Вестник РГМУ. 2016;(3):4–15. EDN: WFQBMX; Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387. https://doi.org/10.3389/fonc.2020.01387; Cyranoski D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature. 2019;566(7745):440–2. https://doi.org/10.1038/d41586-019-00673-1; Cohen J. Did CRISPR help—or harm—the first-ever gene-edited babies? Science. 2019. https://doi.org/10.1126/science.aay9569; Cox D, Platt R, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31. https://doi.org/10.1038/nm.3793; Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4(9):712–20. https://doi.org/10.1038/nrm1202; Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. Is homologous recombination really an error-free process? Front Genet. 2014;5:175. https://doi.org/10.3389/fgene.2014.00175; Choi EH, Yoon S, Koh YE, Seo Y-J, Kim KP. Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp Mol Med. 2020;52:1220–9. https://doi.org/10.1038/s12276-020-0481-2; Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM, et al. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer. 2021;21(1):1154. https://doi.org/10.1186/s12885-021-08863-9; Lai JKH, Toh PJY, Cognart HA, Chouhan G, Saunders TE. DNA-damage induced cell death in yap1;wwtr1 mutant epidermal basal cells. Elife. 2022;11:e72302. https://doi.org/10.7554/eLife.72302; Yamaguchi T, Uchida E, Okada T, Ozawa K, Onodera M, Kume A, et al. Aspects of gene therapy products using gene editing technology in Japan. Hum Gene Ther. 2020;31(19–20):1043–53. https://doi.org/10.1089/hum.2020.156; Richardson C, Ray G, DeWitt M, Curie G, Corn J. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339–44. https://doi.org/10.1038/nbt.3481; DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016;8(360):360ra134. https://doi.org/10.1126/scitranslmed.aaf9336; Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn J, Murthy N. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. 2017;6:e25312. https://doi.org/10.7554/eLife.25312; Горяев АА, Савкина МВ, Мефед КМ, Бондарев ВП, Меркулов ВА, Тарасов ВВ. Редактирование генома и биомедицинские клеточные продукты: современное состояние, безопасность и эффективность. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(3):140–9. https://doi.org/10.30895/2221-996X-2018-18-3-140-149; Kim M-S, Kini AG. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells. 2017;40(8):533–41. https://doi.org/10.14348/molcells.2017.0139; Yuanyuan X., Zhanjun Li. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401–15. https://doi.org/10.1016/j.csbj.2020.08.031; You L, Tong R, Li M, Liu Y, Xue J, Lu Y. Advancements and obstacles of CRISPR-Cas9 technology in translational research. Mol Ther Methods Clin Dev. 2019;13:359–70. https://doi.org/10.1016/j.omtm.2019.02.008; Pinjala P, Tryphena KP, Prasad R, Khatri DK, Sun W, Singh SB, et al. CRISPR/Cas9 assisted stem cell therapy in Parkinson’s disease. Biomater Res. 2023;27(1):46. https://doi.org/10.1186/s40824-023-00381-y; Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054; Erkut E, Yokota T. CRISPR therapeutics for Duchenne muscular dystrophy. Int J Mol Sci. 2022;23(3):1832. https://doi.org/10.3390/ijms23031832; Graham C, Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opin Biol Ther. 2021;21(6):767–80. https://doi.org/10.1080/14712598.2021.1869208; Porteus MH. A new class of medicines through DNA editing. N Engl J Med. 2019;380(10):947–59. https://doi.org/10.1056/NEJMra1800729; Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. https://doi.org/10.1126/science.aad5143; Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362(6410):86–91. https://doi.org/10.1126/science.aau1549; Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24(8):1216–24. https://doi.org/10.1038/s41591-018-0137-0; Chandrasekaran AP, Song M, Kim KS, Ramakrishna S. Different methods of delivering CRISPR/Cas9 into cells. Prog Mol Biol Transl Sci. 2018;159:157–76. https://doi.org/10.1016/bs.pmbts.2018.05.001; Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(3):e1609. https://doi.org/10.1002/wnan.1609; Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26. https://doi.org/10.1016/j.jconrel.2017.09.012; Fu Y, Foden J, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6. https://doi.org/10.1038/nbt.2623; Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4(11):e264. https://doi.org/10.1038/mtna.2015.37; Davies B. The technical risks of human gene editing. Hum Reprod. 2019;34(11):2104–11. https://doi.org/10.1093/humrep/dez162; Zuccaro MV, Xu J, Mitchell C, Marin D, Zimmerman R, Rana B, et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell. 2020;183(6):1650-64.e15. https://doi.org/10.1016/j.cell.2020.10.025; Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12(4):393–4. https://doi.org/10.1016/j.stem.2013.03.006; Obermeier M, Vadolas J, Verhulst S, Goossens E, Baert Y. Lipofection of non-integrative CRISPR/Cas9 ribonucleoproteins in male germline stem cells: a simple and effective knockout tool for germline genome engineering. Front Cell Dev Biol. 2022;10:891173. https://doi.org/10.3389/fcell.2022.891173; Bittlinger M, Hoffmann D, Sierawska AK, Mertz M, Schambach A, Strech D. Risk assessment in gene therapy and somatic genome-editing: An expert interview study. Gene and Genome Editing. 2022;3–4:100011. https://doi.org/10.1016/j.ggedit.2022.100011; Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16(2):198–204. https://doi.org/10.1038/nm.2088; Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, Lundin A, Cavallo AL, Madeyski-Bengtson K, et al. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res. 2018;46(16):8417–34. https://doi.org/10.1093/nar/gky653; Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71. https://doi.org/10.1038/nbt.4192; Boroviak K, Fu B, Yang F, Doe B, Bradley A. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci Rep. 2017;7(1):12867. https://doi.org/10.1038/s41598-017-12740-6; Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8. https://doi.org/10.1038/nbt.3469; Breese EH, Buechele C, Dawson C, Cleary ML, Porteus MH. Use of genome engineering to create patient specific MLL translocations in primary human hematopoietic stem and progenitor cells. PLoS One. 2015;10(9):e0136644. https://doi.org/10.1371/journal.pone.0136644; Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927–30. https://doi.org/10.1038/s41591-018-0049-z; Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. https://doi.org/10.1038/nrc.2016.138; Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939–46. https://doi.org/10.1038/s41591-018-0050-6; Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods. 2018;15(7):512–4. https://doi.org/10.1038/s41592-018-0011-5; Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9. https://doi.org/10.1016/j.cell.2013.08.021; Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63(3):355–70. https://doi.org/10.1016/j.molcel.2016.07.004; Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol. 2019;37(6):657–66. https://doi.org/10.1038/s41587-019-0095-1; Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–8. https://doi.org/10.1126/science.aad5227; Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 2018;4:63. https://doi.org/10.1038/s41421-018-0069-3; Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–8. https://doi.org/10.1038/nbt.3609; Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80. https://doi.org/10.1038/nbt.3081; Shen C-C, Hsu M-N, Chang C-W, Lin M-W, Hwu J-R, Tu Y, Hu Y-C. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res. 2019;47(3):e13. https://doi.org/10.1093/nar/gky1165; Tu Z, Yang W, Yan S, Yin A, Gao J, Liu X, et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep. 2017;7:42081. https://doi.org/10.1038/srep42081; Hodgkins A, Farne A, Perera S, Grego T, Parry-Smith DJ, Skarnes WC, Iyer V. WGE: a CRISPR database for genome engineering. Bioinformatics. 2015;31(18):3078–80. https://doi.org/10.1093/bioinformatics/btv308; Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaudet J-B, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. https://doi.org/10.1186/s13059-016-1012-2; Lessard S, Francioli L, Alfoldi J, Tardif JC, Ellinor PT, MacArthur DG, et al. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci USA. 2017;114(52):E11257-E11266. https://doi.org/10.1073/pnas.1714640114; Miller NA, Farrow EG, Gibson M, Willig LK, Twist G, Yoo B, et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med. 2015;7:100. https://doi.org/10.1186/s13073-015-0221-8; Рачинская ОА, Меркулов ВА. Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(1):25–32. https://doi.org/10.30895/2221-996X-2018-18-1-25-32; https://www.biopreparations.ru/jour/article/view/499

  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; http://elib.usma.ru/handle/usma/7878

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/7878

  13. 13
    Academic Journal

    Πηγή: Vegetable crops of Russia; № 6 (2022); 40-45 ; Овощи России; № 6 (2022); 40-45 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2068/1412; United Nations Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/publications/world-population-prospects2019-highlights.html (Access date 10.07.2022); Binns C.W., Lee M.K., Maycock B., Torheim L.E., Nanishi K., Duong D.T.T. Climate change, food supply, and dietary guidelines. Annu. Rev. Public Health. 2021;(42):233–255.; FAO I. Food loss and waste must be reduced for greater food security and environmental sustainability; 2022.; Finger R., Swinton S.M., El Benni N., Walter A. Precision farming at the Nexus of agricultural production and the environment. Annual Review of Resource Economics. 2019;11(1):313–335.; Hickey L.T., Robinson A.N.H., Jackson H., Leal-Bertioli S.A., Tester S.C.M., Gao M., Wulff B.B.H. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37(7):744–754.; Clapp J. Mega-mergers on the Menu: Corporate Concentration and the Politics of Sustainability in the Global Food System. Global Environmental Politics. 2018;18(2):12–33.; Pham X., Martin S. How Data Analytics Is Transforming Agriculture. Business Horizons. 2018;61(1):125–133.; Day S. AgTech Landscape 2019: 1,600+ Startups Innovating on the Farm and in the “Messy Middle.” 2019. June 4. https://agfundernews.com/2019-06-04-agtechlandscape-2019-1600-startups.html (Access date 10.07.2022); Bronson K. Looking Through a Responsible Innovation Lens at Uneven Engagements with Digital Farming. NJAS—Wageningen Journal of Life Sciences 2019;90–91(100294):1–6.; Mooney P. Blocking the Chain: Industrial Food Chain Concentration, Big Data Platforms and Food Sovereignty Solutions. October 10. 2018. https://www.etcgroup.org/sites/www.etcgroup.org/files/files/blockingchain2.png (Access date 10.07.2022) (In Eng.); Королькова А.П., Кузнецова Н.А., Иванова М.И., Шатилов М.В., Ирков И.И., Ильина А.В., Кузьмин В.Н., Маринченко Т.Е. Экономические аспекты развития овощеводства России. М., ФГБНУ «Росинформагротех», 2021. 204 с.; Федосов А.Ю., Меньших А.М., Иванова М.И., Рубцов А.А. Инновационные технологии орошения овощных культур. М., Изд-во Ким Л.А., 2021. 306 с.; Солдатенко А.В., Меньших А.М., Федосов А.Ю., Ирков И.И., Иванова М.И. Повышение конкурентоспособности овощных культур к сорным растениям посредством совершенствования методов борьбы. Овощи России. 2022;(2):72-87. https://doi.org/10.18619/2072-9146-2022-2-72-87; Федосов А.Ю., Меньших А.М., Иванова М.И. Дефицитное орошение овощных культур. Овощи России. 2022;(3):44-49. https://doi.org/10.18619/2072-9146-2022-3-44-49; Walter A., Finger R., Huber R., Buchmann N. Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(24):6148–6150.; Groher T., Heitkämper K., Walter A., Liebisch F., Umstätter C. Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precision Agriculture. 2020;21(6):1327–1350.; Ayerdi Gotor A., Marraccini E., Leclercq C., Scheurer O. Precision farming uses typology in arable crop-oriented farms in northern France. Precision Agriculture. 2019;21(1):131–146.; Barnes A.P., Soto I., Eory V., Beck B., Balafoutis A., Sánchez B, GómezBarbero M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy. 2019;(80):163–174.; Lowenberg-DeBoer J., Erickson B. How does European adoption of precision agriculture compare to worldwide trends? In J.V. Stafford (Ed.), Precision agriculture ‘19. Wageningen Academic Publishers. 2019.; Michels M., Fecke W., Feil J.H., Musshoff O., Lülfs-Baden F., Krone S. “Anytime, anyplace, anywhere”—A sample selection model of mobile internet adoption in german agriculture. Agribusiness. 2020;36(2):192–207.; Eastwood C., Ayre M., Nettle R., Dela Rue B. Making sense in the cloud: Farm advisory services in a smart farming future. NJAS—Wageningen Journal of Life Sciences. 2019.; Busemeyer L., Mentrup D., Möller K., Wunder E., Alheit K., Hahn V. BreedVision — A multi-sensor platform for non-destructive fieldbased phenotyping in plant breeding. Sensors. 2013;(13):2830–2847.; Virlet N., Sabermanesh K., Sadeghi-Tehran P., Hawkesford M.J. Field scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 2017;(44):143–153.; Ge Y., Atefi A., Zhang H., Miao C., Ramamurthy R.K., Sigmon B. High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: a case study with a maize diversity panel. Plant Methods. 2019;(15):66.; Wolfert S., Ge L., Verdouw C., Bogaardt M.-J. Big data in smart farming – a review. Agric. Syst. 2017;(153):69–80.; Chlingaryan A., Sukkarieh S., Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput. Electron. Agric. 2018;(151):61–69.; Zhang Z., Kayacan E., Thompson B., Chowdhary G. High precision control and deep learning-based corn stand counting algorithms for agricultural robot. Auton. Robots. 2020;(44):1289–1302.; Jin X., Zarco-Tejada P., Schmidhalter U., Reynolds M.P., Hawkesford M.J., Varshney R.K. High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms. IEEE Geosci. Remote Sens. Mag. 2020;(2):1–33.; Pandey P., Dakshinamurthy H.N., Young S.N. Autonomy in detection, actuation, and planning for robotic weeding systems. Trans. ASABE. 2021; Arad B., Balendonck J., Barth R., Ben-Shahar O., Edan Y., Hellström T. Development of a sweet pepper harvesting robot. J. F. Robot. 2020;(37):1027–1039.; Hemming J., Bac C. W., van Tuijl B.A.J., Barth R., Bontsema J., Pekkeriet E.J. “A robot for harvesting sweet-pepper in greenhouses,” in Paper Presented at AgEng 2014, Zurich.; Lili W., Bo Z., Jinwei F., Xiaoan H., Shu W., Yashuo L., et al. Development of a tomato harvesting robot used in greenhouse. Int. J. Agric. Biol. Eng. 2017;(10):140–149.; Van Henten E.J., Hemming J., van Tuijl B.A.J., Kornet J.G., Meuleman J., Bontsema J. An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robots. 2002;(13):241–258.; Raja R., Nguyen T.T., Slaughter D.C., Fennimore S.A. Real-time robotic weed knife control system for tomato and lettuce based on geometric appearance of plant labels. Biosyst. Eng. 2020;(194):152–164.; Blasco J., Aleixos N., Roger J.M., RabatelЭ G., Moltó E. AE — Automation and emerging technologies: robotic weed control using machine vision. Biosyst. Eng. 2002;(83):149–157.; Weersink Alfons, Evan Fraser, David Pannell, Emily Duncan, Sarah Rotz. Opportunities and Challenges for Big Data in Agricultural and Environmental Analysis. Annual Review of Resource Economics. 2018;10(1):19–37.; Zhang Yi, Karen Massel, Ian D. Godwin, Caixia Gao. Applications and Potential of Genome Editing in Crop Improvement. Genome Biology. 2018;19(210);1–11.; Bartkowski B., Theesfeld I., Pirscher F., Timaeus J. Snipping Around for Food: Economic, Ethical and Policy Implications of CRISPR/Cas Genome Editing. Geoforum. 2018;(96):172–180.; Brinegar Katelyn Ali, K. Yetisen, Sun Choi, Emily Vallillo, Guillermo U. RuizEsparza, Anand M. Prabhakar, Ali Khademhosseini, Seok Hyun Yun. The Commercialization of Genome-Editing Technologies. Critical Reviews in Biotechnology 2017;37(7):924–932.; Nickel R. Gene-Editing Startups Ignite the Next “Frankenfood” Fight. August 10. 2018. https://www.reuters.com/article/us-grains-tech-gene-editing/gene-editingstartups-ignite-the-next-frankenfood-fight-idUSKBN1KV0GF (Access date 10.07.2022); Houldsworth A. Who Owns the Most CRISPR Patents Worldwide? Surprisingly, It’s Agrochemical Giant DowDuPont. 2018.; https://www.vegetables.su/jour/article/view/2068

  14. 14
  15. 15
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/6893

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/6893

  16. 16
    Academic Journal

    Συγγραφείς: Ванг, Кен

    Πηγή: Problems of Environmental Biotechnology; No. 1 (2021) ; Проблемы экологической биотехнологии; № 1 (2021) ; Проблеми екологічної біотехнології; № 1 (2021) ; 2306-6407

    Περιγραφή αρχείου: application/pdf

  17. 17
  18. 18
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Сборник статей "V Международная (75 Всероссийская) научно-практическая конференция "Актуальные вопросы современной медицинской науки и здравоохранения". 2020. №2; http://elib.usma.ru/handle/usma/3099

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/3099

  19. 19
  20. 20