-
1Book
-
2Academic Journal
-
3Book
Θεματικοί όροι: УЧЕБНЫЕ ПОСОБИЯ ДЛЯ ВУЗОВ, ЛИТЕРАТУРНОЕ РЕДАКТИРОВАНИЕ, ЭЛЕКТРОННЫЕ РЕСУРСЫ, ЯЗЫКОЗНАНИЕ
Σύνδεσμος πρόσβασης: https://elar.uspu.ru/handle/ru-uspu/48282
-
4
-
5
-
6Academic Journal
-
7
-
8
-
9Academic Journal
Πηγή: Вестник Тверского государственного университета. Серия: Филология. :144-152
Θεματικοί όροι: 808.5 Теория речи. Риторика устной речи. Культура речи. Ораторское искусство, 8 Языкознание. Филология. Художественная литература. Литературоведение, 80 Общие вопросы лингвистики и литературоведения. Филология, 808 Риторика: эффективное использование языка. Литературное творчество. Редактирование. Культура речи
Περιγραφή αρχείου: application/pdf
-
10Book
Συγγραφείς: Зуева, Т. А., Иванова, Е. Н.
Θεματικοί όροι: УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ, УЧЕБНЫЕ ПОСОБИЯ ДЛЯ ВУЗОВ, СТИЛИСТИЧЕСКИЕ ПРИЕМЫ, СТИЛИСТИКА ЯЗЫКА, СТИЛИСТИКА ТЕКСТА, ПРАВКА ТЕКСТА, РЕДАКТИРОВАНИЕ ТЕКСТОВ, РЕДАКТИРОВАНИЕ, ВЫСКАЗЫВАНИЯ
Θέμα γεωγραφικό: USPU
Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/48279
-
11Academic Journal
Πηγή: Высшая школа: научные исследования.
Θεματικοί όροι: квадруплексы, редактирование ДНК, CRISPR-опосредованная системы, вариабельная Поэпитопная Обратная Трансляция (вПОТ-механизм), редактирование РНК и таргетирование (повреждение) РНК, Нуклеиновый Эквивалент белкового эпитопа (олиго-НЭ)
-
12Academic Journal
Συγγραφείς: Elena A. Tkachuk, Igor Zh. Seminsky
Πηγή: Байкальский медицинский журнал, Vol 4, Iss 1, Pp 84-97 (2025)
Θεματικοί όροι: редактирование генома, этиологическое лечение наследственной патологии, метод цинковых пальцев, технология talen, crispr-cas, Medicine (General), R5-920
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/2b04bd9f4a9b40979d51608503011d96
-
13Academic Journal
Συγγραφείς: Лащук, О. Р.
Θεματικοί όροι: NEWSRU. COM, ЯЗЫКОЗНАНИЕ, ЛИНГВИСТИКА ТЕКСТА, НОВОСТНЫЕ СООБЩЕНИЯ, РЕРАЙТИНГ, ИНТЕРНЕТ-МАТЕРИАЛЫ, ВТОРИЧНОЕ РЕДАКТИРОВАНИЕ, ИНФОРМАЦИОННЫЕ АГЕНТСТВА, ИНФОРМАЦИОННЫЕ ТЕКСТЫ, РЕДАКТИРОВАНИЕ НОВОСТНЫХ СООБЩЕНИЙ
Θέμα γεωγραφικό: USPU
Relation: Политическая лингвистика. 2013. № 4 (46)
Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/55309
-
14Book
Συγγραφείς: Зуева, Т. А., Иванова, Е. Н.
Θεματικοί όροι: ЭЛЕКТРОННЫЕ РЕСУРСЫ, ЛИТЕРАТУРНОЕ РЕДАКТИРОВАНИЕ, УЧЕБНЫЕ ПОСОБИЯ ДЛЯ ВУЗОВ, ЯЗЫКОЗНАНИЕ
Θέμα γεωγραφικό: USPU
Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/48282
-
15Book
Συγγραφείς: Зуева, Т. А., Иванова, Е. Н.
Θεματικοί όροι: ЭЛЕКТРОННЫЕ РЕСУРСЫ, ЛИТЕРАТУРНОЕ РЕДАКТИРОВАНИЕ, ПРАКТИКУМЫ, УЧЕБНЫЕ ПОСОБИЯ ДЛЯ ВУЗОВ, УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ
Θέμα γεωγραφικό: USPU
Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/48215
-
16Book
Συγγραφείς: Лозинская, А. М., Лапенок, М. В.
Θεματικοί όροι: ЭЛЕКТРОННЫЕ РЕСУРСЫ, УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ, УЧЕБНО-МЕТОДИЧЕСКИЕ ПОСОБИЯ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ТЕКСТОВЫЕ РЕДАКТОРЫ, ТЕКСТОВЫЕ ДОКУМЕНТЫ, РЕДАКТИРОВАНИЕ, РЕДАКТОРЫ ТЕКСТОВЫЕ, WORD
Θέμα γεωγραφικό: USPU
Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/48069
-
17Academic Journal
Πηγή: Пролиферативный синдром в биологии и медицине.
Θεματικοί όροι: васкулопролиферация, генное редактирование, 3. Good health
-
18Academic Journal
Συγγραφείς: P. A. Suchkova, S. A. Panova, O. Ya. Lisenko, K. P. Raevskij, П. А. Сучкова, С. А. Панова, О. Я. Лисенко, К. П. Раевский
Συνεισφορές: The authors declare no funding for this study, Авторы заявляют об отсутствии финансирования при проведении исследования
Πηγή: The Russian Archives of Internal Medicine; Том 15, № 4 (2025); 275-283 ; Архивъ внутренней медицины; Том 15, № 4 (2025); 275-283 ; 2411-6564 ; 2226-6704
Θεματικοί όροι: патогенетическая терапия, review, targeted therapy, genetic therapy, gene editing, genetic vector, обзор, таргетная терапия, противовоспалительная терапия, генная терапия, геномное редактирование, вирусный вектор
Περιγραφή αρχείου: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/2045/1430; https://www.medarhive.ru/jour/article/view/2045/1438; Grasemann H., Ratjen F.N. Cystic Fibrosis. The New England Journal of Medicine. 2023;389(18):1693-1707. doi:10.1056/NEJMra2216474.; López-Valdez J.A., Aguilar-Alonso L.A., Gándara-Quezada V. et al. Cystic fibrosis: current concepts. Boletin Medico del Hospital Infantil de Mexico. 2021;78(6):584-596. doi:10.24875/BMHIM.20000372.; Chen Q., Shen Y., Zheng J. A review of cystic fibrosis: Basic and clinical aspects. Animal Models and Experimental Medicine. 2021;4(3):220- 232. doi:10.1002/ame2.12180.; Farinha C.M., Callebaut I. Molecular mechanisms of cystic fibrosis — how mutations lead to misfunction and guide therapy. Bioscience Reports. 2022;42(7):1. doi:10.1042/BSR20212006.; Rafeeq M.M., Murad H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. Journal of Translational Medicine. 2017;15(1):84. doi:10.1186/s12967-017-1193-9.; Elborn J.S., Konstan M.W., Taylor-Cousar J.L. et al. Empire-CF study: A phase 2 clinical trial of leukotriene A4 hydrolase inhibitor acebilustat in adult subjects with cystic fibrosis. Journal of Cystic Fibrosis. 2021;20(6):1026-1034. doi:10.1016/j.jcf.2021.08.007.; Konstan M.W., Polineni D., Chmiel J.F. et al. Efficacy and safety of LAU-7b in a Phase 2 trial in adults with cystic fibrosis. Journal of Cystic Fibrosis. 2024;24(1):83-90. doi:10.1016/j.jcf.2024.07.004.; Chmiel J.F., Flume P., Downey D.G. et al. Lenabasum JBT101- CF-001 Study Group. Safety and efficacy of lenabasum in a phase 2 randomized, placebo-controlled trial in adults with cystic fibrosis. Journal of Cystic Fibrosis. 2021;20(1):78-85. doi:10.1016/j.jcf.2020.09.008.; Яковлев Я.Я., Бурнышева О.В., Готлиб М.Л и др. Микробиота нижних дыхательных путей и ее чувствительность к антибактериальным препаратам у больных муковисцидозом детей. Мать и Дитя в Кузбассе. 2022;3(90):41-47. doi:10.24412/2686-7338-2022-3-41-47.; Fischer R., Schwarz C., Weiser R. et al. Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection. Journal of Cystic Fibrosis. 2022;21(5):821-829. doi:10.1016/j.jcf.2022.01.003.; Burgener E.B., Moss R.B. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Current opinion in pediatrics. 2018;30(3):372-377. doi:10.1097/MOP.0000000000000627.; Ломунова М.А., Гершович П.М. Генная терапия муковисцидоза: достижения и перспективы. Acta Naturae. 2023;15(2):20-31. doi:10.32607/actanaturae.11708.; Wille P.T., Rosenjack J., Cotton C. et al. Identification of AAV Developed for cystic fibrosis gene therapy that restores CFTR function in human cystic fibrosis patient cells. Journal of Cystic Fibrosis. 2019;18(39). doi:10.1016/S1569-1993(19)30241-3.; Taylor-Cousar J.L., Mermis J., Gifford A. et al. WS06.01 CFTR transgene expression in airway epithelial cells following aerosolized administration of the AAV-based gene therapy 4D-710 to adults with cystic fibrosis lung disease. Journal of Cystic Fibrosis. 2024;23(1):11. doi:10.1016/S1569-1993(24)00140-1.; Смирнихина С.А., Лавров А.В. Современное патогенетическое лечение и разработка новых методов генной и клеточной терапии муковисцидоза. Гены и клетки. 2018;13(3):23-31. doi:10.23868/201811029.; Robinson E., MacDonald K.D., Slaughter K. et al. Lipid nanoparticledelivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Molecular Therapy. 2018;26(8):2034-2046. doi:10.1016/j.ymthe.2018.05.014.; Rowe S.M., Zuckerman J.B., Dorgan D. et al. Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. Journal of Cystic Fibrosis. 2023;22(4):656-664. doi:10.1016/j.jcf.2023.04.008.; Davies J.C., Polineni D., Boyd A.C. et al. Lentiviral Gene Therapy for Cystic Fibrosis. A Promising Approach and First-in-Human Trial. American Journal of Respiratory and Critical Care Medicine. 2024;210(12):1398-1408. doi:10.1164/rccm.202402-0389CI.; Ishimaru D., Bhattacharjee R., Casillas J. et al. WS05.01 RCT2100 rescues CFTR function in human bronchial epithelial cells and improves mucociliary clearance in CF ferrets. Journal of Cystic Fibrosis. 2024;23(1):9. doi:10.1016/S1569-1993(24)00131-0.; Lee J.A., Cho A., Huang E.N. et al. Gene therapy for cystic fibrosis: new tools for precision medicine. Journal of Translational Medicine. 2021;19:1-15. doi:10.1186/s12967-021-03099-4.; Sui H., Xu X., Su Y. et al. Gene therapy for cystic fibrosis: Challenges and prospects. Frontiers in pharmacology. 2022;13:1015926. doi:10.3389/fphar.2022.1015926.; Wang G. Genome Editing for Cystic Fibrosis. Cells. 2023;12(12):1555. doi:10.3390/cells12121555.; Janik E., Niemcewicz M., Ceremuga M. et al. Various Aspects of a Gene Editing System-CRISPR-Cas9. International Journal of Molecular Sciences. 2020;21(24):9604. doi:10.3390/ijms21249604.; Liu Q., Sun Q., Yu J. Gene Editing’s Sharp Edge: Understanding Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). Transactions on Materials, Biotechnology and Life Sciences. 2024;3:170-179. doi:10.62051/e47ayw75.; Becker S., Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021;2:100007. doi:10.1016/j.ggedit.2021.100007.; Kantor A., McClements M.E., MacLaren R.E. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences. 2020;21(17):6240. doi:10.3390/ijms21176240.; Scholefield J., Harrison P.T. Prime editing — an update on the field. Gene Therapy. 2021;28(7):396–401. doi:10.1038/s41434-021-00263-9.; Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021;31(2):226-236. doi:10.18093/0869-0189-2021-31-2-226-236.; Aslam A.A., Sinha I.P., Southern K.W. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database of Systematic Reviews. 2023;(3). doi:10.1002/14651858.CD012040.pub3.; Haq I., Almulhem M., Soars S. et al. Precision Medicine Based on CFTR Genotype for People with Cystic Fibrosis. Pharmacogenomics and Personalized Medicine. 2022;5(15):91-104. doi:10.2147/PGPM.S245603.; Каширская Н.Ю., Петрова Н.В., Зинченко Р.А. Клиническая эффективность и безопасность комбинированного препарата ивакафтор/лумакафтор у пациентов с муковисцидозом: обзор международных исследований. Вопросы современной педиатрии. 2021;20(6):558-566. doi:10.15690/vsp.v20i6S.2363.; Konstan M.W., McKone E.F., Moss R.B. et al. Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): a phase 3, extension study. The Lancet Respiratory Medicine. 2017;5(2):107–118. doi:10.1016/S2213-2600(16)30427-1.; Gavioli E.M., Guardado N., Haniff F. et al. A current review of the safety of cystic fibrosis transmembrane conductance regulator modulators. Journal of Clinical Pharmacy and Therapeutics. 2021;46(2):286–294. doi:10.1111/jcpt.13329.; Черменский А.Г., Гембицкая Т.Е., Орлов А.В. и др. Применение таргетной терапии лумакафтором/ивакафтором у больных муковисцидозом. Медицинский Совет. 2022;16(4):98-106. doi:10.21518/2079-701X-2022-16-4-98-106.; Taylor-Cousar J.L., Munck A., McKone E.F. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. The New England Journal of Medicine. 2017,377(21):2013-2023. doi:10.1056/NEJMoa1709846.; Bardin E., Pastor A., Semeraro M. et al. Modulators of CFTR. Updates on clinical development and future directions. European Journal of Medicinal Chemistry. 2021;213(3):113195. doi:10.1016/j.ejmech.2021.113195.; Scott C. Bell, Peter J. Barry, Kris De Boeck et al. CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials. Journal of Cystic Fibrosis. 2019;18(5):700-707. doi:10.1016/j.jcf.2019.04.014.; Пятеркина О.Г., Карпова О.А., Бегиева Г.Р. и др. Региональный опыт наблюдения за детьми с муковисцидозом, получающими таргетную терапию, в Республике Татарстан. Пульмонология. 2024;34(2):277-282. doi:10.18093/0869-0189-2024-34-2-277-282.; Кондратьева Е.И., Одинаева Н.Д., Паснова Е.В. и др. Эффективность и безопасность тройной терапии (элексакафтор / тезакафтор / ивакафтор) у детей с муковисцидозом: 12-месячное наблюдение. Пульмонология. 2024;34(2):218-224. doi:10.18093/0869-0189-2024-34-2-218-224.; Поляков Д.П., Погодина А.А., Кондратьева Е.И. и др. Влияние таргетной терапии муковисцидоза на течение хронического риносинусита у ребенка: первый российский опыт. Российская оториноларингология. 2023;22(3):86–92. doi:10.18692/1810-4800-2023-3-86-92.; Keating C., Yonker L.M., Vermeulen F. et al. Vanzacaftor–tezacaftor– deutivacaftor versus elexacaftor–tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): results from two randomised, active-controlled, phase 3 trials. Lancet Respiratory Medicine. 2025. doi:10.1016/S2213-2600(24)00411-9.; Hoppe J.E., Ajay S Kasi, Pittman J.E. et al. Vanzacaftor–tezacaftor– deutivacaftor for children aged 6–11 years with cystic fibrosis (RIDGELINE Trial VX21-121-105): an analysis from a single-arm, phase 3 trial. Lancet Respiratory Medicine. 2025. doi:10.1016/S2213-2600(24)00407-7.; https://www.medarhive.ru/jour/article/view/2045
-
19Academic Journal
Συγγραφείς: Тимофеева Елена Николаевна, Yelena N. Timofeyeva
Πηγή: A breakthrough in science: development strategies; 204-206 ; Новое слово в науке: стратегии развития; 204-206
Θεματικοί όροι: проектная деятельность, информационное общество, внеурочная деятельность, выразительное чтение, аудиофайл, современные технические средства, развитие интереса к чтению, аудиоредактор, базовое редактирование, Ocenaudio, Wavosaur, WavePad, Movavi Video Editor
Περιγραφή αρχείου: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6054101-1-9; https://interactive-plus.ru/e-articles/944/Action944-575316.pdf; Конокотин Э.О., Якушина Л.С., Полторак Д.И., Цесарский Л.Д. Использование средств звукозаписи в учебном процессе: метод. пособие. – М.: Высшая школа, 1975. – 160 с.; Технические средства обучения в общеобразовательной школе: учеб. пособие для студентов пед. ин-тов и учащихся пед. уч-щ / Г.И. Рах [и др.]. – 2-е изд., перераб. и доп. – М.: Просвещение, 1993. – 287 с.; Ступин А.А. Технические средства во внеурочной деятельности / А.А. Ступин [Электронный ресурс]. – Режим доступа: https://clck.ru/3Msr92 (дата обращения: 12.06.2025).; Тимофеева Е.Н. Использование современных технических средств в проектной деятельности по литературе / Е.Н. Тимофеева [Электронный ресурс]. – Режим доступа: https://pedsovet.su/load/28-1-0-59802 (дата обращения: 16.06.2025).
-
20Academic Journal
Συγγραφείς: A. S. Zueva, A. I. Shevchenko, S. P. Medvedev, E. A. Elisaphenko, A. A. Sleptcov, M. S. Nazarenko, N. A. Tmoyan, S. M. Zakian, I. S. Zakharova, А. С. Зуева, А. И. Шевченко, С. П. Медведев, Е. А. Елисафенко, А. А. Слепцов, М. С. Назаренко, Н. А. Тмоян, С. М. Закиян, И. С. Захарова
Συνεισφορές: The work was supported by the Russian Science Foundation grant No. 24-15-00346, https://rscf.ru/project/ 24-15-00346/.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 189-199 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 189-199 ; 2500-3259 ; 10.18699/vjgb-25-20
Θεματικοί όροι: изогенные линии клеток, LDLR, induced pluripotent stem cells, genome editing, isogenic cell lines, индуцированные плюрипотентные стволовые клетки, геномное редактирование
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4537/1927; Bauer D.E., Canver M.C., Orkin S.H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp. 2015; 95:e52118. doi 10.3791/52118; Bonnycastle L.L., Swift A.J., Mansell E.C., Lee A., Winnicki E., Li E.S., Robertson C.C., Parsons V.A., Huynh T., Krilow C., Mohlke K.L., Erdos M.R., Narisu N., Collins F.S. Generation of human isogenic induced pluripotent stem cell lines with CRISPR prime editing. Cris J. 2024;7(1):53-67. doi 10.1089/crispr.2023.0066; Bourbon M., Alves A.C., Medeiros A.M., Silva S., Soutar A.K. Familial hypercholesterolaemia in Portugal. Atherosclerosis. 2008; 196(2):633-642. doi 10.1016/j.atherosclerosis.2007.07.019; Brooks I.R., Garrone C.M., Kerins C., Kiar C.S., Syntaka S., Xu J.Z., Spagnoli F.M., Watt F.M. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Rep. 2022;17(5):1033-1047. doi 10.1016/j.stemcr.2022.03.019; Cerneckis J., Cai H., Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024;9(1):112. doi 10.1038/s41392-024-01809-0; Chai A.C., Cui M., Chemello F., Li H., Chen K., Tan W., Atmanli A., McAnally J.R., Zhang Y., Xu L., Liu N., Bassel-Duby R., Olson E.N. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023;29(2):401- 411. doi 10.1038/s41591-022-02176-5; Choppa P.C., Vojdani A., Tagle C., Andrin R., Magtoto L. Multiplex PCR for the detection of Mycoplasma fermentans, M. hominis and M. penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome. Mol Cell Probes. 1998;12(5):301-308. doi 10.1006/mcpr.1998.0186; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353-1356. doi 10.1056/nejmsr040330; Ezhov M.V., Bazhan S.S., Ershova A.I., Meshkov A.N., Sokolov A.A., Kukharchuk V.V., Gurevich V.S., Voevoda M.I., Sergienko I.V., Shakhtshneider E.V., Pokrovsky S.N., Konovalov G.A., Leontyeva I.V., Konstantinov V.O., Shcherbakova M.Yu., Zakharova I.N., Balakhonova T.V., Filippov A.E., Akhmedzhanov N.M., Aleksandrova O.Yu., Lipovetsky B.M. Clinical guidelines for familial hypercholesterolemia. Ateroscleroz. 2019;15(1):58-98 (in Russian); Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., Hegele R.A., Krauss R.M., Raal F.J., Schunkert H., Watt G.F., Borén J., Fazio S., Horton J.D., Masana L., Nicholls S.J., Nordestgaard B.G., Van De Sluis B., Taskinen M.R., Tokgözoǧlu L., Landmesser U., Laufs U., Wiklund O., Stock J.K., Chapman M.J., Catapano A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459- 2472. doi 10.1093/eurheartj/ehx144; Fularski P., Hajdys J., Majchrowicz G., Stabrawa M., Młynarska E., Rysz J., Franczyk B. Unveiling familial hypercholesterolemia – review, cardiovascular complications, lipid-lowering treatment and its efficacy. Int J Mol Sci. 2024;25(3):1637. doi 10.3390/ijms25031637; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681): 464-471. doi 10.1038/nature24644; Grigor’eva E.V., Malakhova A.A., Yarkova E.S., Minina J.M., Vyatkin Y.V., Nadtochy J.A., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation and characterization of two induced pluripotent stem cell lines (ICGi052-A and ICGi052-B) from a patient with frontotemporal dementia with parkinsonism-17 associated with the pathological variant c.2013T>G in the MAPT gene. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(7):679-687. doi 10.18699/vjgb-24-76; Gu J., Gupta R.N., Cheng H.K., Xu Y., Raal F.J. Current treatments for the management of homozygous familial hypercholesterolaemia: a systematic review and commentary. Eur J Prev Cardiol. 2024; 31(15):1833-1849. doi 10.1093/eurjpc/zwae144; Harada-Shiba M. Impact of familial hypercholesterolemia diagnosis in real-world data. J Atheroscler Thromb. 2023;30(10):1303. doi 10.5551/jat.ED241; Hendricks-Sturrup R.M., Clark-Locascio J., Lu C.Y. A global review on the utility of genetic testing for familial hypercholesterolemia. J Pers Med. 2020;10(2):23. doi 10.3390/pm10020023; Hofer M., Lutolf M.P. Engineering organoids. Nat Rev Mater. 2021; 6(5):402-420. doi 10.1038/s41578-021-00279-y; Hopkins P.N., Toth P.P., Ballantyne C.M., Rader D.J. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the national lipid association expert panel on familial hypercholesterolemia. J Clin Lipidol. 2011;5(3):S9. doi 10.1016/j.jacl.2011.03.452; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57-63. doi 10.1038/nature26155; Huang C.C., Niu D.M., Charng M.J. Genetic analysis in a Taiwanese cohort of 750 index patients with clinically diagnosed familial hypercholesterolemia. J Atheroscler Thromb. 2022;29(5):639-653. doi 10.5551/jat.62773; Jannes C.E., Santos R.D., de Souza Silva P.R., Turolla L., GagliardiA.C.M., Marsiglia J.D.C., ChacraA.P., Miname M.H., Rocha V.Z., Filho W.S., Krieger J.E., Pereira A.C. Familial hypercholesterolemia in Brazil: cascade screening program, clinical and genetic aspects. Atherosclerosis. 2015;238(1):101-107. doi 10.1016/j.atherosclerosis.2014.11.009; Kannan S., Farid M., Lin B.L., Miyamoto M., Kwon C. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLoS Comput Biol. 2021;17(9):e1009305. doi 10.1371/journal.pcbi.1009305; Kawatani K., Nambara T., Nawa N., Yoshimatsu H., Kusakabe H., Hirata K., Tanave A., Sumiyama K., Banno K., Taniguchi H., Arahori H., Ozono K., Kitabatake Y. A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome. Commun Biol. 2021;4(1):730. doi 10.1038/s42003-021-02242-7; Koblan L.W., Erdos M.R., Wilson C., Cabral W.A., Levy J.M., Xiong Z.M., Tavarez U.L., Davison L.M., Gete Y.G., Mao X., Newby G.A., Doherty S.P., Narisu N., Sheng Q., Krilow C., Lin C.Y., Gordon L.B., Cao K., Collins F.S., Brown J.D., Liu D.R. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature. 2021;589(7843):608-614. doi 10.1038/s41586-020-03086-7; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature. 2016;533(7603):420-424. doi 10.1038/nature17946; Lawlor K.T., Vanslambrouck J.M., Higgins J.W., Chambon A., Bishard K., Arndt D., Er P.X., Wilson S.B., Howden S.E., Tan K.S., Li F., Hale L.J., Shepherd B., Pentoney S., Presnell S.C., Chen A.E., Little M.H. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi 10.1038/s41563-020-00853-9; Liang Y., Sun X., Duan C., Zhou Y., Cui Z., Ding C., Gu J., Mao S., Ji S., Chan H.F., Tang S., Chen J. Generation of a gene-corrected human iPSC line (CSUASOi004-A-1) from a retinitis pigmentosa patient with heterozygous c.2699G>A mutation in the PRPF6 gene. Stem Cell Res. 2022;64:103572. doi 10.1016/j.scr.2022.102911; Malakhova A.A., Grigor’eva E.V., Pavlova S.V., Malankhanova T.B., Valetdinova K.R., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Zakian S.M., Medvedev S.P. Generation of induced pluripotent stem cell lines ICGi021-A and ICGi022-A from peripheral blood mononuclear cells of two healthy individuals from Siberian population. Stem Cell Res. 2020;48:101952. doi 10.1016/j.scr.2020.101952; Meshkov A., Ershova A., Kiseleva A., Zotova E., Sotnikova E., Petukhova A., Zharikova A., Malyshev P., Rozhkova T., Blokhina A., Limonova A., Ramensky V., Divashuk M., Khasanova Z., Bukaeva A., Kurilova O., Skirko O., Pokrovskaya M., Mikova V., Snigir E., Akinshina A., Mitrofanov S., Kashtanova D., Makarov V., Kukharchuk V., Boytsov S., Yudin S., Drapkina O. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholesterolemia in Russia. Genes. 2021;12(1):66. doi 10.3390/genes12010066; Mohd Nor N.S., Al-Khateeb A.M., Chua Y.A., Mohd Kasim N.A., Mohd Nawawi H. Heterozygous familial hypercholesterolaemia in a pair of identical twins: a case report and updated review. BMC Pediatr. 2019;19(1):106. doi 10.1186/S12887-019-1474-y/tables/2; Nandy K., Babu D., Rani S., Joshi G., Ijee S., George A., Palani D., Premkumar C., Rajesh P., Vijayanand S., David E., Murugesan M., Velayudhan S.R. Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Sci Rep. 2023;13(1):21953. doi 10.1038/s41598-023-42174-2; Nazarenko M.S., Sleptcov A.A., Zarubin A.A., Salakhov R.R., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Zheltysheva N.V., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M., Zakharova I.S. Calling and phasing of single-nucleotide and structural variants of the LDLR gene using Oxford Nano- pore MinION. Int J Mol Sci. 2023;24(5):4471. doi 10.3390/ijms24054471; Newby G.A., Yen J.S., Woodard K.J., Mayuranathan T., Lazzarotto C.R., Li Y., Sheppard-Tillman H., Porter S.N., Yao Y., Mayberry K., Everette K.A., Jang Y., Podracky C.J., Thaman E., Lechauve C., Sharma A., Henderson J.M., Richter M.F., Zhao K.T., Miller S.M., Wang T., Koblan L.W., McCaffrey A.P., Tisdale J.F., Kalfa T.A., Pruett-Miller S.M., Tsai S.Q., Weiss M.J., Liu D.R. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021;595(7866):295-302. doi 10.1038/S41586-021-03609-w; Niemitz E. Isogenic iPSC-derived models of disease. Nat Genet. 2014;46(1):7. doi 10.1038/ng.2864; Okano H., Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell. 2022; 29(2):189-208. doi 10.1016/j.stem.2022.01.007; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3): 458-466. doi 10.1002/stem.1293; Omer L., Hudson E.A., Zheng S., Hoying J.B., Shan Y., Boyd N.L. CRISPR correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells. Hepatol Commun. 2017;1(9):886-898. doi 10.1002/hep4.1110; Palacios L., Grandoso L., Cuevas N., Olano-Martín E., Martinez A., Tejedor D., Stef M. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis. 2012;221(1):137-142. doi 10.1016/j.atherosclerosis.2011.12.021; Pavlova S.V., Shayakhmetova L.S., Pronyaeva K.A., Shulgina A.E., Zakian S.M., Dementyeva E.V. Generation of induced pluripotent stem cell lines ICGi022-A-3, ICGi022-A-4, and ICGi022-A-5 with p.Asn515del mutation introduced in MYBPC3 using CRISPR/Cas9. Russ J Dev Biol. 2023;54:96-103. doi 10.1134/S1062360423010113; Porto E.M., Komor A.C., Slaymaker I.M., Yeo G.W. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020; 19(12):839-859. doi 10.1038/s41573-020-0084-6; Ray K.K., Ference B.A., Séverin T., Blom D., Nicholls S.J., Shiba M.H., Almahmeed W., Alonso R., Daccord M., Ezhov M., Olmo R.F., Jankowski P., Lanas F., Mehta R., Puri R., Wong N.D., Wood D., Zhao D., Gidding S.S., Virani S.S., Lloyd-Jones D., Pinto F., Perel P., Santos R.D. World Heart Federation Cholesterol Roadmap 2022. Glob Heart. 2022;17(1):75. doi 10.5334/gh.1154; Ray K.K., Pillas D., Hadjiphilippou S., Khunti K., Seshasai S.R.K., Vallejo-Vaz A.J., Neasham D., Addison J. Premature morbidity and mortality associated with potentially undiagnosed familial hypercholesterolemia in the general population. Am J Prev Cardiol. 2023; 15:100580. doi 10.1016/j.ajpc.2023.100580; Renner H., Grabos M., Becker K.J., Kagermeier T.E., Wu J., Otto M., Peischard S., Zeuschner D., Tsytsyura Y., Disse P., Klingauf J., Leidel S.A., Seebohm G., Schöler H.R., Bruder J.M. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife. 2020;9:e52904. doi 10.7554/eLife.52904; Rothgangl T., Dennis M.K., Lin P.J.C., Oka R., Witzigmann D., Villiger L., Qi W., Hruzova M., Kissling L., Lenggenhager D., Borrelli C., Egli S., Frey N., Bakker N., Walker J.A., Kadina A.P., Victorov D.V., Pacesa M., Kreutzer S., Kontarakis Z., Moor A., Jinek M., Weissman D., Stoffel M., van Boxtel R., Holden K., Pardi N., Thöny B., Häberle J., Tam Y.K., Semple S.C., Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol. 2021;39(8):949-957. doi 10.1038/s41587-021-00933-4; Semenova A.E., Sergienko I.V., García-Giustiniani D., Monserrat L., Popova A.B., Nozadze D.N., Ezhov M.V. Verification of underlying genetic cause in a cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J Cardiovasc Dev Dis. 2020;7(2):16. doi 10.3390/jcdd7020016; Setia N., Saxena R., Arora A., Verma I.C. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations. Atherosclerosis. 2016;255:31-36. doi 10.1016/j.atherosclerosis.2016.10.028; Shakhtshneider E., Ivanoshchuk D., Timoshchenko O., Orlov P., Semaev S., Valeev E., Goonko A., Ladygina N., Voevoda M. Analysis of rare variants in genes related to lipid metabolism in patients with familial hypercholesterolemia in Western Siberia (Russia). J Pers Med. 2021;11(11):1232. doi 10.3390/jpm11111232; Sharifi M., Walus-Miarka M., Idzior-Waluś B., Malecki M.T., Sanak M., Whittall R., Li K.W., Futema M., Humphries S.E. The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Metabolism. 2016;65(3):48-53. doi 10.1016/j.metabol.2015.10.018; Siegner S.M., Karasu M.E., Schröder M.S., Kontarakis Z., Corn J.E. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics. 2021; 22(1):101. doi 10.1186/s12859-021-04034-6; Subramanian A., Sidhom E.H., Emani M., Vernon K., Sahakian N., Zhou Y., Kost-Alimova M., Slyper M., Waldman J., Dionne D., Nguyen L.T., Weins A., Marshall J.L., Rosenblatt-Rosen O., Regev A., Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun. 2019;10(1):5462. doi 10.1038/S41467-019-13382-0; Südhof T.C., Goldstein J.L., Brown M.S., Russell D.W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228(4701):815-822. doi 10.1126/science.2988123; Talmud P.J., Futema M., Humphries S.E. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol. 2014;25(4):274-281. doi 10.1097/MOL.0000000000000090; Thormaehlen A.S., Schuberth C., Won H.H., Blattmann P., JoggerstThomalla B., Theiss S., Asselta R., Duga S., Merlini P.A., Ardissino D., Lander E.S., Gabriel S., Rader D.J., Peloso G.M., Pepperkok R., Kathiresan S., Runz H. Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet. 2015; 11(2):e1004855. doi 10.1371/journal.pgen.1004855; Tichý L., Freiberger T., Zapletalová P., Soška V., Ravčuková B., Fajkusová L. The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotypephenotype correlations. Atherosclerosis. 2012;223(2):401-408. doi 10.1016/j.atherosclerosis.2012.05.014; Vaskova E.A., Medvedev S.P., Sorokina A.E., Nemudryy A.A., Elisaphenko E.A., Zakharova I.S., Shevchenko A.I., Kizilova E.A., ZhelezovaA.I., Evshin I.S., Sharipov R.N., Minina J.M., Zhdanova N.S., Khegay I.I., Kolpakov F.A., Sukhikh G.T., Pokushalov E.A., Karaskov A.M., Vlasov V.V., Ivanova L.N., Zakian S.M. Transcriptome characteristics and X-chromosome inactivation status in cultured rat pluripotent stem cells. Stem Cells Dev. 2015;24(24):2912-2924. doi 10.1089/scd.2015.0204; Wang H., Luo Y., Li J., Guan J., Yang S., Wang Q. Generation of a gene corrected human isogenic iPSC line (CPGHi001-A-1) from a hearing loss patient with the TMC1 p.M418K mutation using CRISPR/Cas9. Stem Cell Res. 2022;60:102736. doi 10.1016/j.scr.2022.102736; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi036-A generated by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia caused due to compound heterozygous p.Ser177Leu/p.Cys352Arg mutations in LDLR. Stem Cell Res. 2022a;59:102653. doi 10.1016/j.scr.2022.102653; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Kalinin A.P., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi037-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to heterozygous p.Trp443Arg mutations in LDLR. Stem Cell Res. 2022b;60:102703. doi 10.1016/j.scr.2022.102703; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi038-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to compound heterozygous c.1246C>T/c.940+3_940+6del mutations in LDLR. Stem Cell Res. 2022c;60:102702. doi 10.1016/j.scr.2022.102702; Zakharova I.S., Shevchenko A.I., Arssan M.A., Sleptcov A.A., Nazarenko M.S., Zarubin A.A., Zheltysheva N.V., Shevchenko V.A., Tmoyan N.A., Saaya S.B., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. IPSC-derived endothelial cells reveal LDLR dysfunction and dysregulated gene expression profiles in familial hypercholesterolemia. Int J Mol Sci. 2024a;25(2):689. doi 10.3390/ijms25020689; Zakharova I.S., Shevchenko A.I., Zakian S.M. Familial hypercholesterolemia: current insight and challenges in its modelling. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2024b;10(1):5-14. doi 10.18699/letvjgb-2024-10-2 (in Russian); https://vavilov.elpub.ru/jour/article/view/4537