-
1Academic Journal
Source: Школа-конференция молодых ученых, аспирантов и студентов «Генетические технологии в микробиологии и микробное разнообразие».
Subject Terms: направленный мутагенез, гомологичная рекомбинация, Pseudomonas, РНК-полимераза, салицилат, регуляция экспрессии генов, промотор
-
2Academic Journal
Authors: E. A. Antropova, T. M. Khlebodarova, P. S. Demenkov, A. S. Venzel, N. V. Ivanisenko, A. D. Gavrilenko, T. V. Ivanisenko, A. V. Adamovskaya, P. M. Revva, I. N. Lavrik, V. A. Ivanisenko, Е. А. Антропова, Т. М. Хлебодарова, П. С. Деменков, А. С. Вензель, Н. В. Иванисенко, А. Д. Гавриленко, Т. В. Иванисенко, А. В. Адамовская, П. М. Ревва, И. Н. Лаврик, В. А. Иванисенко
Contributors: The present study was supported by project No. 075-15-2021-944 of the Ministry of Science and Higher Education of the Russian Federation as a part of ERA-NET Target Identification and Drug Development in Liver Cancer (TAIGA).
Source: Vavilov Journal of Genetics and Breeding; Том 26, № 8 (2022); 733-742 ; Вавиловский журнал генетики и селекции; Том 26, № 8 (2022); 733-742 ; 2500-3259 ; 10.18699/VJGB-22-86
Subject Terms: биоинформатика, hepatitis C virus, expression regulation, methylation, regulatory pathways, gene networks, bioinformatics, вирус гепатита С, регуляция экспрессии, гиперметилирование, регуляторные пути, генные сети
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/3574/1665; Benderska N., Schneider-Stock R. Transcription control of DAPK. Apoptosis. 2014;19(2):298-305. DOI 10.1007/s10495-013-0931-6.; Bragina E.Y., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. DOI 10.1016/j.meegid.2016.10.030.; Chen J., Li Z., Chen J., Du Y., Song W., Xuan Z., Zhao L., Song G., Song P., Zheng S. Downregulation of MGMT promotes proliferation of intrahepatic cholangiocarcinoma by regulating p21. Clin. Transl. Oncol. 2020;22(3):392-400. DOI 10.1007/s12094-019-02140-9.; Chen M., Gan X., Yoshino K., Kitakawa M., Shoji I., Deng L., Hotta H. Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domain-containing 3 and induces activator protein 1 activation. Microbiol. Immunol. 2016;60:407-417. DOI 10.1111/1348-0421.12383.; Chen P., Meng C., Wang Q., Yang X., Huang Z., Xing X., Lin Y., Liu X., Peng J., Lin Y. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20. Cancer Sci. 2020;111(8):2803-2813. DOI 10.1111/cas.14499.; Cheng J., Wei D., Ji Y., Chen L., Yang L., Li G., Wu L., Hou T., Xie L., Ding G., Li H., Li Y. Integrative analysis of DNA methylation and gene expression reveals hepatocellular carcinoma-specific diagnostic biomarkers. Genome Med. 2018;10(1):42. DOI 10.1186/s13073018-0548-z.; Choi J., Southworth L.K., Sarin K.Y., Venteicher A.S., Ma W., Chang W., Cheung P., Jun S., Artandi M.K., Shah N., Kim S.K., Artandi S.E. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 2008;4(1):e10. DOI 10.1371/journal.pgen.0040010.; de Chassey B., Navratil V., Tafforeau L., Hiet M.S., Aublin-Gex A., Agaugué S., Meiffren G., Pradezynski F., Faria B.F., Chantier T., Le Breton M., Pellet J., Davoust N., Mangeot P.E., Chaboud A., Penin F., Jacob Y., Vidalain P.O., Vidal M., André P., RabourdinCombe C., Lotteau V. Hepatitis C virus infection protein network. Mol. Syst. Biol. 2008;4:230. DOI 10.1038/msb.2008.66.; Deng Y., Yu B., Cheng Q., Jin J., You H., Ke R., Tang N., Shen Q., Shu H., Yao G., Zhang Z., Qin W. Epigenetic silencing of WIF-1 in hepatocellular carcinomas. J. Cancer Res. Clin. Oncol. 2010; 136(8):1161-1167. DOI 10.1007/s00432-010-0763-5.; D’souza S., Lau K.C., Coffin C.S., Patel T.R. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J. Gastroenterol. 2020;26(38):5759-5783. DOI 10.3748/wjg.v26.i38.5759.; Feng L., Li J., Yan L.D., Tang J. RASSF1A suppresses proliferation of cervical cancer cells. Asian Pac. J. Cancer Prev. 2014;15(14):59175920. DOI 10.7314/apjcp.2014.15.14.5917.; Fernández-Barrena M.G., Arechederra M., Colyn L., Berasain C., Avila M.A. Epigenetics in hepatocellular carcinoma development and therapy: the tip of the iceberg. JHEP Rep. 2020;2(6):100167. DOI 10.1016/j.jhepr.2020.100167.; Glotov A.S., Tiys E.S., Vashukova E.S., Pakin V.S., Demenkov P.S., Saik O.V., Ivanisenko T.V., Arzhanova O.N., Mozgovaya E.V., Zainu lina M.S., Kolchanov N.A., Baranov V.S., Ivanisenko V.A. Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Syst. Biol. 2015:9(Suppl.2):S4.; Gui Y., Yeganeh M., Ramanathan S., Leblanc C., Pomerleau V., Ferbeyre G., Saucier C., Ilangumaran S. SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. J. Hepatol. 2011;55(6): 1300-1308. DOI 10.1016/j.jhep.2011.03.027.; Guo N., Chen R., Li Z., Liu Y., Cheng D., Zhou Q., Zhou J., Lin Q. Hepatitis C virus core upregulates the methylation status of the RASSF1A promoter through regulation of SMYD3 in hilar cholangiocarcinoma cells. Acta Biochim. Biophys. Sin. (Shanghai). 2011; 43(5):354-361. DOI 10.1093/abbs/gmr021.; Han Y., Niu J., Wang D., Li Y. Hepatitis C virus protein interaction network analysis based on hepatocellular carcinoma. PLoS One. ;11(4):e0153882. DOI 10.1371/journal.pone.0153882.; Hassan M., Ghozlan H., Abdel-Kader O. Activation of c-Jun NH2terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)mediated cell growth. Virology. 2005;333(2):324-336. DOI 10.1016/j.virol.2005.01.008.; Hassan M., Selimovic D., Ghozlan H., Abdel-Kader O. Induction of high-molecular-weight (HMW) tumor necrosis factor (TNF) alpha by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-κB-dependent activation. Cell. Signal. 2007; 19(2):301-311. DOI 10.1016/j.cellsig.2006.07.002.; He B., Reguart N., You L., Mazieres J., Xu Z., Lee A.Y., Mikami I., McCormick F., Jablons D.M. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene. 2005;24(18):3054-3058. DOI 10.1038/sj.onc.1208511.; Hernandez-Meza G., von Felden J., Gonzalez-Kozlova E.E., GarciaLezana T., Peix J., Portela A., Craig A.J., Sayols S., Schwartz M., Losic B., Mazzaferro V., Esteller M., Llovet J.M., Villanueva A. DNA methylation profiling of human hepatocarcinogenesis. Hepatology. 2021;74(1):183-199. DOI 10.1002/hep.31659.; Hoshida Y., Villanueva A., Kobayashi M., Peix J., Chiang D.Y., Camargo A., Gupta S., Moore J., Wrobel M.J., Lerner J., Reich M., Chan J.A., Glickman J.N., Ikeda K., Hashimoto M., Watanabe G., Daidone M.G., Roayaie S., Schwartz M., Thung S., Salvesen H.B., Gabriel S., Mazzaferro V., Bruix J., Friedman S.L., Kumada H., Llovet J.M., Golub T.R. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 2008;359(19):19952004. DOI 10.1056/NEJMoa0804525.; Huang L., Li M.X., Wang L., Li B.K., Chen G.H., He L.R., Xu L., Yuan Y.F. Prognostic value of Wnt inhibitory factor-1 expression in hepatocellular carcinoma that is independent of gene methylation. Tumour Biol. 2011;32(1):233-240. DOI 10.1007/s13277-010-0117-6.; In der Stroth L., Tharehalli U., Günes C., Lechel A. Telomeres and telomerase in the development of liver cancer. Cancers (Basel). ;12(8):2048. DOI 10.3390/cancers12082048.; Ivanisenko N.V., Seyrek K., Kolchanov N.A., Ivanisenko V.A., Lavrik I.N. The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications. Cell Death Discov. 2020;6:101. DOI 10.1038/s41420-020-00331-w.; Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl.11):228. DOI 10.1186/s12859020-03557-8.; Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl.1):34. DOI 10.1186/s12859-018-2567-6.; Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12:19977. DOI 10.1038/s41598022-24170-0.; Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. DOI 10.1186/17520509-9-S2-S2.; Iwai A., Takegami T., Shiozaki T., Miyazaki T. Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS One. 2011;6(6):e20718. DOI 10.1371/journal.pone.0020718.; Jardin F., Ruminy P., Bastard C., Tilly H. The BCL6 proto-oncogene: a leading role during germinal center development and lymphomagenesis. Pathol. Biol. (Paris). 2007;55(1):73-83. DOI 10.1016/j.patbio.2006.04.001.; Jaroszewicz J., Flisiak-Jackiewicz M., Lebensztejn D., Flisiak R. Current drugs in early development for treating hepatitis C virus-related hepatic fibrosis. Expert Opin. Investig. Drugs. 2015;24(9):12291239. DOI 10.1517/13543784.2015.1057568.; Jiang L.H., Hao Y.L., Zhu J.W. Expression and prognostic value of HER-2/neu, STAT3 and SOCS3 in hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol. 2019;43(3):282-291. DOI 10.1016/j.clinre.2018.09.011.; Jing W., Peng R., Li X., Lv S., Duan Y., Jiang S. Study on the prognostic values of TTC36 correlated with immune infiltrates and its methylation in hepatocellular carcinoma. J. Immunol. Res. 2022;2022: 7267131. DOI 10.1155/2022/7267131.; Kim B.R., Park S.H., Jeong Y.A., Na Y.J., Kim J.L., Jo M.J., Jeong S., Yun H.K., Oh S.C., Lee D.H. RUNX3 enhances TRAIL-induced apoptosis by upregulating DR5 in colorectal cancer. Oncogene. 2019;38:3903-3918. DOI 10.1038/s41388-019-0693-x.; Kohsaka S., Wang L., Yachi K., Mahabir R., Narita T., Itoh T., Tanino M., Kimura T., Nishihara H., Tanaka S. STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol. Cancer Ther. 2012;11(6):1289-1299. DOI 10.1158/1535-7163.MCT-11-0801.; Konnikova L., Simeone M.C., Kruger M.M., Kotecki M., Cochran B.H. Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (hTERT) expression in human cancer and primary cells. Cancer Res. 2005;65(15):6516-6520. DOI 10.1158/0008-5472.CAN-05-0924.; Li B., Li X., Li Y., Guo H., Sun S.Y., He Q.Q., Wang Y., Luo J., Wen J.F., Zheng H., Feng D.Y. The effects of hepatitis C virus nonstructural protein 3 on cell growth mediated by extracellular signalrelated kinase cascades in human hepatocytes in vitro. Int. J. Mol. Med. 2010;26(2):273-279. DOI 10.3892/ijmm_00000462.; Lin B., Hong H., Jiang X., Li C., Zhu S., Tang N., Wang X., She F., Chen Y. c-Jun suppresses the expression of WNT inhibitory factor 1 through transcriptional regulation and interaction with DNA methyltransferase 1 in gallbladder cancer. Mol. Med. Rep. 2018;17(6): 8180-8188. DOI 10.3892/mmr.2018.8890.; Liu J., Ma Q., Zhang M., Wang X., Zhang D., Li W., Wang F., Wu E. Alterations of TP53 are associated with a poor out-come for patients with hepatocellular carcinoma: evidence from a systematic review and meta-analysis. Eur. J. Cancer. 2012;48(15):2328-2338. DOI 10.1016/j.ejca.2012.03.001.; Llovet J.M., Zucman-Rossi J., Pikarsky E., Sangro B., Schwartz M., Sherman M., Gores G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 2016;2:16018. DOI 10.1038/nrdp.2016.18.; Loeb D.M. WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle. 2006;5(12):1249-1253. DOI 10.4161/cc.5.12.2807.; Machida K., Cheng K.T., Lai C.K., Jeng K.S., Sung V.M., Lai M.M. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J. Virol. 2006;80(14):7199-7207. DOI 10.1128/JVI.00321-06.; Machida K., Cheng K.T., Sung V.M., Shimodaira S., Lindsay K.L., Levine A.M., Lai M.Y., Lai M.M. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. USA. 2004;101(12):4262-4267. DOI 10.1073/pnas.0303971101.; Mayo M.W., Wang C.Y., Drouin S.S., Madrid L.V., Marshall A.F., Reed J.C., Weissman B.E., Baldwin A.S. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J. 1999;18(14):3990-4003. DOI 10.1093/emboj/18.14.3990.; McGlynn K.A., Petrick J.L., El-Serag H.B. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(Suppl.1):4-13. DOI 10.1002/hep.31288.; Mžik M., Chmelařová M., John S., Laco J., Slabý O., Kiss I., Bohovicová L., Palička V., Nekvindová J. Aberrant methylation of tumour suppressor genes WT1, GATA5 and PAX5 in hepatocellular carcinoma. Clin. Chem. Lab. Med. 2016;54(12):1971-1980. DOI 10.1515/cclm-2015-1198.; Nault J.C., Ningarhari M., Rebouissou S., Zucman-Rossi J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2019;16(9):544-558. DOI 10.1038/s41575019-0165-3.; Neumann O., Kesselmeier M., Geffers R., Pellegrino R., Radlwimmer B., Hoffmann K., Ehemann V., Schemmer P., Schirmacher P., Lorenzo Bermejo J., Longerich T. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology. 2012;56(5):1817-1827. DOI 10.1002/hep.25870.; Ni Y., Gu J., Wu J., Xu L., Rui Y. MGMT-mediated neuron apoptosis in injured rat spinal cord. Tissue Cell. 2020;62:101311. DOI 10.1016/j.tice.2019.101311.; Nowyhed H.N., Huynh T.R., Blatchley A., Wu R., Thomas G.D., Hedrick C.C. The nuclear receptor Nr4a1 controls CD8 T cell development through transcriptional suppression of Runx3. Sci. Rep. 2015;5:9059. DOI 10.1038/srep09059.; Oversoe S.K., Clement M.S., Pedersen M.H., Weber B., Aagaard N.K., Villadsen G.E., Grønbæk H., Hamilton-Dutoit S.J., Sorensen B.S., Kelsen J. TERT promoter mutated circulating tumor DNA as a biomarker for prognosis in hepatocellular carcinoma. Scand. J. Gastroenterol. 2020;55(12):1433-1440. DOI 10.1080/00365521.2020.1837928.; Papic N., Maxwell C.I., Delker D.A., Liu S., Heale B.S., Hagedorn C.H. RNA-sequencing analysis of 5′ capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses. 2012;4:581-612. DOI 10.3390/v4040581.; Phan R.T., Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432(7017):635639. DOI 10.1038/nature03147.; Rabaan A.A., Al-Ahmed S.H., Bazzi A.M., Alfouzan W.A., Alsuliman S.A., Aldrazi F.A., Haque S. Overview of hepatitis C infection, molecular biology, and new treatment. J. Infect. Public Health. 2020;13(5):773-783. DOI 10.1016/j.jiph.2019.11.015.; Revill K., Wang T., Lachenmayer A., Kojima K., Harrington A., Li J., Hoshida Y., Llovet J.M., Powers S. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes; in hepatocellular carcinoma. Gastroenterology. 2013;145(6):14241435.e1-25. DOI 10.1053/j.gastro.2013.08.055.; Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I., Ivanisenko V.A. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018;11(Suppl.1): 15. DOI 10.1186/s12920-018-0331-4.; Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. DOI 10.1016/j.virusres.2015.12.003.; Sarin K.Y., Cheung P., Gilison D., Lee E., Tennen R.I., Wang E., Artandi M.K., Oro A.E., Artandi S.E. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature. 2005; 436(7053):1048-1052. DOI 10.1038/nature03836.; Sawangarun W., Mandasari M., Aida J., Morita K.I., Kayamori K., Ikeda T., Sakamoto K. Loss of Notch1 predisposes oro-esophageal epithelium to tumorigenesis. Exp. Cell Res. 2018;372(2):129-140. DOI 10.1016/j.yexcr.2018.09.019.; Schulze K., Imbeaud S., Letouzé E., Alexandrov L.B., Calderaro J., Rebouissou S., Couchy G., Meiller C., Shinde J., Soysouvanh F., Cala tayud A.L., Pinyol R., Pelletier L., Balabaud C., Laurent A., Blanc J.F., Mazzaferro V., Calvo F., Villanueva A., Nault J.C., Bioulac-Sage P., Stratton M.R., Llovet J.M., Zucman-Rossi J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015;47(5): 505-511. DOI 10.1038/ng.3252.; Sera T., Hiasa Y., Mashiba T., Tokumoto Y., Hirooka M., Konishi I., Matsuura B., Michitaka K., Udaka K., Onji M. Wilms’ tumour 1 gene expression is increased in hepatocellular carcinoma and associated with poor prognosis. Eur. J. Cancer. 2008;44(4):600-608. DOI 10.1016/j.ejca.2008.01.008.; Song Z., Li Z., Han W., Zhu C., Lou N., Li X., Luo G., Peng S., Li G., Zhao Y., Guo Y. Low DAPK1 expression correlates with poor prognosis and sunitinib resistance in clear cell renal cell carcinoma. Aging (Albany NY). 2020;13(2):1842-1858. DOI 10.18632/aging.103638.; Takakura M., Kyo S., Inoue M., Wright W.E., Shay J.W. Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT ) in human and mouse cells. Mol. Cell Biol. 2005;25(18): 8037-8043. DOI 10.1128/MCB.25.18.8037-8043.2005.; Tan Y., Li Y. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1. Biochem. Biophys. Res. Commun. 2015;466(3):592-598. DOI 10.1016/j.bbrc.2015.09.091.; Tucci F.A., Broering R., Johansson P., Schlaak J.F., Küppers R. B cells in chronically hepatitis C virus-infected individuals lack a virusinduced mutation signature in the TP53, CTNNB1, and BCL6 genes. J. Virol. 2013;87(5):2956-2962. DOI 10.1128/JVI.03081-12.; Xu R.H., Wei W., Krawczyk M., Wang W., Luo H., Flagg K., Yi S., Shi W., Quan Q., Li K., Zheng L., Zhang H., Caughey B.A., Zhao Q., Hou J., Zhang R., Xu Y., Cai H., Li G., Hou R., Zhong Z.; Lin D., Fu X., Zhu J., Duan Y., Yu M., Ying B., Zhang W., Wang J., Zhang E., Zhang C., Li O., Guo R., Carter H., Zhu J.K., Hao X., Zhang K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 2017; 16(11):1155-1161. DOI 10.1038/nmat4997.; Yang C., Zhang Y., Wang J., Li L., Wang L., Hu M., Xu M., Long Y., Rong R., Zhu T. A novel cyclic helix B peptide inhibits dendritic cell maturation during amelioration of acute kidney graft rejection through Jak-2/STAT3/SOCS1. Cell Death Dis. 2015;6(11):e1993. DOI 10.1038/cddis.2015.338.; Ye S., Zhao X.Y., Hu X.G., Li T., Xu Q.R., Yang H.M., Huang D.S., Yang L. TP53 and RET may serve as biomarkers of prognostic evaluat ion and targeted therapy in hepatocellular carcinoma. Oncol. Rep. 2017;37(4):2215-2226. DOI 10.3892/or.2017.5494.; Zhang C., Li J., Huang T., Duan S., Dai D., Jiang D., Sui X., Li D., Chen Y., Ding F., Huang C., Chen G., Wang K. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget. 2016;7(49):81255-81267. DOI 10.18632/oncotarget.13221.; Zhang H., Weng X., Ye J., He L., Zhou D., Liu Y. Promoter hypermethylation of TERT is associated with hepatocellular carcinoma in the Han Chinese population. Clin. Res. Hepatol. Gastroenterol. 2015;39(5):600-609. DOI 10.1016/j.clinre.2015.01.002.; Zhu Z., Tran H., Mathahs M.M., Moninger T.O., Schmidt W.N. HCV induces telomerase reverse transcriptase, increases its catalytic activity, and promotes caspase degradation in infected human hepatocytes. PLoS One. 2017;12(1):e0166853. DOI 10.1371/journal.pone.0166853.; Zhu Z., Wilson A.T., Gopalakrishna K., Brown K.E., Luxon B.A., Schmidt W.N. Hepatitis C virus core protein enhances Telomer ase activity in Huh7 cells. J. Med. Virol. 2010;82(2):239-248. DOI 10.1002/jmv.21644.; Zong C., Qin D., Yu C., Gao P., Chen J., Lu S., Zhang Y., Liu Y., Yang Y., Pu Z., Li X., Fu Y., Guan Q., Wang X. The stress-response molecule NR4A1 resists ROS-induced pancreatic β-cells apoptosis via WT1. Cell Signal. 2017;35:129-139. DOI 10.1016/j.cellsig.2017.03.012.; Zucman-Rossi J., Villanueva A., Nault J.C., Llovet J.M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226-1239.e4. DOI 10.1053/j.gastro.2015.05.061.; https://vavilov.elpub.ru/jour/article/view/3574
-
3Academic Journal
Authors: L. O. Bryzgalov, E. E. Korbolina, I. S. Damarov, T. I. Merkulova, Л. О. Брызгалов, Е. Е. Корболина, И. С. Дамаров, Т. И. Меркулова
Source: Vavilov Journal of Genetics and Breeding; Том 26, № 1 (2022); 65-73 ; Вавиловский журнал генетики и селекции; Том 26, № 1 (2022); 65-73 ; 2500-3259 ; 10.18699/VJGB-22-01
Subject Terms: транскрипционные факторы, rSNPs, cardio-vascular disease risk, GWAS association, 1000 Genomes Project, gene expression regulation, transcription factor binding, регуляторные SNP, предрасположенность к сердечно-сосудистым заболеваниям, полногеномные исследования ассоциаций, проект «1000 геномов», регуляция экспрессии генов
File Description: application/pdf
-
4Academic Journal
MicroRNA role in hereditary genetic diseases ; Роль микроРНК в патогенезе наследственных заболеваний
Authors: O. M. Plotnikova, M. Yu. Skoblov, О. М. Плотникова, М. Ю. Скоблов
Source: Medical Genetics; Том 19, № 9 (2020); 5-17 ; Медицинская генетика; Том 19, № 9 (2020); 5-17 ; 2073-7998
Subject Terms: патогенез наследственных заболеваний, gene expression regulation, pathogenesis of hereditary diseases, регуляция экспрессии генов
File Description: application/pdf
Availability: https://www.medgen-journal.ru/jour/article/view/1703
-
5Academic Journal
Contributors: The publication was prepared with the support of a grant from the Russian Science Foundation (agreement No. 19-15-00110)., Публикация подготовлена при поддержке гранта Российского научного фонда (соглашение № 19-15-00110).
Source: Bulletin of Siberian Medicine; Том 19, № 1 (2020); 160-171 ; Бюллетень сибирской медицины; Том 19, № 1 (2020); 160-171 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-1
Subject Terms: small non-coding RNA, gene expression regulation, target therapy, cancer, малые некодирующие РНК, регуляция экспрессии генов, направленная терапия, онкологические заболевания
File Description: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/2696/1705; https://bulletin.tomsk.ru/jour/article/view/2696/1729; Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75 (5): 843–854. DOI:10.1016/0092-8674(93)90529-Y.; Lam J.K., Chow M.Y., Zhang Y., Leung S.W. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids. 2015; 4: e252. DOI:10.1038/mtna.2015.23.; Willms E., Johansson H.J., Mäger I., Lee Y., Blomberg K.E., Sadik M., Alaarg A., Smith C.I., Lehtiö J., El Andaloussi S., Wood M.J., Vader P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 2016; 6: 22519. DOI:10.1038/srep22519.; Li M., Zeringer E., Barta T., Schageman J., Cheng A., Vlassov A.V. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos. Trans R. SocLon. B Biol. Sci. 2014; 369 (1652): 20130502. DOI:10.1098/rstb.2013.0502.; Roberson C.D., Atay S., Gercel-Taylor C., Taylor D.D. Tumor derived exosomes as mediators of disease and potential diagnostic biomarkers. Cancer Biomark. 2010–2011; 8 (4–5): 281–291. DOI:10.3233/CBM-2011-0211.; Liao J.-Y., Ma L.-M., Guo Y.-H., Zhang Y.-C., Zhou H., Shao P., Chen Y.-Q., Qu L.-H. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One. 2010; 5 (5): e10563. DOI:10.1371/journal.pone.0010563.; Gagnon K.T., Li L., Chu Y., Janowski B.A., Corey D.R. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014; 6 (1): 211–221. DOI:10.1016/j.celrep.2013.12.013.; Kawasaki H., Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature. 2004; 431 (7005): 211–217. DOI:10.1038/nature02889.; Miranda K.C., Huynh T., Tay Y., Ang Y.S., Tam W.L., Thomson A.M., Lim B., Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006; 126 (6): 1203–1217. DOI:10.1016/j.cell.2006.07.031.; Lal A., Navarro F., Maher C.A., Maliszewski L.E., Yan N., O’Day E., Chowdhury D., Dykxhoorn D.M, Tsai P., Hofmann O., Becker K.G., Gorospe M., Hide W., Lieberman J. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Mol. Cell. 2009; 35 (5): 610–625. DOI:10.1016/j.molcel.2009.08.020.; Jin H.Y., Xiao C. MicroRNA мechanisms of action: What have we learned from mice? Front Genet. 2015; 6: 328. DOI:10.3389/fgene.2015.00328.; Hausser J., Syed A.P., Bilen B., Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013; 23 (4): 604–615. DOI:10.1101/gr.139758.112.; Takimoto K., Wakiyama M., Yokoyama S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA. 2009; 15 (6): 1078–1089. DOI:10.1261/rna.1363109.; Yi H., Park J., Ha M., Lim J., Chang H., Kim V.N. PABP Cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol. Cell. 2018; 70 (6): 1081–1088. DOI:10.1016/j.molcel.2018.05.009.; Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Nat. Acad. Sci. USA. 2007; 104 (23): 9667–9672. DOI:10.1073/pnas.0703820104.; Nishihara T., Zekri L., Braun J.E., Izaurralde E. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res. 2013; 41 (18): 8692–8705. DOI:10.1093/nar/gkt619.; Ørom U.A., Nielsen F.C., Lund A.H. MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell. 2008; 30 (4): 460–471. DOI:10.1016/j.molcel.2008.05.001.; Vasudevan S., Tong Y., Steitz J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007; 318 (5858): 1931–1934. DOI:10.1126/science.1149460.; Lin C.C., Liu L.Z., Addison J.B., Wonderlin W.F., Ivanov A.V., Ruppert J.M. A KLF4-miRNA-206 autoregulatory feedback loop can promote or inhibit protein translation depending upon cell context. Mol. Cell Biol. 2011; 31 (12): 2513–2527. DOI:10.1128/MCB.01189-10.; Leucci E., Patella F., Waage J., Holmstrøm K., Lindow M., Porse B., Kauppinen S., Lund A.H. Micro-RNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 2013; 3: 2535. DOI:10.1038/srep02535.; Zheng L., Chen Y., Ye L., Jiao W., Song H., Mei H., Li D., Yang F., Li H., Huang K., Tong Q. MiRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1-facilitated MMP-14 expression. Sci. Rep. 2017; 7 (1): 8967. DOI:10.1038/s41598-017-09271-5.; Zhang Y., Zhang H. RNAa induced by TATA box-targeting microRNAs. Adv. Exp. Med. Biol. 2017; 983: 91–111. DOI:10.1007/978-981-10-4310-9_7.; Elbashir S.M., Lendeckel W., Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001; 15 (2): 188–200.; Hill D.A., Ivanovich J., Priest J.R., Gurnett C.A., Dehner L.P., Desruisseau D., Jarzembowski J.A., Wikenheiser-Brokamp K.A., Suarez B.K., Whelan A.J., Williams G., Bracamontes D., Messinger Y., Goodfellow P.J. DICER1 mutations in familial pleuropulmonary blastoma. Science. 2009; 325 (5943): 965. DOI:10.1126/science.1174334.; De Kock L., Terzic T., McCluggage W.G., Stewart C.J.R., Shaw P., Foulkes W.D., Clarke B.A. DICER1 mutations are consistently present in moderately and poorly differentiated Sertoli-Leydig cell tumors. Am. J. Surg. Pathol. 2017; 41 (9): 1178–1187. DOI:10.1097/PAS.0000000000000895.; Robertson J.C., Jorcyk C.L., Oxford J.T. DICER1 syndrome: DICER1 mutations in rare cancers. Cancers (Basel). 2018; 10 (5): e143. DOI:10.3390/cancers10050143.; Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., Rassenti L., Alder H., Volinia S., Liu C.G., Kipps T.J., Negrini M., Croce C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Nat. Acad. Sci. USA. 2005; 102 (39): 13944–13949. DOI:10.1073/pnas.0506654102.; Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S., Keating M., Rai K., Rassenti L., Kipps T., Negrini M., Bullrich F., Croce C.M. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Nat. Acad. Sci. USA. 2002; 99 (24): 15524–15529. DOI:10.1073/pnas.242606799.; Shen J., Ambrosone C.B., DiCioccio R.A., Odunsi K., Lele S.B., Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008; 29 (10): 1963–1966. DOI:10.1093/carcin/bgn172.; Xu T., Zhu Y., Wei Q.K., Yuan Y., Zhou F., Ge Y.Y., Yang J.R., Su H., Zhuang S.M. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis. 2008; 29 (11): 2126–2131. DOI:10.1093/carcin/bgn195.; Permuth-Wey J., Thompson R.C., Burton Nabors L., Olson J.J., Browning J.E., Madden M.H., Ann Chen Y., Egan K.M. A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J. Neurooncol. 2011; 105 (3): 639–646. DOI:10.1007/s11060-011-0634-1.; Wang X., Ren H., Zhao T., Ma W., Dong J., Zhang S., Xin W., Yang S., Jia L., Hao J. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget. 2016; 7 (12): 1371–13729. DOI:10.18632/oncotarget.7263.; Song F., Zheng H., Liu B., Wei S., Dai H., Zhang L., Calin G.A., Hao X., Wei Q., Zhang W., Chen K. An miR-502-binding site single-nucleotide polymorphism in the 3’-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin. Cancer Res. 2009; 15 (19): 6292–6300. DOI:10.1158/1078-0432.CCR-09-0826.; Takagi T., Iio A., Nakagawa Y., Naoe T., Tanigawa N., Akao Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology. 2009; 77 (1): 12–21. DOI:10.1159/000218166.; Volinia S., Calin G.A., Liu C.G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., Prueitt R.L., Yanaihara N., Lanza G., Scarpa A., Vecchione A., Negrini M., Harris C.C., Croce C.M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Nat. Acad. Sci. USA. 2006; 103 (7): 2257–2261. DOI:10.1073/pnas.0510565103.; Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005; 65 (14): 6029–6033. DOI:10.1158/0008-5472.CAN-05-0137.; Wei R., Yang Q., Han B., Li Y., Yao K., Yang X., Chen Z., Yang S., Zhou J., Li M., Yu H., Yu M., Cui Q. Micro-RNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways. Oncotarget. 2017; 8 (10): 1663–16641. DOI:10.18632/oncotarget.15114.; Shen Z.Y., Zhang Z.Z., Liu H., Zhao E.H., Cao H. MiR-375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression. Exp. Ther. Med. 2014; 7 (6): 1757–1761. DOI:10.3892/etm.2014.1627.; Khan A.A., Betel D., Miller M.L., Sander C., Leslie C.S., Marks D.S. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 2009; 27 (6): 549–555. DOI:10.1038/nbt.1543.; Riley K.J., Yario T.A., Steitz J.A. Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA. 2012; 18 (9): 1581–1585. DOI:10.1261/rna.034934.112.; Bader A.G., Brown D., Stoudemire J., Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011; 18 (12): 1121–1126. DOI:10.1038/gt.2011.79.; Koo K.H., Kwon H. MicroRNA miR-4779 suppresses tumor growth by inducing apoptosis and cell cycle arrest through direct targeting of PAK2 and CCND3. Cell Death Dis. 2018; 9 (2): 77. DOI:10.1038/s41419-017-0100-x.; Huang X., Schwind S., Yu B., Santhanam R., Wang H., Hoellerbauer P., Mims A., Klisovic R., Walker A.R., Chan K.K., Blum W., Perrotti D., Byrd J.C., Bloomfield C.D., Caligiuri M.A., Lee R.J., Garzon R., Muthusamy N., Lee L.J., Marcucci G. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin. Cancer Res. 2013; 19 (9): 2355–2367. DOI:10.1158/1078-0432.CCR-12-3191.; Wilusz J.E., Sunwoo H., Spector D.L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009; 23 (13): 1494–1504. DOI:10.1101/gad.1800909.; Hansen T.B., Jensen T.I., Clausen B.H., Bramsen J.B., Finsen B., Damgaard C.K., Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013; 495 (7441): 384–388. DOI:10.1038/nature11993.; Ebert M.S., Neilson J.R., Sharp P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods. 2007; 4 (9): 721–726. DOI:10.1038/nmeth1079.; Zhou L., Jiang F., Chen X., Liu Z., Ouyang Y., Zhao W., Yu D. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol. Lett. 2016; 12 (6): 4419–4426. DOI:10.3892/ol.2016.5250.; Grünweller A., Hartmann R.K. Locked nucleic acid oligonucleotides: the next generation of antisense agents? Bio-Drugs. 2007; 21 (4): 235–243. DOI:10.2165/00063030-200721040-00004.; Палкина Н.В., Комина А.В., Аксененко М.Б., Белоногов Р.Н., Лаврентьев С.Н., Рукша Т.Г. Жизнеспособность клеток меланомы B16 in vitro и токсичность ингибитора miR-204-5p (LNA™) in vivo при модуляции экспрессии miR-204-5p мышей. Цитология. 2018: 60 (3): 180–187. DOI:10.31116/tsitol.2018.03.04.; Najafi Z., Sharifi M., Javadi G. Degradation of miR-21 induces apoptosis and inhibits cell proliferation in human hepatocellular carcinoma. Cancer Gene Ther. 2015; 22 (11): 530–535. DOI:10.1038/cgt.2015.51.; Acunzo M., Romano G., Nigita G., Veneziano D., Fattore L., Laganà A., Zanesi N., Fadda P., Fassan M., Rizzotto L., Kladney R., Coppola V., Croce C.M. Selective targeting of point-mutated KRAS through artificial microRNAs. Proc. Nat. Acad. Sci. USA. 2017; 114 (21): e4203–4212. DOI:10.1073/pnas.1620562114.; Jedidi A., Marty C., Oligo C., Jeanson-Leh L., Ribeil J.A., Casadevall N., Galy A., Vainchenker W., Villeval J.L. Selective reduction of JAK2V617F-dependent cell growth by siRNA/shRNA and its reversal by cytokines. Blood. 2009; 114 (9): 1842–1851. DOI:10.1182/blood-2008-09-176875.; Brown P.N., Yin H. PNA-based microRNA inhibitors elicit anti-inflammatory effects in microglia cells. Chem. Commun. (Camb.). 2012; 49 (39): 4415–4417. DOI:10.1039/c2cc36540e.; Giesen U., Kleider W., Berding C., Geiger A., Orum H., Nielsen P.E. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res. 1998; 26 (21): 5004–5006. DOI:10.1093/nar/26.21.5004.; Oh S.Y., Ju Y., Kim S., Park H. PNA-based antisense oligonucleotides for micrornas inhibition in the absence of a transfection reagent. Oligonucleotides. 2010; 20 (5): 225–230. DOI:10.1089/oli.2010.0238.; Fabani M.M., Abreu-Goodger C., Williams D., Lyons P.A., Torres A.G., Smith K.G.C., Enright A.J., Gait M.J., Vigorito E. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 2010; 38 (13): 4466–4475. DOI:10.1093/nar/gkq160.; White P.J., Anastasopoulos F., Pouton C.W., Boyd B.J. Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev. Mol. Med. 2009; 11: e10. DOI:10.1017/S1462399409001021.; Judge A.D., Sood V., Shaw J.R., Fang D., McClintock K., MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 2005; 23 (4): 457–462. DOI:10.1038/nbt1081.; Cheng C.J., Saltzman W.M., Slack F.J. Canonical and non-canonical barriers facing antimiR cancer therapeutics. Curr. Med. Chem. 2013; 20 (29): 3582–3593. DOI:10.2174/0929867311320290004.; Ben-Shushan D., Markovsky E., Gibori H., Tiram G., Scomparin A., Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv. Transl. Res. 2014; 4 (1): 38–49. DOI:10.1007/s13346-013-0160-0.; Fernandez-Piñeiro I., Badiola I., Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol. Adv. 2017; 35 (3): 350–360. DOI:10.1016/j.biotechadv.2017.03.002.; Pramanik D., Campbell N.R., Karikari C., Chivukula R., Kent O.A., Mendell J.T., Maitra A. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 2011; 10 (8): 1470–1480. DOI:10.1158/1535-7163.MCT-11-0152.; Chen Y., Zhu X., Zhang X., Liu B., Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 2010 Sept.; 18 (9): 1650–1656. DOI:10.1038/mt.2010.136.; Zhang D., Lee H., Zhu Z., Minhas J.K., Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am. J. Physiol. Lung. Cell Mol. Physiol. 2016; 312 (1): L110–121. DOI:10.1152/ajplung.00423.2016.; Montoya M.M., Ansel K.M. Small RNA transfection in primary human Th17 cells by next generation electroporation. J. Vis. Exp. 2017 Apr.; 122. DOI:10.3791/55546.; Yang N. An overview of viral and nonviral delivery systems for microRNA. Int. J. Pharm. Investig. 2015; 5 (4): 179–181. DOI:10.4103/2230-973X.167646.; Шахбазов А.В., Космачева С.М., Картель Н.А., Потапнев М.П. Генная терапия на основе мезенхимальных стволовых клеток человека: стратегии и методы. Цитология и генетика. 2010; 1: 76–82.; Herrera-Carrillo E., Liu Y.P., Berkhout B. Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors. Hum. Gene Ther. Methods. 2017; 28 (4): 177–190. DOI:10.1089/hgtb.2017.036.; Chakraborty C., Sharma A.R., Sharma G., Doss C.G.P., Lee S.S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids. 2017; 8: 132–143. DOI:10.1016/j.omtn.2017.06.005.; https://bulletin.tomsk.ru/jour/article/view/2696
-
6Academic Journal
Source: XVII Российская конференция “Распределенные информационно-вычислительные ресурсы: Цифровые двойники и большие данные”.
Subject Terms: математическая модель, скелетная мышца, физическая нагрузка, РНК секвенирование, транскриптом, BioUML, RNA sequencing, регуляция экспрессии, Ca2+-dependent signaling pathway, Ca2+-зависимый сигнальный путь, physical exercise, regulation of expression, skeletal muscle, transcriptome, mathematical model
-
7Academic Journal
Source: Advances in Molecular Oncology; Vol 5, No 4 (2018); 110-116 ; Успехи молекулярной онкологии; Vol 5, No 4 (2018); 110-116 ; 2413-3787 ; 2313-805X
Subject Terms: human papillomavirus, cervical cancer, methylation, regulation of expression, viral oncogene E6, viral oncogenes E7, вирус папиллом человека, рак шейки матки, метилирование, регуляция экспрессии, вирусный онкоген E6, вирусный онкоген E7
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/180/163; https://umo.abvpress.ru/jour/article/view/180
-
8Academic Journal
Authors: Kirsanov K.I., Vlasova O.A., Fetisov T.I., Zenkov R.G., Lesovaya E.A., Belitsky G.A., Gurova K., Yakubovskaya M.G.
Contributors: Russian Science Foundation, grant 17-15-01526, Российский научный фонд, грант 17-15-01526
Source: Advances in Molecular Oncology; Vol 5, No 4 (2018); 41-63 ; Успехи молекулярной онкологии; Vol 5, No 4 (2018); 41-63 ; 2413-3787 ; 2313-805X
Subject Terms: DNA-tropic secondary plant metabolites, cancer preventive activity of natural small molecules, DNA intercalation, epigenetic regulation of gene expression, chromatin destabilization, ДНК-тропные вторичные метаболиты растений, антиканцерогенное действие природных низкомолекулярных соединений, интеркаляция ДНК, эпигенетическая регуляция экспрессии генов, дестабилизация хроматина
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/173/156; https://umo.abvpress.ru/jour/article/view/173
-
9Academic Journal
Authors: M. O. Lebedev, L. A. Yarinich, A. V. Ivankin, A. V. Pindyurin, М. О. Лебедев, Л. А. Яринич, А. В. Иванкин, А. В. Пиндюрин
Source: Vavilov Journal of Genetics and Breeding; Том 23, № 2 (2019); 203-211 ; Вавиловский журнал генетики и селекции; Том 23, № 2 (2019); 203-211 ; 2500-3259
Subject Terms: культивируемые клетки дрозофилы, reporter construct, plasmid library, DNA cloning, Gibson assembly, massively parallel analysis, regulation of gene expression, regulatory DNA elements, chromatin position effects, cultured Drosophila cells, репортерная конструкция, плазмидная библиотека, клонирование ДНК, сборка методом Гибсона, множественный одновременный анализ, регуляция экспрессии генов, регуляторные элементы ДНК, эффект положения гена
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1937/1201; Akhtar W., de Jong J., Pindyurin A.V., Pagie L., Meuleman W., de Rid- der J., Berns A., Wessels L.F., van Lohuizen M., van Steensel B. Chromatin position effects assayed by thousands of reporters in¬tegrated in parallel. Cell. 2013;154:914-927. DOI 10.1016/j.cell. 2013.07.018.; Akhtar W., Pindyurin A.V., de Jong J., Pagie L., Ten Hoeve J., Berns A., Wessels L.F., van Steensel B., van Lohuizen M. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 2014;9:1255-1281. DOI 10.1038/nprot.2014.072.; Babenko V.N., Makunin I.V., Brusentsova I.V., Belyaeva E.S., Maksi¬mov D.A., Belyakin S.N., Maroy P, Vasil’eva L.A., Zhimulev I.F. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics. 2010;11: 318. DOI 10.1186/1471-2164-11-318.; Babu A., Verma R.S. Chromosome structure: euchromatin and hetero¬chromatin. Int. Rev. Cytol. 1987;108:1-60.; Blundell J.R., Levy S.F. Beyond genome sequencing: lineage tracking with barcodes to study the dynamics of evolution, infection, and can¬cer. Genomics. 2014;104:417-430. DOI 10.1038/nature14279.; Brueckner L., van Arensbergen J., Akhtar W., Pagie L., van Steensel B. High-throughput assessment of context-dependent effects of chro¬matin proteins. Epigenetics Chromatin. 2016;9:43. DOI 10.1186/ s13072-016-0096-y.; Cadinanos J., Bradley A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res. 2007;35:e87. DOI 10.1093/nar/gkm446.; Chen H.C., Martinez J.P., Zorita E., Meyerhans A., Filion G.J. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 2017; 24:47-54. DOI 10.1038/nsmb.3328.; Chen M., Licon K., Otsuka R., Pillus L., Ideker T. Decoupling epige-netic and genetic effects through systematic analysis of gene posi-tion. Cell Rep. 2013;3:128-137. DOI 10.1016/j.celrep.2012.12.003.; Davidsson M., Diaz-Fernandez P., Schwich O.D., Torroba M., Wang G., Bjorklund T. A novel process of viral vector barcoding and library preparation enables high-diversity library generation and recombination-free paired-end sequencing. Sci. Rep. 2016;6:37563. DOI 10.1038/srep37563.; Dickel D.E., Zhu Y., Nord A.S., Wylie J.N., Akiyama J.A., Afzal V., Plajzer-Frick I., Kirkpatrick A., Gottgens B., Bruneau B.G., Visel A., Pennacchio L.A. Function-based identification of mammalian enhancers using site-specific integration. Nat. Methods. 2014;11:566- 571. DOI 10.1038/nmeth.2886.; Elgin S.C., Reuter G. Position-effect variegation, heterochromatin for-mation, and gene silencing in Drosophila. Cold Spring Harb. Per- spect. Biol. 2013;5:a017780. DOI 10.1101/cshperspect.a017780.; Ernst J., Kheradpour P., Mikkelsen T.S., Shoresh N., Ward L.D., Ep-stein C.B., Zhang X., Wang L., Issner R., Coyne M., Ku M., Dur-ham T., Kellis M., Bernstein B.E. Mapping and analysis of chroma¬tin state dynamics in nine human cell types. Nature. 2011;473:43-49. DOI 10.1038/nature09906.; Filion G.J., van Bemmel J.G., Braunschweig U., Talhout W., Kind J., Ward L.D., Brugman W., de Castro I.J., Kerkhoven R.M., Busse- maker H.J., van Steensel B. Systematic protein location mapping re¬veals five principal chromatin types in Drosophila cells. Cell. 2010; 143:212-224. DOI 10.1016/j.cell.2010.09.009.; Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A. 3rd, Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343-345. DOI 10.1038/ nmeth.1318.; Gierman H.J., Indemans M.H., Koster J., Goetze S., Seppen J., Geerts D., van Driel R., Versteeg R. Domain-wide regulation of gene expression in the human genome. Genome Res. 2007;17:1286-1295. DOI 10.1101/gr.6276007.; Grewal S.I., Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301:798-802. DOI 10.1126/science. 1086887.; Handler A.M., Harrell R.A. 2nd. Germline transformation of Droso-phila melanogaster with the piggyBac transposon vector. Insect Mol. Biol. 1999;8:449-457. DOI 10.1046/j.1365-2583.1999.00139.x.; Hill A.J., McFaline-Figueroa J.L., Starita L.M., Gasperini M.J., Mat- reyek K.A., Packer J., Jackson D., Shendure J., Trapnell C. On the design of CRISPR-based single-cell molecular screens. Nat. Me-thods. 2018;15:271-274. DOI 10.1038/nmeth.4604.; Huisinga K.L., Brower-Toland B., Elgin S.C. The contradictory defini¬tions of heterochromatin: transcription and silencing. Chromosoma. 2006;115:110-122. DOI 10.1007/s00412-006-0052-x.; Kebschull J.M., Zador A.M. Cellular barcoding: lineage tracing, screen¬ing and beyond. Nat. Methods. 2018;15:871-879. DOI 10.1038/ s41592-018-0185-x.; Kharchenko P.V., Alekseyenko A.A., Schwartz Y.B., Minoda A., Rid-dle N.C., Ernst J., Sabo P.J., Larschan E., Gorchakov A.A., Gu T., Linder-Basso D., Plachetka A., Shanower G., Tolstorukov M.Y., Luquette L.J., Xi R., Jung Y.L., Park R.W., Bishop E.P., Can¬field T.K., Sandstrom R., Thurman R.E., MacAlpine D.M., Stama- toyannopoulos J.A., Kellis M., Elgin S.C., Kuroda M.I., Pirrotta V., Karpen G.H., Park PJ. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature. 2011;471:480-485. DOI 10.1038/nature09725.; Kinde I., Wu J., Papadopoulos N., Kinzler K.W., Vogelstein B. Detec-tion and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA. 2011;108:9530-9535. DOI 10.1073/pnas.1105422108.; Lehtonen S.I., Taskinen B., Ojala E., Kukkurainen S., Rahikainen R., Riihimaki T.A., Laitinen O.H., Kulomaa M.S., Hytonen V.P. Effi-cient preparation of shuffled DNA libraries through recombination (Gateway) cloning. Protein Eng. Des. Sel. 2015;28:23-28. DOI 10.1093/protein/gzu050.; Melnikov A., Murugan A., Zhang X., Tesileanu T., Wang L., Rogov P., Feizi S., Gnirke A., Callan C.G., Jr., Kinney J.B., Kellis M., Lan¬der E.S., Mikkelsen T.S. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 2012;30:271-277. DOI 10.1038/nbt. 2137.; Morrison S.L. Transformation of E. coli by electroporation. Curr. Pro- toc. Immunol. 2001;21(1):A.3N.1-A.3N.4. DOI 10.1002/0471142735. ima03ns21.; Patwardhan R.P., Hiatt J.B., Witten D.M., Kim M.J., Smith R.P., May D., Lee C., Andrie J.M., Lee S.I., Cooper G.M., Ahituv N., Pennacchio L.A., Shendure J. Massively parallel functional dissec-tion of mammalian enhancers in vivo. Nat. Biotechnol. 2012;30:265- 270. DOI 10.1038/nbt.2136.; Patwardhan R.P., Lee C., Litvin O., Young D.L., Pe’er D., Shendure J. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 2009;27:1173-1175. DOI 10.1038/nbt.1589.; Quail M.A., Smith M., Jackson D., Leonard S., Skelly T., Swerd- low H.P., Gu Y., Ellis P. SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing. BMC Genomics. 2014;15:110. DOI 10.1186/1471-2164-15-110.; Riddle N.C., Minoda A., Kharchenko P.V., Alekseyenko A.A., Schwartz Y.B., Tolstorukov M.Y., Gorchakov A.A., Jaffe J.D., Ken¬nedy C., Linder-Basso D., Peach S.E., Shanower G., Zheng H., Ku- roda M.I., Pirrotta V, Park P.J., Elgin S.C., Karpen G.H. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 2011;21:147-163. DOI 10.1101/gr.110098.110.; Ruf S., Symmons O., Uslu V.V., Dolle D., Hot C., Ettwiller L., Spitz F. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat. Genet. 2011;43: 379-386. DOI 10.1038/ng.790.; Seguin-Orlando A., Schubert M., Clary J., Stagegaard J., Alberdi M.T., Prado J.L., Prieto A., Willerslev E., Orlando L. Ligation bias in Il- lumina next-generation DNA libraries: implications for sequencing ancient genomes. PLoS One. 2013;8:e78575. DOI 10.1371/journal. pone.0078575.; Vvedenskaya I.O., Zhang Y., Goldman S.R., Valenti A., Visone V., Taylor D.M., Ebright R.H., Nickels B.E. Massively Systematic Transcript End Readout, “MASTER”: transcription start site selec-tion, transcriptional slippage, and transcript yields. Mol. Cell. 2015; 60:953-965. DOI 10.1016/j.molcel.2015.10.029.; Wong A.S., Choi G.C., Cui C.H., Pregernig G., Milani P., Adam M., Perli S.D., Kazer S.W., Gaillard A., Hermann M., Shalek A.K., Fraenkel E., Lu T.K. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl. Acad. Sci. USA. 2016;113:2544- 2549. DOI 10.1073/pnas.1517883113.; Woodruff L.B.A., Gorochowski T.E., Roehner N., Mikkelsen T.S., Densmore D., Gordon D.B., Nicol R., Voigt C.A. Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration. Nucleic Acids Res. 2017;45:1553-1565. DOI 10.1093/ nar/gkw1226.; Yankulov K. Dynamics and stability: epigenetic conversions in position effect variegation. Biochem. Cell Biol. 2013;91:6-13. DOI 10.1139/ bcb-2012-0048.; https://vavilov.elpub.ru/jour/article/view/1937
-
10Academic Journal
Source: Клиническая онкогематология, Vol 8, Iss 1 (2015)
-
11Academic Journal
Authors: E. N. Lukyanova, M. S. Fedorova, E. A. Pudova, T. V. Nasedkina, E. V. Stepanova, K. M. Nyushko, A. Y. Popov, N. V. Koroban, A. A. Dmitriev, M. V. Kiseleva, A. V. Lipatova, A. S. Zasedatelev, A. V. Kudryavtseva, Е. Н. Лукьянова, М. С. Федорова, Е. А. Пудова, Т. В. Наседкина, Е. В. Степанова, К. М. Нюшко, А. Ю. Попов, Н. В. Коробан, А. А. Дмитриев, М. В. Киселева, А. В. Липатова, А. С. Заседателев, А. В. Кудрявцева
Source: Vavilov Journal of Genetics and Breeding; Том 21, № 8 (2017); 925-931 ; Вавиловский журнал генетики и селекции; Том 21, № 8 (2017); 925-931 ; 2500-3259
Subject Terms: регуляция экспрессии генов, immunotherapy, predictive biomarkers, NGS, miRNA profiling, transcriptomic analysis, regulation of gene expression, иммунотерапия, предиктивные маркеры, профилирование микроРНК, высокопроизводительное секвенирование, транскриптомный анализ
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1281/1023; Aiba Y., Yamazaki T., Okada T., Gotoh K., Sanjo H., Ogata M., Kurosaki T. BANK negatively regulates Akt activation and subsequent B cell responses. Immunity. 2006;24(3):259-268. DOI 10.1016/j.immuni.2006.01.002.; Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.L., Boyault S., Burkhardt B., Butler A.P., Caldas C., Davies H.R., Desmedt C., Eils R., Eyfjörd J.E., Foekens J.A., Greaves M., Hosoda F., Hutter B., Ilicic T., Imbeaud S., Imielinski M., Jäger N., Jones D.T., Jones D., Knappskog S., Kool M., Lakhani S.R., López-Otín C., Martin S., Munshi N.C., Nakamura H., Northcott P.A., Pajic M., Papaemmanuil E., Paradiso A., Pearson J.V., Puente X.S., Raine K., Ramakrishna M., Richardson A.L., Richter J., Rosenstiel P., Schlesner M., Schumacher T.N., Span P.N., Teague J.W., Totoki Y., Tutt A.N., Valdés-Mas R., van Buuren M.M., van ‘t Veer L., Vincent-Salomon A., Waddell N., Yates L.R. Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain, Zucman-Rossi J., Futreal P.A., McDermott U., Lichter P., Meyerson M., Grimmond S.M., Siebert R., Campo E., Shibata T., Pfister S.M., Campbell P.J., Stratton M.R. Signatures of mutational processes in human cancer. Nature. 2013;22;500(7463):415-421. DOI 10.1038/nature12477.; Benkusky N.A., Farrell E.F., Valdivia H.H. Ryanodine receptor channelopathies. Biochem. Biophys. Res. Commun. 2004;322(4):12801285. DOI 10.1016/j.bbrc.2004.08.033.; Bouchalova K., Cizkova M., Cwiertka K., Trojanec R., Hajduch M. Triple negative breast cancer – current status and prospective targeted treatment based on HER1 (EGFR), TOP2A and C-MYC gene assessment. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2009;153(1):13-17.; Davoli T., Uno H., Wooten E.C., Elledge S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355(6322). DOI 10.1126/science.aaf8399.; Duffy D.L., Zhao Z.Z., Sturm R.A., Hayward N.K., Martin N.G., Montgomery G.W. Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J. Invest. Dermatol. 2010;130(2):520-528. Epub 2009; Aug 27. DOI 10.1038/jid.2009.258.; Gellatly S.A., Kalujnaia S., Cramb G. Cloning, tissue distribution and sub-cellular localisation of phospholipase C X-domain containing protein (PLCXD) isoforms. Biochem. Biophys. Res. Commun. 2012; 424(4):651-656. Epub 2012; Jun 22. DOI 10.1016/j.bbrc.012.06.079.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. DOI 10.1016/j.cell.2011.02.013.; Hawkes J.E., Cassidy P.B., Manga P., Boissy R.E., Goldgar D., CannonAlbright L., Florell S.R., Leachman S.A. Report of a novel OCA2 gene mutation and an investigation of OCA2 variants on melanoma risk in a familial melanoma pedigree. J. Dermatol. Sci. 2013;69(1):307. Epub 2012; Oct 13. DOI 10.1016/j.jdermsci.2012.09.016.; Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., Akerley W., van den Eertwegh A.J., Lutzky J., Lorigan P., Vaubel J.M., Linette G.P., Hogg D., Ottensmeier C.H., Lebbé C., Peschel C., Quirt I., Clark J.I., Wolchok J.D., Weber J.S., Tian J., Yellin M.J., Nichol G.M., Hoos A., Urba W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010; 363(8):711-723. Epub 2010; Jun 5. DOI 10.1056/NEJMoa1003466.; Huang S.K., Hoon D.S. Liquid biopsy utility for the surveillance of cutaneous malignant melanoma patients. Mol. Oncol. 2016;10(3):450463. Epub 2015; Dec 17. DOI 10.1016/j.molonc.2015.12.008.; Katan M. New insights into the families of PLC enzymes: looking back and going forward. Biochem. J. 2005;391(3):e7-9. DOI 10.1042/BJ20051506.; Kozyrev S.V., Abelson A.K., Wojcik J., Zaghlool A., Linga Reddy M.V., Sanchez E., Gunnarsson I., Svenungsson E., Sturfelt G., Jönsen A., Truedsson L., Pons-Estel B.A., Witte T., D’Alfonso S., Barizzone N., Danieli M.G., Gutierrez C., Suarez A., Junker P., Laustrup H., González-Escribano M.F., Martin J., Abderrahim H., Alarcón-Riquelme M.E. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 2008;40(2):211-216. DOI 10.1038/ng.79.; Krawczyk P., Kowalski D.M., Ramlau R., Kalinka-Warzocha E., Winiarczyk K., Stencel K., Powrózek T., Reszka K., Wojas-Krawczyk K., Bryl M., Wójcik-Superczyńska M., Głogowski M., Barinow-Wojewódzki A., Milanowski J., Krzakowski M. Comparison of the effectiveness of erlotinib, gefitinib, and afatinib for treatment of non-small cell lung cancer in patients with common and rare EGFR gene mutations. Oncol. Lett. 2017;(6):4433-4444. Epub 2017; Apr 3. DOI 10.3892/ol.2017.5980.; Leong S.P., Mihm M.C. Jr., Murphy G.F., Hoon D.S., Kashani-Sabet M., Agarwala S.S., Zager J.S., Hauschild A., Sondak V.K., Guild V., Kirkwood J.M. Progression of cutaneous melanoma: implications for treatment. Clin. Exp. Metastasis. 2012;29(7):775-796. DOI 10.1007/s10585-012-9521-1.; Martin-Liberal J., Larkin J. Vemurafenib for the treatment of BRAF mutant metastatic melanoma. Future Oncol. 2015;11(4):579-589. DOI 10.2217/fon.14.252.; Milik S.N., Lasheen D.S., Serya R.A.T., Abouzid K.A.M. How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors. Eur. J. Med. Chem. 2017;142:131-151. DOI 10.1016/j.ejmech.2017.07.023.; Monteith G.R., Davis F.M., Roberts-Thomson S.J. Calcium channels and pumps in cancer: changes and consequences. J. Biol. Chem. 2012;287(38):31666-31673. Epub 2012; Jul 20. DOI 10.1074/jbc. R112.343061.; Muhali F.S., Song R.H., Wang X., Shi X.H., Jiang W.J., Xiao L., Li D.F., He S.T., Xu J., Zhang J.A. Genetic variants of BANK1 gene in autoimmune thyroid diseases: a case-control association study. Exp. Clin. Endocrinol. Diabetes. 2013;121(9):556-560. Epub 2013; Oct 14. DOI 10.1055/s-0033-1348220.; Müller S., van den Boom D., Zirkel D., Köster H., Berthold F., Schwab M., Westphal M., Zumkeller W. Retention of imprinting of the human apoptosis-related gene TSSC3 in human brain tumors. Hum. Mol. Genet. 2000;22;9(5):757-763. PMID: 10749982.; O’Dowd B.F., Nguyen T., Jung B.P., Marchese A., Cheng R., Heng H.H., Kolakowski L.F. Jr., Lynch K.R., George S.R. Cloning and chromosomal mapping of four putative novel human G-proteincoupled receptor genes. Gene. 1997;187(1):75-81.; Pang Z.P., Yang N., Vierbuchen T., Ostermeier A., Fuentes D.R., Yang T.Q., Citri A., Sebastiano V., Marro S., Südhof T.C., Wernig M. Induction of human neuronal cells by defined transcription factors. Nature. 2011;26;476(7359):220-223. DOI 10.1038/nature10202.; Petrova G.V., Kaprin A.D., Starinskij V.V., Gretsova O.P. The incidence of malignant neoplasms in the Russian population. Onkologiya. Zhurnal imeni P.A. Gertsena = P.A. Herzen Journal of Oncology. 2014;2(5):5-10. (in Russian); Rix U., Colinge J., Blatt K., Gridling M., Remsing Rix L.L., Parapatics K., Cerny-Reiterer S., Burkard T.R., Jäger U., Melo J.V., Bennett K.L., Valent P., Superti-Furga G. A target-disease network model of second-generation BCR-ABL inhibitor action in Ph+ ALL. PLoS One. 2013;8(10):e77155. DOI 10.1371/journal.pone.0077155.; Roh W., Chen P.L., Reuben A., Spencer C.N., Prieto P.A., Miller J.P., Gopalakrishnan V., Wang F., Cooper Z.A., Reddy S.M., Gumbs C., Little L., Chang Q., Chen W.S., Wani K., De Mace do M.P., Chen E., Austin-Breneman J.L., Jiang H., Roszik J., Tetzlaff M.T., Davies M.A., Gershenwald J.E., Tawbi H., Lazar A.J., Hwu P., Hwu W.J., Diab A., Glitza I.C., Patel S.P., Woodman S.E., Amaria R.N., Prieto V.G., Hu J., Sharma P., Allison J.P., Chin L., Zhang J., Wargo J.A., Futreal P.A. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med. 2017;9(379). DOI 10.1126/scitranslmed.aah3560. Erratum: Sci. Transl. Med. 2017. Apr 12;9(385).; Ryu B., Kim D.S., Deluca A.M., Alani R.M. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One. 2007;2(7):e594. DOI 10.1371/journal.pone.0000594.; Schwienbacher C., Sabbioni S., Campi M., Veronese A., Bernardi G., Menegatti A., Hatada I., Mukai T., Ohashi H., Barbanti-Brodano G., Croce C.M., Negrini M. Transcriptional map of 170-kb region at chromosome 11p15.5: identification and mutational analysis of the BWR1A gene reveals the presence of mutations in tumor samples. Proc. Natl. Acad. Sci USA. 1998;95(7):3873-3878.; Shindo Y., Hazama S., Nakamura Y., Inoue Y., Kanekiyo S., Suzuki N., Takenouchi H., Tsunedomi R., Nakajima M., Ueno T., Takeda S., Yoshino S., Okuno K., Fujita Y., Hamamoto Y., Kawakami Y., Oka M., Nagano H. miR-196b, miR-378a and miR-486 are predictive biomarkers for the efficacy of vaccine treatment in colorectal cancer. Oncol. Lett. 2017;14(2):1355-1362. Epub 2017; Jun 2. DOI 10.3892/ol.2017.6303.; Sokolenko A.P., Imyanitov E.N. Molecular tests for the choice of cancer therapy. Curr. Pharm. Des. 2017; DOI 10.2174/1381612823666170719110125.; Szczepaniak Sloane R.A., Gopalakrishnan V., Reddy S.M., Zhang X., Reuben A., Wargo J.A. Interaction of molecular alterations with immune response in melanoma. Cancer. 2017;123(S11):2130-2142. DOI 10.1002/cncr.30681.28543700.; Tiffen J., Wilson S., Gallagher S.J., Hersey P., Filipp F.V. Somatic copy number amplification and hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma. Neoplasia. 2016;18(2):121-132. DOI 10.1016/j.neo.2016.01.003.; Wang T., Wang G., Hao D., Liu X., Wang D., Ning N., Li X. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer. Mol. Cancer. 2015;14:125. DOI 10.1186/s12943-015-0402-5.; Yang S., Ji Y., Gattinoni L., Zhang L., Yu Z., Restifo N.P., Rosenberg S.A., Morgan R.A. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol. Immunother. 2013;62(4):727-736. Epub 2012; Dec 4. DOI 10.1007/s00262-012-1378-2.; Yoo A.S., Sun A.X., Li L., Shcheglovitov A., Portmann T., Li Y., LeeMesser C., Dolmetsch R.E., Tsien R.W., Crabtree G.R. MicroRNAmediated conversion of human fibroblasts to neurons. Nature. 2011; 476(7359):228-231. DOI 10.1038/nature10323.; https://vavilov.elpub.ru/jour/article/view/1281
-
12Academic Journal
Authors: Низамов Шамиль Ринатович, Газизова Гузель Рашитовна, Шагимарданова Елена Ильясовна, Гусев Олег Александрович, Девятияров Руслан Мансурович, Хаяшизаки Йошихиде
Contributors: Институт фундаментальной медицины и биологии, Казанский федеральный университет
Subject Terms: CAGE, скелетные мышцы, регуляция экспрессии генов
Relation: СБОРНИК ТЕЗИСОВ XXIV СЪЕЗДА ФИЗИОЛОГИЧЕСКОГО ОБЩЕСТВА ИМ. И. П. ПАВЛОВА; http://dspace.kpfu.ru/xmlui/bitstream/net/177768/-1/Tezis_Nizamov_Sh._R.pdf; https://dspace.kpfu.ru/xmlui/handle/net/177768
Availability: https://dspace.kpfu.ru/xmlui/handle/net/177768
-
13Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: внерибосомные функции рибосомных белков, нерибосомные РНК-партнёры рибосомных белков, РНК-белковые взаимодействия, регуляция экспрессии генов, рибосомный профайлинг
Access URL: https://openrepository.ru/article?id=190706
-
14Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: РНК-белковые сшивки в клетках, рибосомный белок еL29, регуляция экспрессии генов на уровне трансляции, количественная ПЦР, рибосомный профайлинг, неканонические функции рибосомных белков
Access URL: https://openrepository.ru/article?id=190612
-
15Academic Journal
Authors: ШЕНКМАН Б.С.
File Description: text/html
-
16Academic Journal
Authors: D. A. Rasskazov, E. V. Antontseva, L. O. Bryzgalov, M. Yu. Matveeva, E. V. Kashina, P. M. Ponomarenko, G. V. Orlova, M. P. Ponomarenko, D. A. Afonnikov, T. I. Merkulova, Д. А. Рассказов, Е. В. Антонцева, Л. О. Брызгалов, М. Ю. Матвеева, Е. В. Кашина, П. М. Пономаренко, Г. В. Орлова, М. П. Пономаренко, Д. А. Афонников, Т. И. Меркулова
Contributors: Минобрнауки РФ, молодежный проект поддержки ведущих научных школ НШ-5278.2012.4, Президиум РАН
Source: Vavilov Journal of Genetics and Breeding; Том 17, № 4/1 (2013); 589-598 ; Вавиловский журнал генетики и селекции; Том 17, № 4/1 (2013); 589-598 ; 2500-3259
Subject Terms: t-тест Стьюдента, gene expression regulation, colon cancer, APC, MLH1 genes, DNA–regulatory protein complex, Student’s t-test, регуляция экспрессии генов, рак толстого кишечника, AРС, MLH1, комплекс ДНК с регуляторным белком
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/182/184; Антонцева Е.В., Брызгалов Л.О., Матвеева М.Ю. и др. Поиск регуляторных SNPs, связанных с развитием рака толстой кишки, в генах АРС и МLH1 // Вавилов. журн. генет. и селекции. 2011. Т. 15. Вып. 4. C. 644–652.; Allgayer H. Pdcd4, a colon cancer prognostic that is regulated by a microRNA // Crit. Rev. Oncol. Hematol. 2010. V. 73. Nо. 3. P. 185–191.; Alvarado-Pisani A.R., Chacon R.S., Betancourt L.J., Lopez-Herrera L. Thyroid hormone receptors in human breast cancer: effect of thyroxine administration // Anticancer Res. 1986. V. 6. Nо. 6. P. 1347–1351.; Andersen V., Christensen J., Overvad K. et al. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes // BMC Cancer. 2010. V. 10. P. 484.; Ansorge N., Juttner S., Cramer T. et al. An upstream CRE-Ebox element is essential for gastrin-dependent activation of the cyclooxygenase-2 gene in human colon cancer cells // Regul. Pep. 2007. V. 144. Nо. 1/3. P. 25–33.; Antontseva E.V., Bryzgalov L.O., Matveeva M.Yu. et al. Search for regulatory SNPs associated with colon cancer in the APC and MLH1 genes // Russ. J. Genet: Appl. Res. 2012. V. 2. No. 3. P. 222–228.; Arasaradnam R.P., Quraishi M.N., Commane D. et al. MYOD-1 in normal colonic mucosa–role as a putative biomarker? // BMC Res. Notes. 2012. V. 5. P. 240.; Auerbach R.K., Chen B., Butte A.J. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool // Bioinformatics. 2013. V. 29. Nо. 15. P. 1922–1924.; Belanger A.S., Tojcic J., Harvey M., Guillemette C. Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells // BMC Mol. Biol. 2010. V. 11. P. 9.; Berg O.G., von Hippel P.H. Selection of DNA binding sites by regulatory proteins, Statistical-mechanical theory and application to operators and promoters // J. Mol. Biol. 1987. V. 193. Nо. 4. P. 723–750.; Bruno M.E., West R.B., Schneeman T.A. et al. Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene // Mol. Immunol. 2004. V. 40. Nо. 10. P. 695–708.; Byrne A.M., Foran E., Sharma R. et al. Bile acids modulate the Golgi membrane fission process via a protein kinase Ceta and protein kinase D-dependent pathway in colonic epithelial cells // Carcinogenesis. 2010. V. 31. Nо. 4. P. 737–744.; Chinnappan D., Xiao D., Ratnasari A. et al. Transcription factor YY1 expression in human gastrointestinal cancer cells // Int. J. Oncol. 2009. V. 34. Nо. 5. P. 1417–1423.; Christensen L.L., Tobiasen H., Holm A. et al. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer // Int. J. Cancer. 2013. V. 133. Nо. 1. P. 67–78.; Gerstenblith M.R., Shi J., Landi M.T. Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis // Pigment Cell Melanoma Res. 2010. V. 23. Nо. 5. P. 587–606.; Groubet R., Pallet V., Delage B. et al. Hyperlipidic diets induce early alterations of the vitamin A signalling pathway in rat colonic mucosa // Endocr. Regul. 2003. V. 37. Nо. 3. P. 137–144.; Hamosh A., Scott A.F., Amberger J.S. et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders // Nucl. Acids Res. 2005. V. 33. P. D514–D517.; Hindorff L.A., Sethupathy P., Junkins H.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits // Proc. Natl Acad. Sci. USA. 2009. V. 106. Nо. 23. P. 9362–9367.; Hitchins M.P., Wong J.J.L., Suthers G. et al. Inheritance of a cancer-associated MLH1 germ-line epimutation // New Eng. J. Med. 2007. V. 356. Nо. 7. P. 697–705.; Kameue C., Tsukahara T., Ushida K. Alteration of gene expression in the colon of colorectal cancer model rat by dietary sodium gluconate // Biosci. Biotechnol. Biochem. 2006. V. 70. Nо. 3. P. 606–614.; Kolchanov N.A., Merkulova T.I., Ignatieva E.V. et al. Combined experimental and computational approaches to study the regulatory elements in eukaryotic genes // Brief Bioinform. 2007. V. 8. Nо. 4. P. 266–274.; Mulholland D.J., Dedhar S., Coetzee G.A., Nelson C.C. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Want you like to know? // Endocrinol. Rev. 2005. V. 26. Nо. 7. P. 898–915.; NCBI Resource Coordinators, Database resources of the National Center for Biotechnology Information // Nucl. Acids Res. 2013. V. 41. P. D8–D20.; Oshchepkov D.Y., Vityaev E.E., Grigorovich D.A. et al. SITECON: a tool for detecting conservative conformational and physicochemical properties in transcription factor binding site alignments and for site recognition // Nucl. Acids Res. 2004. V. 32. Web Server issue. P. W208–W212.; Pare L., Marcuello E., Altes A. et al. Transcription factorbinding sites in the thymidylate synthase gene: predictors of outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin? // Pharmacogenomics J. 2008. V. 8. Nо. 5. P. 315–320.; Park S.H., Yu G.R., Kim W.H. et al. NF-Y-dependent cyclin B2 expression in colorectal adenocarcinoma // Clin. Cancer Res. 2007. V. 13. Nо. 3. P. 858–867.; Polakis P. An Introduction to Wnt Signaling // Targeting the Wnt Pathway in Cancer. N.Y.: Springer, 2011. Р. 1–18.; Ponomarenko J.V., Merkulova T.I., Vasiliev G.V. et al. rSNP_Guide, a database system for analysis of transcription factor binding to target sequences: application to SNPs and site-directed mutations // Nucl. Acids Res. 2001. V. 29. Nо. 1. P. 312–316.; Ponomarenko J.V., Orlova G.V., Merkulova T.I. et al. rSNP_ Guide: an integrated database-tools system for studying SNPs and site-directed mutations in transcription factor binding sites // Hum. Mutat. 2002. V. 20. Nо. 4. P. 239–248.; Ponomarenko M.P., Ponomarenko J.V., Frolov A.S. et al. Oligonucleotide frequency matrices addressed to recognizing functional DNA sites // Bioinformatics. 1999. V. 15. P. 631–643.; Ramsay R.G., Ciznadija D., Vanevski M., Mantamadiotis T. Transcriptional regulation of cyclo-oxygenase expression: three pillars of control // Int. J. Immunopathol. Pharmacol. 2003. V. 16. Nо. 2 (Suppl). P. 59–67.; Sanchez-Ruiz J.M. Protein kinetic stability // Biophys. Chem. 2010. V. 148. P. 1–15.; The International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome // Nature. 2004. V. 431. Nо. 7011. P. 931–945.; Wai P.Y., Mi Z., Gao C. et al. Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells // J. Biol. Chem. 2006. V. 281. Nо. 28. P. 18973–18982.; Wei H.B., Han X.Y., Fan W. et al. Effect of retinoic acid on cell proliferation kinetics and retinoic acid receptor expression of colorectal mucosa // World J. Gastroenterol. 2003. V. 9. Nо. 8. P. 1725–1728.; Win A.K., Hopper J.L., Buchanan D.D. et al. Are the common genetic variants associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers? // Eur. J. Cancer. 2013. V. 49. Nо. 7. P. 1578–1587.; Xu X.L., Yu J., Zhang H.Y. et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis // World J. Gastroenterol. 2004. V. 10. Nо. 23. P. 3441–3454.; https://vavilov.elpub.ru/jour/article/view/182
Availability: https://vavilov.elpub.ru/jour/article/view/182
-
17Academic Journal
Authors: N. V. Marmiy, D. S. Esipov, Н. В. Мармий, Д. С. Есипов
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2015); 19-23 ; Вестник Московского университета. Серия 16. Биология; № 4 (2015); 19-23 ; 0137-0952
Subject Terms: обзор, antioxidant, anti-inflammatory action, regulation of gene expression, DNA repair, review, антиоксидант, противовоспалительное действие, регуляция экспрессии генов, репарация
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/278/276; Kuchino Y., Mori F., Kasai H., Inoue H., Iwai S., Miura K., Ohtsuka E., Nishimura S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues // Nature. 1987. Vol. 327. N 6117. P. 77–79.; Johansen M.E., Muller J.G., Xu X., Burrows C.J. Oxidatively induced DNA-protein cross-linking between singlestranded binding protein and oligodeoxynucleotides containing 8-oxo-7,8-dihydro-2’-deoxyguanosine // Biochemistry. 2005. Vol. 44. N 15. P. 5660–5671.; Kawanishi S., Oikawa S. Mechanism of telomere shortening by oxidative stress // Ann. N.Y. Acad. Sci. 2004. Vol. 1019. P. 278–284.; Preston T.J., Henderson J.T., McCallum G.P., Wells P.G. Base excision repair of reactive oxygen species-initiated 7,8-dihydro-8-oxo-2’-deoxyguanosine inhibits the cytotoxicity of platinum anticancer drugs // Mol. Cancer. Ther. 2009. Vol. 8. N 7. P. 2015–2026.; Völker J., Plum G.E., Klump H.H., Breslauer K.J. Energetic coupling between clustered lesions modulated by intervening triplet repeat bulge loops: allosteric implications for DNA repair and triplet repeat expansion // Biopolymers. 2010. Vol. 93. N 4. P. 355–369.; Morero N.R., Argaraña C.E. Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin // FEMS Microbiol. Lett. 2009. Vol. 290. N 2. P. 217–226.; Garrido P., Mejia E., Garcia-Diaz M., Blanco L., Picher A.J. The active site of TthPolX is adapted to prevent 8-oxo-dGTP misincorporation // Nucleic Acids Res. 2014. Vol. 42. N 1. P. 534–543.; Delaney S., Jarem D.A., Volle C.B., Yennie C.J. Chemical and biological consequences of oxidatively damaged guanine in DNA // Free Radic. Res. 2012. Vol. 46. N 4. P. 420–441.; Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin // Mutat. Res. 1992. Vol. 275. N 3–6. P. 331–342.; Svoboda P., Harms-Ringdahl M. Influence of chromatin structure and radical scavengers on yields of radiationinduced 8-oxo-dG and DNA strand breaks in cellular model systems // Radiat. Res. 2005. Vol. 164. N 3. P. 303–311.; Fleming A.M., Muller J.G., Dlouhy A.C., Burrows C.J. Structural context effects in the oxidation of 8-oxo-7,8-dihydro-2’-deoxyguanosine to hydantoin products: electrostatics, base stacking, and base pairing // J. Am. Chem. Soc. 2012. Vol. 134. N 36. P. 15091–15102.; Michaels M.L., Cruz C., Grollman A.P., Miller J.H. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged from of guanine in DNA // Proc Natl. Acad. Sci. USA. 1992. Vol. 89. N 15. P. 7022–7025.; Michaels M.L., Tchou J., Grollman А.P., Miller J.H. A repair system for 8-oxo-7,8-dihydrodeoxyguanine // Biochemistry. 1992. Vol. 31. N 45. P. 10964–10968.; Livingston A.L., O’Shea V.L., Kim T., Kool E.T., David S.S. Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY // Nat. Chem. Biol. 2008. Vol. 4. N 1. P. 51–58.; Nguyen K.V., Burrows C.J. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair // J. Am. Chem. Soc. 2011. Vol. 133. P. 14586–14589.; Perillo B., Ombra M.N., Bertoni A., Cuozzo C., Sacchetti S., Sasso A., Chiariotti L., Malorni A., Abbondanza C., Avvedimento E.V. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression // Science. 2008. Vol. 319. N 5860. P. 202–206.; Stebbeds W.J., Lunec J., Larcombe L.D. An in silico study of the differential effect of oxidation on two biologically relevant G-quadruplexes: possible implications in oncogene expression // PLoS One. 2012. Vol. 7. N 8. e43735.; Ma H., Zheng L., Li Y., Pan S., Hu J., Yu Z., Zhang G., Sheng G., Fu J. Triclosan reduces the levels of global DNA methylation in HepG2 cells // Chemosphere. 2013. Vol. 90. N 3. P. 1023–1029.; Bagan J., Sáez G.T., Tormos M.C., Gavalda-Esteve C., Bagan L., Leopoldo-Rodado M., Calvo J., Camps C. Oxidative stress in bisphosphonate-related osteonecrosis of the jaws // J. Oral. Pathol. Med. 2014. Vol. 43. N 5. P. 371–377.; Burlaka A., Tsybulin O., Sidorik E., Lukin S., Polishuk V., Tsehmistrenko S., Yakymenko I. Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation // Exp. Oncol. 2013. Vol. 35. N 3. P. 219–225.; Unnikrishnan A., Prychitko T.M., Patel H.V., Chowdhury M.E., Pilling A.B., Ventrella-Lucente L.F., Papakonstantinou E.V., Cabelof D.C., Heydari A.R. Folate deficiency regulates expression of DNA polymerase β in response to oxidative stress // Free Radic. Biol. Med. 2011. Vol. 50. N 2. P. 270–280.; Kim H.S., Ye S.K., Cho I.H., Jung J.E., Kim D.H., Choi S., Kim Y.S., Park C.G., Kim T.Y., Lee J.W., Chung M.H. 8-Hydroxydeoxyguanosine suppresses NO production and COX-2 activity via Rac1/STATs signaling in LPS-induced brain microglia // Free Radic. Biol. Med. 2006. Vol. 41. N 9. P. 1392–1403.; Huh J.Y., Son D.J., Lee Y., Lee J., Kim B., Lee H.M., Jo H., Choi S., Ha H., Chung M.H. 8-Hydroxy-2-deoxyguanosine prevents plaque formation and inhibits vascular smooth muscle cell activation through Rac1 inactivation // Free Radic. Biol. Med. 2012. Vol. 53. N 1. P. 109–121.; Kim D.Y., Hong G.U., Ro J.Y. Signal pathways in astrocytes activated by cross-talk between of astrocytes and mast cells through CD40-CD40L // J. Neuroinflammation. 2011. Vol. 8. N 25. P. 1–16.; Kim D.H., Cho I.H., Kim H.S., Jung J.E., Kim J.E., Lee K.H., Park T., Yang Y.M., Seong S.Y., Ye S.K., Chung M.H. Anti-inflammatory effects of 8-hydroxydeoxyguanosine in LPS-induced microglia activation: suppression of STAT3-mediated intercellular adhesion molecule-1 expression // Exp. Mol. Med. 2006. Vol. 38. N 4. P. 417–427.; Ock C.Y., Kim E.H., Choi D.J., Lee H.J., Hahm K.B., Chung M.H. 8-Hydroxydeoxyguanosine: not mere biomarker for oxidative stress, but remedy for oxidative stress-implicated gastrointestinal diseases // World J. Gastroenterol. 2012. Vol. 18. N 4. P. 302–308.; Hong G.U., Kim N.G., Jeoung D., Ro J.Y. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via downregulating migration and activation of mast cells // J. Neuroimmunol. 2013. Vol. 260. N 1. P. 60–73.; Ko S.H., Lee J.K., Lee H.J., Ye S.K., Kim H.S., Chung M.H. 8-Oxo-2’-deoxyguanosine ameliorates features of metabolic syndrome in obese mice // Biochem. Biophys. Res. Commun. 2014. Vol. 443. N 2. P. 610–616.; Kim J.S., Kim D.Y., Lee J.K., Ro J.Y., Chung M.H. 8-Oxo-2’-deoxyguanosine suppresses allergy-induced lung tissue remodeling in mice // Eur. J. Pharmacol. 2011. Vol. 651. N 1–3. P. 218–226.; Hong G.U., Kim N.G., Ro J.Y. Expression of airway remodeling proteins in mast cell activated by TGF-β released in OVA-induced allergic responses and their inhibition by low-dose irradiation or 8-oxo-dG // Radiat. Res. 2014. Vol. 181. N 4. P. 425–438.; Choi S., Choi H.H., Lee S.H., Ko S.H., You H.J., Ye S.K., Chung M.H. Anti-inflammatory effects of 8-hydroxy-2’- deoxyguanosine on lipopolysaccharide-induced inflammation via Rac suppression in Balb/c mice // Free Radic. Biol. Med. 2007. Vol. 43. N 12. P. 1594–1603.; Lee J.K., Ko S.H., Ye S.K., Chung M.H. 8-Oxo-2’-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression // J. Dermatol. Sci. 2013. Vol. 70. N 1. P. 49–57.
Availability: https://vestnik-bio-msu.elpub.ru/jour/article/view/278
-
18Academic Journal
Authors: Аушев, Василий
Subject Terms: МИКРОРНК, РЕГУЛЯЦИЯ ЭКСПРЕССИИ, ОНКОМАРКЕРЫ
File Description: text/html
-
19Academic Journal
Authors: T. I. Odintsova, T. V. Korostyleva, L. L. Utkina, Ya. A. Andreev, A. A. Slavokhotova, E. A. Istomina, V. A. Pukhal’skii, T. A. Egorov, Т. И. Одинцова, Т. В. Коростылева, Л. Л. Уткина, Я. А. Андреев, А. А. Славохотова, Е. А. Истомина, В. А. Пухальский, Ц. А. Егоров
Contributors: гранты РФФИ № 09-04-00250-а и 11-04-00190-а, программа Президиума РАН «Генофонды и генетическое разнообразие», Госконтракт Минобрнауки № 16.512.11.2156
Source: Vavilov Journal of Genetics and Breeding; Том 16, № 1 (2012); 107-115 ; Вавиловский журнал генетики и селекции; Том 16, № 1 (2012); 107-115 ; 2500-3259
Subject Terms: регуляция экспрессии генов, Triticum kiharae Dorof. et Migusch, antimicrobial peptides, amino acid sequencing, 3′- and 5′-RАСЕ method, plant immunity, regulation of gene expression, антимикробные пептиды, секвенирование аминокислотных последовательностей, 3′- и 5′-RАСЕ, иммунитет растений
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/29/27; Ajesh K., Sreejith K. Peptide antibiotics: an alternative and antimicrobial strategy to circumvent fungal infections // Peptides. 2009. V. 30. P. 999–1006.; Benko-Iseppon A.M., Galdino S.L., Calsa T. Jr. et al. Overview on plant antimicrobial peptides // Curr. Protein Pept. Sci. 2010. V. 11. P. 181–188.; Broekaert W.F., Cammue B.P.A., De Bolle M.F.C. et al. Antimicrobial peptides from plants // Crit. Rev. Plant Sci. 1997. V. 16. P. 297–323.; Bulet P., Hetru C., Dimarcq J.L., Hoffmann D. Antimicrobial peptides in insects, structure and function // Dev. Comp. Immunol. 1999. V. 23. Nо 4/5. P. 329–44.; Castro M.S., Fontes W. Plant defense and antimicrobial peptides // Protein Pept. 2005. V. 12. P. 13–18.; da Rocha Pitta M.G., da Rocha Pitta M.G., Galdino S.L. Development of novel therapeutic drugs in humans from plant antimicrobial peptides // Curr. Protein Pept. Sci. 2010. V. 11. P. 236–247.; Dubovskii P.V., Vassilevski A.A., Slavokhotova A.A. et al. Solution structure of a defense peptide from wheat with a 10-cysteine motif // Biochem. Biophys. Res. Commun. 2011. V. 411. Nо 1. Р. 14–18.; Egorov T.A., Odintsova T.I., Pukhalsky V.A., Grishin E.V. Diversity of wheat antimicrobial peptides // Peptides. 2005. V. 26. P. 2064–2073.; Gao G.H., Liu W., Dai J.X. et al. Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana // Biochemistry. 2001. V. 40. P. 10973–10978.; Garcia-Olmedo F., Molina A., Alamillo J.M., Rodriguez-Palenzuela P. Plant defense peptides // Biopolymers (Peptide Sci.). 1998. V. 47. P. 479–491.; Garcia-Olmedo F., Rodriguez-Palenzuela P., Molina A. et al. Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence // FEBS Letters. 2001. V. 498. P. 219–222.; Farrokhi N., Whitelegge J.P., Brusslan J.A. Plant peptides and peptidomics // Plant Biotechnol. J. 2008. V. 6. P. 105–134.; Huang R-H., Xiang Y., Liu X-Z. et al. Two novel antifungal peptides distinct with a fi ve-disulfi de motif from the bark of Eucommia ulmoides Oliv // FEBS Lett. 2002. V. 521. P. 87–90.; Kido E.A., Pandolfi V., Houllou-Kido L.M. et al. Plant antimicrobial peptides: an overview of SuperSAGE transcriptional profi le and a functional review // Curr. Protein Pept. Sci. 2010. V. 11. P. 220–230.; Koike M., Okamoto T., Tsuda S., Imai R. A novel plant defensin-like gene of winter wheat is specifi cally induced during cold acclimation // Biochem. Biophys. Res. Commun. 2002. V. 298. P. 46–53.; Lobo D.S., Pereira I.B., Fragel-Madeira L. et al. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle // Biochemistry. 2007. V. 46. P. 987–996.; Manners J.M. Hidden weapons of microbial destruction in plant genomes // Genome Biol. 2007. V. 8. P. 225–234.; Nolde S.B., Vassilevski A.A., Rogozhin E.A. et al. Disulfi destabilized helical hairpin structure of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli) // J. Biol. Chem. 2011. V. 286. Nо 28. Р. 25145–25153.; Odintsova T.I., Egorov Ts.A., Musolyamov A.Kh. et al. Seed defensins from T. kiharae and related species: genome localization of defensin-encoding genes // Biochimie. 2007. V. 89. P. 605–612.; Odintsova T.I., Vassilevski A.A., Slavokhotova A.A. et al. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif // FEBS J. 2009. V. 276. P. 4266–4275.; Padovan L., Scocchi M., Tossi A. Structural aspects of plant antimicrobial peptides // Curr. Protein Pept. Sci. 2010. V. 11. P. 210–219.; Sels J., Mathys J., De Coninck B.M. et al. Plant pathogenesis-related (PR) proteins: a focus on PR peptides // Plant Physiol. Biochem. 2008. V. 46. P. 941–950.; Tavares L.S., de Santos M., Viccini L.F. et al. Biotechnological potential of antimicrobial peptides from fl owers // Peptides. 2008. V. 29. P. 1842–1851.; Van den Bergh K.P.B., Proost P., Van Damme J. et al. Five disulfi de bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.) // FEBS Letters. 2002. V. 530. P. 181–185.; Van der Weerden N.L., Lay F.T., Anderson M.A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae // J. Biol. Chem. 2008. V. 283. P. 14445–14452.; Vasil I.K. Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.) // Plant Cell Rep. 2007. V. 26. P. 1133–1154.; https://vavilov.elpub.ru/jour/article/view/29
Availability: https://vavilov.elpub.ru/jour/article/view/29
-
20Academic Journal
Authors: Garnik, E., Belkov, V., Tarasenko, V., Konstantinov, Yu
Subject Terms: ARABIDOPSIS THALIANA,ARABIDOPSIS MUTANTS,GLUTAMATE DEHYDROGENASE,HEXOKINASE 1,SUGAR SENSING AND SIGNALING, гексокиназа 1, глутаматдегидрогеназа, мутанты арабидопсиса, сахарозависимая регуляция экспрессии генов, Arabidopsis thaliana
File Description: text/html