-
1Academic Journal
Συγγραφείς: Yu. A. Yurshev, V. A. Tkachuk, M. N. Karagyaur
Πηγή: Байкальский медицинский журнал, Vol 4, Iss 3, Pp 63-73 (2025)
Θεματικοί όροι: черепно-мозговая травма, вторичное повреждение мозга, регенеративная медицина, нейропротекция, мезенхимные стромальные клетки, секретом, Medicine (General), R5-920
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/19314124445c46f7bcc656b24b9e6e08
-
2
-
3
-
4Academic Journal
-
5Academic Journal
-
6Academic Journal
-
7Academic Journal
-
8
-
9
-
10Academic Journal
Θεματικοί όροι: 3D-печать, 3D-биопринтинг, регенеративная медицина, биопринтер
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/62910
-
11Academic Journal
Πηγή: Российские биомедицинские исследования, Vol 8, Iss 3 (2024)
Θεματικοί όροι: децеллюляризация, Medicine (General), R5-920, ацеллюлярный дермальный матрикс, коллаген, регенеративная медицина, ожоговая травма
Σύνδεσμος πρόσβασης: https://doaj.org/article/a5d4c164de9442da9a5f77309f48f83f
-
12Conference
Συνεισφορές: Буяков, Алесь Сергеевич
Θεματικοί όροι: клеточная адгезия, пористая керамика, модификации, регенеративная медицина, биосовместимость, тканевая инженерия, клетки
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://earchive.tpu.ru/handle/11683/76823
-
13Academic Journal
Συγγραφείς: Ekin Begum Karahan, Guvenc Kockaya
Πηγή: Health Economics and Management Review, Vol 3, Iss 4, Pp 15-22 (2022)
Θεματικοί όροι: H1-99, лікарські засоби прогресивної терапії, Medicine (General), регенеративная медицина, cell-based therapy, доступ до ринку, gene therapies, market access, клітинна терапія, regenerative medicine, advanced therapy medicinal products, генная терапия, 3. Good health, Social sciences (General), генна терапія, клеточная терапия, 03 medical and health sciences, R5-920, 0302 clinical medicine, регенеративна медицина, лекарственные средства прогрессивной терапии, доступ к рынку, 0305 other medical science
Περιγραφή αρχείου: application/pdf
-
14Academic Journal
Συγγραφείς: Ivanov, V. A., Knyazev, V. M., Иванов, В. А., Князев, В. М.
Πηγή: Сборник статей
Θεματικοί όροι: PHILOSOPHY, CELLULAR TECHNOLOGIES, TECHNOLOGIZATION, REGENERATIVE MEDICINE, HUMAN IDENTITY, ФИЛОСОФИЯ, КЛЕТОЧНЫЕ ТЕХНОЛОГИИ, ТЕХНОЛОГИЗАЦИЯ, РЕГЕНЕРАТИВНАЯ МЕДИЦИНА, ИДЕНТИЧНОСТЬ ЧЕЛОВЕКА
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; http://elib.usma.ru/handle/usma/21318
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/21318
-
15Academic Journal
Συγγραφείς: Yu. B. Basok, A. S. Ponomareva, N. V. Grudinin, D. N. Kruglov, V. K. Bogdanov, A. D. Belova, V. I. Sevastianov, Ю. Б. Басок, А. С. Пономарева, Н. В. Грудинин, Д. Н. Круглов, В. К. Богданов, А. Д. Белова, В. И. Севастьянов
Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 27, № 1 (2025); 114-134 ; Вестник трансплантологии и искусственных органов; Том 27, № 1 (2025); 114-134 ; 1995-1191
Θεματικοί όροι: регенеративная медицина, kidney transplantation, liver transplantation, lung transplantation, ex vivo perfusion, regenerative medicine, трансплантация почки, трансплантация печени, трансплантация легких, ex vivo перфузия
Περιγραφή αρχείου: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1874/1742; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1835; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1836; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1837; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1838; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2022 году. XV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2023; 25 (3): 8–30. doi:10.15825/1995-1191-2023-3-8-30.; Готье СВ, Хомяков СМ. Оценка потребности населения в трансплантации органов, донорского ресурса и планирование эффективной сети медицинских организаций (центров трансплантации). Вестник трансплантологии и искусственных органов. 2013; 15 (3): 11–24. doi:10.15825/1995-1191-2013-3-11-24.; Lewis A, Koukoura A, Tsianos GI, Gargavanis AA, Nielsen AA, Vassiliadis E. Organ donation in the US and Europe: The supply vs demand imbalance. Transplant Rev (Orlando). 2021; 35 (2): 100585. doi:10.1016/j.trre.2020.100585. PMID: 33071161.; Галеев ШР, Готье СВ. Риски и пути профилактики нарушения функции почек при проведении медикаментозной иммуносупрессии у реципиентов солидных органов. Вестник трансплантологии и искусственных органов. 2022; 24 (4): 24–38. doi:10.15825/1995-1191-2022-4-24-38.; Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplantrelated immunosuppressant drugs. Immunopharmacol Immunotoxicol. 2021; 43 (6): 651–665. doi:10.1080/08923973.2021.1966033. PMID: 34415233.; Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317. doi:10.1080/14653240600855905. PMID: 16923606.; Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther. 2020; 11 (1): 345. doi:10.1186/s13287-020-01855-9. PMID: 32771052.; Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019; 4: 22. doi:10.1038/s41536-019-0083-6. PMID: 31815001.; Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022; 7 (1): 92. doi:10.1038/s41392-022-00932-0. PMID: 35314676.; Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020; 11 (5): 349. doi:10.1038/s41419-020-2542-9. PMID: 32393744.; Poomani MS, Mariappan I, Perumal R, Regurajan R, Muthan K, Subramanian V. Mesenchymal stem cell (MSCs) therapy for ischemic heart disease: a promising frontier. Glob Heart. 2022; 17 (1): 19. doi:10.5334/gh.1098. PMID: 35342702.; Li K, Li X, Shi G, Lei X, Huang Y, Bai L et al. Effectiveness and mechanisms of adipose-derived stem cell therapy in animal models of Parkinson’s disease: a systematic review and meta-analysis. Transl Neurodegener. 2021; 10: 14. doi:10.1186/s40035-021-00238-1. PMID: 33926570.; Carstens M, Haq I, Martinez-Cerrato J, Dos-Anjos S, Bertram K, Correa D. Sustained clinical improvement of Parkinson’s disease in two patients with faciallytransplanted adipose-derived stromal vascular fraction cells. J Clin Neurosci. 2020; 81: 47–51. doi:10.1016/j.jocn.2020.09.001. PMID: 33222965.; Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM et al. Mesenchymal stem cells in the pathogenesis and therapy of autoimmune and autoinflammatory diseases. Int J Mol Sci. 2023; 24 (22): 16040. doi:10.3390/ijms242216040. PMID: 38003230.; Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022; 13 (1): 101. doi:10.1186/s13287-022-02782-7. PMID: 35255979.; Cruz FF, Rocco PRM. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Rev Respir Med. 2020; 14 (1): 31–39. doi:10.1080/17476348.2020.1679628. PMID: 31608724.; Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. Mol Biomed. 2022; 3 (1): 23. doi:10.1186/s43556-022-00088-x. PMID: 35895169.; Chen F, Chen N, Xia C, Wang H, Shao L, Zhou C et al. Mesenchymal stem cell therapy in kidney diseases: potential and challenges. Cell Transplant. 2023; 32: 9636897231164251. doi:10.1177/09636897231164251. PMID: 37013255.; Deng Z, Luo F, Lin Y, Luo J, Ke D, Song C et al. Research trends of mesenchymal stem cells application in orthopedics: a bibliometric analysis of the past 2 decades. Front Public Health. 2022; 10: 1021818. doi:10.3389/fpubh.2022.1021818. PMID: 36225768.; Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA et al. Mesenchymal stem cells in the treatment of COVID-19. Int J Mol Sci. 2023; 24 (19): 14800. doi:10.3390/ijms241914800. PMID: 37834246.; Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y et al. Application of mesenchymal stem cells during machine perfusion: an emerging novel strategy for organ preservation. Front Immunol. 2021; 12: 713920. doi:10.3389/fimmu.2021.713920. PMID: 35024039.; Deo D, Marchioni M, Rao P. Mesenchymal stem/stromal cells in organ transplantation. Pharmaceutics. 2022; 14 (4): 791. doi:10.3390/pharmaceutics14040791. PMID: 35456625.; Bezstarosti S, Meziyerh S, Reinders MEJ, Voogt-Bakker K, Groeneweg KE, Roelen DL et al. HLA-DQ eplet mismatch load may identify kidney transplant patients eligible for tacrolimus withdrawal without donor-specific antibody formation after mesenchymal stromal cell therapy. HLA. 2023; 102 (1): 3–12. doi:10.1111/tan.15008. PMID: 36841928.; Kaundal U, Ramachandran R, Arora A, Kenwar DB, Sharma RR, Nada R et al. Mesenchymal stromal cells mediate clinically unpromising but favourable immune responses in kidney transplant patients. Stem Cells Int. 2022; 2022: 2154544. doi:10.1155/2022/2154544. PMID: 35211176.; Večerić-Haler Ž, Kojc N, Sever M, Zver S, Švajger U, Poženel P et al. Case report: capillary leak syndrome with kidney transplant failure following autologous mesenchymal stem cell therapy. Front Med (Lausanne). 2021; 8: 708744. doi:10.3389/fmed.2021.708744. PMID: 34368198.; Wei Y, Chen X, Zhang H, Su Q, Peng Y, Fu Q et al. Efficacy and safety of bone marrow-derived mesenchymal stem cells for chronic antibody-mediated rejection after kidney transplantation- a single-arm, two-dosing-regimen, phase I/II study. Front Immunol. 2021; 12: 662441. doi:10.3389/fimmu.2021.662441. PMID: 34248942.; Ban TH, Lee S, Kim HD, Ko EJ, Kim BM, Kim KW et al. Clinical trial of allogeneic mesenchymal stem cell therapy for chronic active antibody-mediated rejection in kidney transplant recipients unresponsive to Rituximab and intravenous immunoglobulin. Stem Cells Int. 2021; 2021: 6672644. doi:10.1155/2021/6672644. PMID: 33628269.; Casiraghi F, Perico N, Gotti E, Todeschini M, Mister M, Cortinovis M et al. Kidney transplant tolerance associated with remote autologous mesenchymal stromal cell administration. Stem Cells Transl Med. 2020; 9 (4): 427–432. doi:10.1002/sctm.19-0185. PMID: 31872574.; Erpicum P, Weekers L, Detry O, Bonvoisin C, Delbouille MH, Grégoire C et al. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I–II, open-label, clinical study. Kidney Int. 2019; 95 (3): 693–707. doi:10.1016/j.kint.2018.08.046. PMID: 30528263.; Perico N, Casiraghi F, Todeschini M, Cortinovis M, Gotti E, Portalupi V et al. Long-term clinical and immunological profile of kidney transplant patients given mesenchymal stromal cell immunotherapy. Front Immunol. 2018; 9: 1359. doi:10.3389/fimmu.2018.01359. PMID: 29963053.; Mudrabettu C, Kumar V, Rakha A, Yadav AK, Ramachandran R, Kanwar DB et al. Safety and efficacy of autologous mesenchymal stromal cells transplantation in patients undergoing living donor kidney transplantation: a pilot study. Nephrology (Carlton). 2015; 20 (1): 25–33. doi:10.1111/nep.12338. PMID: 25230334.; Perico N, Casiraghi F, Gotti E, Introna M, Todeschini M, Cavinato RA et al. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl Int. 2013; 26 (9): 867–878. doi:10.1111/tri.12132. PMID: 23738760.; Lee H, Park JB, Lee S, Baek S, Kim H, Kim SJ. Intra-osseous injection of donor mesenchymal stem cell (MSC) into the bone marrow in living donor kidney transplantation; a pilot study. J Transl Med. 2013; 11: 96. doi:10.1186/1479-5876-11-96. PMID: 23578110.; Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012; 307 (11): 1169–1177. doi:10.1001/jama.2012.316. PMID: 22436957.; Saadi G, Fadel F, El Ansary M, El-Hamid SA. Mesenchymal stem cell transfusion for desensitization of positive lymphocyte cross-match before kidney transplantation: outcome of 3 cases. Cell Prolif. 2013; 46 (2): 121–126. doi:10.1111/cpr.12012. PMID: 23510466.; Perico N, Casiraghi F, Introna M, Gotti E, Todeschini M, Cavinato RA et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011; 6 (2): 412–422. doi:10.2215/ CJN.04950610. PMID: 20930086.; Vanikar AV, Trivedi HL, Feroze A, Kanodia KV, Dave SD, Shah PR. Effect of co-transplantation of mesenchymal stem cells and hematopoietic stem cells as compared to hematopoietic stem cell transplantation alone in renal transplantation to achieve donor hypo-responsiveness. Int Urol Nephrol. 2011; 43 (1): 225–232. doi:10.1007/s11255-009-9659-1. PMID: 20084457.; Peng Y, Ke M, Xu L, Liu L, Chen X, Xia W et al. Donorderived mesenchymal stem cells combined with lowdose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study [published correction appears in Transplantation. 2014 Mar 27; 97 (6): e37. Pan, Guanghui [added]]. Transplantation. 2013; 95 (1): 161–168. doi:10.1097/TP.0b013e3182754c53. PMID: 23263506.; Reinders ME, de Fijter JW, Roelofs H, Bajema IM, de Vries DK, Schaapherder AF et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013; 2 (2): 107–111. doi:10.5966/sctm.2012-0114. PMID: 23349326.; Dave SD, Vanikar AV, Trivedi HL. Co-infusion of adipose tissue derived mesenchymal stem cell-differentiated insulin-making cells and haematopoietic cells with renal transplantation: a novel therapy for type 1 diabetes mellitus with end-stage renal disease. BMJ Case Rep. 2013; 2013: bcr2013009901. doi:10.1136/bcr-2013-009901. PMID: 23709153.; Vanikar AV, Trivedi HL, Gopal SC, Kumar A, Dave SD. Pre-transplant co-infusion of donor-adipose tissue derived mesenchymal stem cells and hematopoietic stem cells may help in achieving tolerance in living donor renal transplantation. Ren Fail. 2014; 36 (3): 457–460. doi:10.3109/0886022X.2013.868295. PMID: 24344734.; Vanikar AV, Trivedi HL, Kumar A, Gopal SC, Patel HV, Gumber MR et al. Co-infusion of donor adipose tissuederived mesenchymal and hematopoietic stem cells helps safe minimization of immunosuppression in renal transplantation – single center experience. Ren Fail. 2014; 36 (9): 1376–1384. doi:10.3109/0886022X.2014.950931. PMID: 25246338.; Pan GH, Chen Z, Xu L, Zhu JH, Xiang P, Ma JJ et al. Low-dose tacrolimus combined with donor-derived mesenchymal stem cells after renal transplantation: a prospective, non-randomized study. Oncotarget. 2016; 7 (11): 12089–12101. doi:10.18632/oncotarget.7725. PMID: 26933811.; Dreyer GJ, Groeneweg KE, Heidt S, Roelen DL, van Pel M, Roelofs H et al. Human leukocyte antigen selected allogeneic mesenchymal stromal cell therapy in renal transplantation: The Neptune study, a phase I single-center study. Am J Transplant. 2020; 20 (10): 2905–2915. doi:10.1111/ajt.15910. PMID: 32277568.; Meucci MC, Reinders MEJ, Groeneweg KE, Bezstarosti S, Ajmone Marsan N, Bax JJ et al. Cardiovascular effects of autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal in renal tranplant recipients: an analysis of the randomized TRITON study. J Am Heart Assoc. 2021; 10 (24): e023300. doi:10.1161/ JAHA.121.023300. PMID: 34913362.; Meucci MC, Reinders MEJ, Groeneweg KE, Bezstarosti S, Marsan NA, Bax JJ et al. Left atrial structural and functional response in kidney transplant recipients treated with mesenchymal stromal cell therapy and early tacrolimus withdrawal. J Am Soc Echocardiogr. 2023; 36 (2): 172–179. doi:10.1016/j.echo.2022.10.022. PMID: 36347387.; Коротков СВ, Лебедь ОА, Смольникова ВВ, Пикиреня ИИ, Щерба АЕ, Кривенко СИ, Руммо ОО. Применение мезенхимальных стволовых клеток для лечения дисфункции трансплантата печени, вызванной хроническим отторжением. Клинический случай. Хирургия. Восточная Европа. 2022; 11 (2): 271–285. doi:10.34883/PI.2022.11.2.010.; Vandermeulen M, Mohamed-Wais M, Erpicum P, Delbouille MH, Lechanteur C, Briquet A et al. Infusion of allogeneic mesenchymal stromal cells after liver transplantation: a 5-year follow-up. Liver Transpl. 2022; 28 (4): 636–646. doi:10.1002/lt.26323. PMID: 34605167.; Mora L, Alegre F, Rifón JJ, Marti P, Herrero JI. Treatment of graft-versus-host disease with mesenchymal cells as a complication of a liver transplantation. Rev Esp Enferm Dig. 2018; 110 (11): 734–736. doi:10.17235/reed.2018.5672/2018. PMID: 30284904.; Casiraghi F, Perico N, Podestà MA, Todeschini M, Zambelli M, Colledan M et al. Third-party bone marrow-derived mesenchymal stromal cell infusion before liver transplantation: a randomized controlled trial. Am J Transplant. 2021; 21 (8): 2795–2809. doi:10.1111/ajt.16468. PMID: 33370477.; Detry O, Vandermeulen M, Delbouille MH, Somja J, Bletard N, Briquet A et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: a phase I–II, open-label, clinical study. J Hepatol. 2017; 67 (1): 47–55. doi:10.1016/j.jhep.2017.03.001. PMID: 28284916.; Zhang YC, Liu W, Fu BS, Wang GY, Li HB, Yi HM et al. Therapeutic potentials of umbilical cord-derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation. Cytotherapy. 2017; 19 (2): 194–199. doi:10.1016/j.jcyt.2016.11.005. PMID: 27964826.; Erasmus DB, Durand N, Alvarez FA, Narula T, Hodge DO, Zubair AC. Feasibility and safety of low-dose mesenchymal stem cell infusion in lung transplant recipients. Stem Cells Transl Med. 2022; 11 (9): 891–899. doi:10.1093/stcltm/szac051. PMID: 35881142.; Mei L, Yuwei Y, Weiping L, Zhiran X, Bingzheng F, Jibing C et al. Strategy for clinical setting of co-transplantation of mesenchymal stem cells and pancreatic islets. Cell Transplantation. 2024; 33: 9636897241259433. doi:10.1177/09636897241259433. PMID: 38877672.; Koehler N, Buhler L, Egger B, Gonelle-Gispert C. Multipotent mesenchymal stromal cells interact and support islet of Langerhans viability and function. Front Endocrinol (Lausanne). 2022; 13: 822191. doi:10.3389/fendo.2022.822191. PMID: 35222280.; Barachini S, Biso L, Kolachalam S, Petrini I, Maggio R, Scarselli M et al. Mesenchymal stem cell in pancreatic islet transplantation. Biomedicines. 2023; 11 (5): 1426. doi:10.3390/biomedicines11051426. PMID: 37239097.; Gruessner AC. A Decade of Pancreas Transplantation – A Registry Report. Uro. 2023; 3 (2): 132–150. doi:10.3390/uro3020015.; Piemonti L. Islet transplantation. South Dartmouth (MA): MDText.com; 2020.; Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue engineering. 2014; 20 (5): 455–467. doi:10.1089/ten.TEB.2013.0462. PMID: 24417705.; Sevastianov VI, Baranova NV, Kirsanova LA, Ponomareva AS, Basok YB, Nemets EA, Gautier SV. Comparative analysis of the influence of extracellular matrix biomimetics on the viability and insulin-producing function of isolated pancreatic islets. J Gene Eng Bio Res. 2021; 3 (2): 17–25.; Maffi P, Secchi A. Islet transplantation alone versus solitary pancreas transplantation: an outcome-driven choice? Curr Diab Rep. 2019; 19 (5): 26. doi:10.1007/s11892-019-1145-2. PMID: 31025188.; Chen L, Qu J, Kalyani FS, Zhang Q, Fan L, Fang Y et al. Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cell Mol Life Sci. 2022; 79 (3): 142. doi:10.1007/s00018-021-04096-y. PMID: 35187617.; Borow KM, Yaroshinsky A, Greenberg B, Perin EC. Phase 3 DREAM-HF trial of mesenchymal precursor cells in chronic heart failure. Circ Res. 2019; 125 (3): 265–281. doi:10.1161/CIRCRESAHA.119.314951. PMID: 31318648.; Rodríguez-Fuentes DE, Fernández-Garza LE, SamiaMeza JA, Barrera-Barrera SA, Caplan AI, BarreraSaldaña HA. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res. 2021; 52 (1): 93–101. doi:10.1016/j.arcmed.2020.08.006. PMID: 32977984.; Bonaventura G, Munafò A, Bellanca CM, La Cognata V, Iemmolo R, Attaguile GA et al. Stem cells: innovative therapeutic options for neurodegenerative diseases? Cells. 2021; 10 (8): 1992. doi:10.3390/cells10081992. PMID: 34440761.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021; 10 (7): 1729. doi:10.3390/cells10071729. PMID: 34359898.; Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022; 7 (1): 272. doi:10.1038/s41392-022-01134-4. PMID: 35933430.; Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther. 2022; 13 (1): 429. doi:10.1186/s13287-022-02985-y. PMID: 35987711.; Almeida-Porada G, Atala AJ, Porada CD. Therapeutic mesenchymal stromal cells for immunotherapy and for gene and drug delivery. Mol Ther Methods Clin Dev. 2020; 16: 204–224. doi:10.1016/j.omtm.2020.01.005. PMID: 32071924.; Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: where do we stand? J Adv Res. 2024; S2090-1232(24)00181-4. doi:10.1016/j.jare.2024.05.004. PMID: 38729561.; Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018; 18 (3): e264–e277. doi:10.18295/squmj.2018.18.03.002. PMID: 30607265.; Yang YK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018; 9 (1): 131. doi:10.1186/s13287-018-0876-3. PMID: 29751774.; Егорова ВА, Пономарева АС, Богданова НБ, Абрамов ВЮ, Севастьянов ВИ. Характеристика фенотипа мезенхимальных стволовых клеток из жировой ткани человека методом проточной цитометрии. Технологии живых систем. 2009; 6 (5): 40–46.; Hladik D, Höfig I, Oestreicher U, Beckers J, Matjanovski M, Bao X et al. Long-term culture of mesenchymal stem cells impairs ATM-dependent recognition of DNA breaks and increases genetic instability. Stem Cell Res Ther. 2019; 10 (1): 218. doi:10.1186/s13287-019-1334-6. PMID: 31358047.; Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 2005; 24 (7): 458–463. doi:10.1089/dna.2005.24.458. PMID: 16008514.; Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105 (4): 1815–1822. doi:10.1182/ blood-2004-04-1559. PMID: 15494428.; Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005; 305 (1): 33–41. doi:10.1016/j.yexcr.2004.12.013. PMID: 15777785.; Ma OK, Chan KH. Immunomodulation by mesenchymal stem cells: interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells. 2016; 8 (9): 268–278. doi:10.4252/wjsc.v8.i9.268. PMID: 27679683.; Zhao Z-G, Xu W, Sun L, You Y, Li F, Li Q-B et al. Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunol Invest. 2012; 41 (2): 183–198. doi:10.3109/08820139.2011.607877. PMID: 21936678.; Rutz S, Janke M, Kassner N, Hohnstein T, Krueger M, Scheffold A. Notch regulates IL-10 production by T helper 1 cells. Proc Natl Acad Sci USA. 2008; 105 (9): 3497–3502. doi:10.1073/pnas.0712102105. PMID: 18292228.; Cho D-I, Kim MR, Jeong H-Y, Jeong HC, Jeong MH, Yoon SH et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrowderived macrophages. Exp Mol Med. 2014; 46 (1): e70. doi:10.1038/emm.2013.135. PMID: 24406319.; Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006; 24 (1): 74–85. doi:10.1634/stemcells.2004-0359. PMID: 16099998.; Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008; 2 (2): 141–150. doi:10.1016/j.stem.2007.11.014. PMID: 18371435.; Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014; 6 (5): 552–570. doi:10.4252/wjsc.v6.i5.552. PMID: 25426252.; Gotherstrom C, Lundqvist A, Duprez IR, Childs R, Berg L, le Blanc K. Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy. 2011; 13 (3): 269–278. doi:10.3109/14653249.2010.523077. PMID: 20942778.; Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017; 9 (416): eaam7828. doi:10.1126/scitranslmed.aam7828. PMID: 29141887.; Chen W, Lv L, Chen N, Cui E. Immunogenicity of mesenchymal stromal/stem cells. Scand J Immunol. 2023; 97 (6): e13267. doi:10.1111/sji.13267. PMID: 39007962.; Боровкова НВ, Хубутия МШ, Ржевская ОН, Пинчук АВ, Васильченков ДА. Применение мультипотентных мезенхимальных стромальных клеток костного мозга при трансплантации почки. Трансплантология. 2019; 11 (1): 21–36. doi:10.23873/2074-0506-2019-11-1-21-36.; Preda MB, Rønningen T, Burlacu A, Simionescu M, Moskaug JØ, Valen G. Remote transplantation of mesenchymal stem cells protects the heart against ischemiareperfusion injury. Stem Cells. 2014; 32 (8): 2123–2134. doi:10.1002/stem.1687. PMID: 24578312.; Shi W, Zhou X, Li X, Peng X, Chen G, Li Y et al. Human umbilical cord mesenchymal stem cells protect against renal ischemia-reperfusion injury by secreting extracellular vesicles loaded with miR-148b-3p that target pyruvate dehydrogenase kinase 4 to inhibit endoplasmic reticulum stress at the reperfusion stages. Int J Mol Sci. 2023; 24 (10): 8899. doi:10.3390/ijms24108899. PMID: 37240246.; Saidi RF, Rajeshkumar B, Shariftabrizi A, Bogdanov AA, Zheng S, Dresser K et al. Human adipose-derived mesenchymal stem cells attenuate liver ischemia-reperfusion injury and promote liver regeneration. Surgery. 2014; 156 (5): 1225–1231. doi:10.1016/j.surg.2014.05.008. PMID: 25262218.; Qiao LY, Huang FJ, Zhao M, Xie JH, Shi J, Wang J et al. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant. 2014; 23 Suppl 1: S65–S72. doi:10.3727/096368914X684961. PMID: 25333752.; Gorman E, Millar J, McAuley D, O’Kane C. Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Rev Respir Med. 2021; 15 (3): 301–324. doi:10.1080/17476348.2021.1848555. PMID: 33172313.; Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG et al. Role of mesenchymal stem/stromal cells in modulating ischemia/reperfusion injury: current state of the art and future perspectives. Biomedicines. 2023; 11 (3): 689. doi:10.3390/biomedicines11030689. PMID: 36979668.; Giai Via A, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J. 2012; 2 (3): 154–162. PMID: 23738292.; Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther. 2015; 6 (1): 143. doi:10.1186/s13287-015-0144-8. PMID: 26282627.; Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transpl. 2017; 26 (9): 1520–1529. doi:10.1177/0963689717721201. PMID: 29113463.; Kaundal U, Bagai U, Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med. 2018; 16 (1): 31. doi:10.1186/s12967-018-1403-0. PMID: 29448956.; Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004; 351 (26): 2715– 2729. doi:10.1056/NEJMra033540. PMID: 15616206.; Pilch NA, Bowman LJ, Taber DJ. Immunosuppression trends in solid organ transplantation: the future of individualization, monitoring, and management. Pharmacotherapy. 2021; 41 (1): 119–131. doi:10.1002/phar.2481. PMID: 33131123.; Готье СВ. Иммуносупрессия при трансплантации солидных органов. М.–Тверь: Триада, 2011; 472.; Hajkova M, Hermankova B, Javorkova E, Bohacova P, Zajicova A, Holan V et al. Mesenchymal stem cells attenuate the adverse effects of immunosuppressive drugs on distinct T cell subopulations. Stem Cell Rev Rep. 2017; 13 (1): 104–115. doi:10.1007/s12015-016-9703-3. PMID: 27866327.; Eggenhofer E, Renner P, Soeder Y, Popp FC, Hoogduijn MJ, Geissler EK et al. Features of synergism between mesenchymal stem cells and immunosuppressive drugs in a murine heart transplantation model. Transpl Immunol. 2011; 25 (2–3): 141–147. doi:10.1016/j.trim.2011.06.002. PMID: 21704160.; Tatum R, O’Malley TJ, Bodzin AS, Tchantchaleishvili V. Machine perfusion of donor organs for transplantation. Artif Organs. 2021; 45 (7): 682–695. doi:10.1111/aor.13894. PMID: 33349946.; Weissenbacher A, Vrakas G, Nasralla D, Ceresa CDL. The future of organ perfusion and re-conditioning. Transpl Int. 2019; 32 (6): 586–597. doi:10.1111/tri.13441. PMID: 30980772.; Готье СВ, Цирульникова ОМ, Пашков ИВ, Олешкевич ДО, Филатов ИА, Богданов ВК и др. Нормотермическая ex vivo перфузия изолированных легких в эксперименте с использованием отечественного перфузионного аппаратного комплекса. Вестник трансплантологии и искусственных органов. 2022; 24 (2): 94–101. doi:10.15825/1995-1191-2022-2-94-101.; Almeida S, Snyder W, Shah M, Fisher J, Marsh C, Hawkes A et al. Revolutionizing deceased donor transplantation: how new approaches to machine perfusion broadens the horizon for organ donation. Transplantation Reports. 2024; 9 (3): 100160. doi:10.1016/j.tpr.2024.100160.; Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ et al. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med. 2023; 10: 1272945. doi:10.3389/fcvm.2023.1272945. PMID: 37900569.; Brasile L, Henry N, Orlando G, Stubenitsky B. Potentiating renal regeneration using mesenchymal stem cells. Transplantation. 2019; 103 (2): 307–313. doi:10.1097/TP.0000000000002455. PMID: 30234788.; Sun D, Yang L, Zheng W, Cao H, Wu L, Song H. Protective effects of bone marrow mesenchymal stem cells (BMMSCS) combined with normothermic machine perfusion on liver grafts donated after circulatory death via reducing the ferroptosis of hepatocytes. Med Sci Monit. 2021; 27: e930258. doi:10.12659/MSM.930258. PMID: 34112750.; Nakajima D, Watanabe Y, Ohsumi A, Pipkin M, Chen M, Mordant P et al. Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant. 2019; 38 (11): 1214–1223. doi:10.1016/j.healun.2019.07.006. PMID: 31474491.; Bogensperger C, Hofmann J, Messner F, Resch T, Meszaros A, Cardini B et al. Ex vivo mesenchymal stem cell therapy to regenerate machine perfused organs. Int J Mol Sci. 2021; 22 (10): 5233. doi:10.3390/ijms22105233. PMID: 34063399.; Shravage BV, Turksen K. Autophagy in stem cell maintenance and differentiation. 1st ed. Cham, Switzerland: Springer; 2022.; Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A et al. The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev Rep. 2016; 12: 621–633. doi:10.1007/s12015-016-9690-4. PMID: 27696271.; Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K et al. Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis. 2013; 4 (10): e844. doi:10.1038/cddis.2013.338. PMID: 24113178.; El Nashar EM, Alghamdi MA, Alasmari WA, Hussein MMA, Hamza E, Taha RI et al. Autophagy promotes the survival of adipose mesenchymal stem/stromal cells and enhances their therapeutic effects in cisplatin-induced liver injury via modulating TGF-β1/Smad and PI3K/ AKT signaling pathways. Cells. 2021; 10 (9): 2475. doi:10.3390/cells10092475. PMID: 34572126.; Sevastianov VI, Basok YuB. Biomimetics of extracellular matrices for cell and tissue engineered medical products. Newcastle upon Tyne, UK: Cambridge Scholars Publishing; 2023.; https://journal.transpl.ru/vtio/article/view/1874
-
16Academic Journal
Συγγραφείς: E. I. Podbolotova, O. I. Agapova, Е. И. Подболотова, О. И. Агапова
Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 26, № 4 (2024); 157-165 ; Вестник трансплантологии и искусственных органов; Том 26, № 4 (2024); 157-165 ; 1995-1191
Θεματικοί όροι: регенеративная медицина, silk fibroin, tissue engineering, regenerative medicine, фиброин шелка, тканевая инженерия
Περιγραφή αρχείου: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1863/1687; Амирова ТШ, Ибрагимов AA, Назаров OM, Саминов ХН. Анализ структуры серицина и фиброина шелка. Universum: химия и биология. 2024; 1 (6): 28–31.; Cheng Y, Koh LD, Li D, Ji B, Han MY, Zhang YW. On the strength of β-sheet crystallites of Bombyx mori silk fibroin. J R Soc Interface. 2014 Apr 30; 11 (96): 20140305. doi:10.1098/rsif.2014.0305.; Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins. 2001 Aug 1; 44 (2): 119–122. doi:10.1002/prot.1078. PMID: 11391774.; Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al. Silk-based biomaterials. Biomaterials. 2003 Feb; 24 (3): 401–416. doi:10.1016/s01429612(02)00353-8. PMID: 12423595.; Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007; 32 (8–9): 991–1007. doi:10.1016/j.progpolymsci.2007.05.013. PMID: 19543442.; Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011 Sep 22; 6 (10): 1612–1631. doi:10.1038/nprot.2011.379. PMID: 21959241.; Lee HG, Jang MJ, Park BD, Um IC. Structural characteristics and properties of redissolved silk sericin. Polymers (Basel). 2023 Aug 14; 15 (16): 3405. doi:10.3390/polym15163405. PMID: 37631462.; Kunz RI, Brancalhão RM, Ribeiro LF, Natali MR. Silkworm sericin: properties and biomedical applications. Biomed Res Int. 2016; 2016: 8175701. doi:10.1155/2016/8175701.; Du S, Zhang J, Zhou WT, Li QX, Greene GW, Zhu HJ et al. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. J Colloid Interface Sci. 2016 Sep 15; 478: 316–323. doi:10.1016/j.jcis.2016.06.030. Epub 2016 Jun 10. PMID: 27314644.; Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DN et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel). 2019 Nov 24; 11 (12): 1933. doi:10.3390/polym11121933. PMID: 31771251.; Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y et al. Silk sericin-based materials for biomedical applications. Biomaterials. 2022 Aug; 287: 121638. doi:10.1016/j.biomaterials.2022.121638. Epub 2022 Jun 17. PMID: 35921729.; Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P. Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. ScientificWorldJournal. 2012; 2012: 697201. doi:10.1100/2012/697201. Epub 2012 May 22. PMID: 22701367.; Ode Boni BO, Bakadia BM, Osi AR, Shi Z, Chen H, Gauthier M et al. Immune Response to Silk Sericin-Fibroin Composites: Potential immunogenic elements and alternatives for immunomodulation. Macromol Biosci. 2022 Jan; 22 (1): e2100292. doi:10.1002/mabi.202100292. Epub 2021 Nov 10. PMID: 34669251.; Madden PW, Lai JN, George KA, Giovenco T, Harkin DG, Chirila TV. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials. 2011 Jun; 32 (17): 4076–4084. doi:10.1016/j.biomaterials.2010.12.034. Epub 2011 Mar 21. PMID: 21427010.; Liu J, Lawrence B, Liu A, Schwab I, Oliveira L, Rosenblatt M. Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. Invest Ophthalmol Vis Sci. 2012; 53 (7): 4130–4138. doi:10.1167/iovs.129876.; Li G, Sun S. Silk fibroin-based biomaterials for tissue engineering applications. Molecules. 2022 Apr 25; 27 (9): 2757. doi:10.3390/molecules27092757. PMID: 35566110.; Lu Q, Zhang B, Li M, Zuo B, Kaplan DL, Huang Y et al. Degradation mechanism and control of silk fibroin. Biomacromolecules. 2011 Apr 11; 12 (4): 1080–1086. doi:10.1021/bm101422j. Epub 2011 Feb 25. PMID: 21361368.; Сафонова ЛА, Боброва ММ, Ефимов АЕ, Агапова ОИ, Агапов ИИ. Биодеградируемые материалы на основе тканей из натурального шелка как перспективные скаффолды для тканевой инженерии и регенеративной медицины. Вестник трансплантологии и искусственных органов. 2020; 22 (4): 105–114.; Котлярова МС, Архипова АЮ, Мойсенович АМ, Куликов ДА, Куликов АВ, Коньков АС и др. Биорезорбируемые скаффолды на основе фиброина для регенерации костной ткани. Вестник Московского университета. Серия 16. Биология. 2017; 4: 222–228.; Midha S, Ghosh S. Silk-based bioinks for 3D bioprinting. Regenerative Medicine: Laboratory to Clinic. 2017: 259–276. doi:10.1007/978-981-10-3701-6_15.; Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent developments of silk-based scaffolds for tissue engineering and regenerative medicine applications: A special focus on the advancement of 3D printing. Biomimetics. 2023 Jan 16; 8 (1): 16. doi:10.3390/biomimetics8010016.; Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. Antibacterial Surgical Silk Sutures Using a high-performance slow-release carrier coating system. ACS Appl Mater Interfaces. 2015 Oct 14; 7 (40): 22394–22403. doi:10.1021/acsami.5b06239. Epub 2015 Sep 29. PMID: 26378964.; Foppiani JA, Taritsa IC, Foster L, Patel A, Hernandez Alvarez A, Lee D et al. Redefining surgical materials: applications of silk fibroin in osteofixation and fracture repair. Biomimetics (Basel). 2024 May 11; 9 (5): 286. doi:10.3390/biomimetics9050286. PMID: 38786496.; Ding Z, Cheng W, Mia MS, Lu Q. Silk biomaterials for bone tissue engineering. Macromol Biosci. 2021 Aug; 21 (8): e2100153. doi:10.1002/mabi.202.; Settembrini A, Buongiovanni G, Settembrini P, Alessandrino A, Freddi G, Vettor G, Martelli E. In vivo evaluation of silk fibroin small-diameter vascular grafts: state of art of preclinical studies and animal models. Front Surg. 2023 May 26; 10: 1090565. doi:10.3389/fsurg.2023.1090565.; Liu Z, Li G, Zheng Z, Li Y, Han Y, Kaplan DL et al. Silk fibroin-based woven endovascular prosthesis with heparin surface modification. J Mater Sci Mater Med. 2018 Apr 12; 29 (4): 46. doi:10.1007/s10856-018-6055-3. PMID: 29651619.; Tanaka T, Abe Y, Cheng CJ, Tanaka R, Naito A, Asakura T. Development of small-diameter elastin-silk fibroin vascular grafts. Front Bioeng Biotechnol. 2021 Jan 14; 8: 622220. doi:10.3389/fbioe.2020.622220. PMID: 33585421.; Millesi F, Weiss T, Radtke C. Silk biomaterials in peripheral nerve tissue engineering. Advances in Silk Biomaterials. 2020: 107–128. doi:10.1007/978-3-030-062170_5-1.; Gu X, Chen X, Tang X, Zhou Z, Huang T, Yang Y et al. Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration. Nanotechnology Reviews. 2021; 10: 10–19. doi:10.1515/ntrev-2021-0002.; Zhang F, Liu R, Zuo B, Qin J. Electrospun silk fibroin nanofiber tubes for peripheral nerve regeneration. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). 2010: 1–4. doi:10.1109/ICBBE.2010.5514821.; Jiang JP, Liu XY, Zhao F, Zhu X, Li XY, Niu XG et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen Res. 2020 May; 15 (5): 959–968. doi:10.4103/16735374.268974. Erratum in: Neural Regen Res. 2020 Oct; 15 (10): 1961. doi:10.4103/1673-5374.280332. PMID: 31719263.; Fernández-García L, Pérez-Rigueiro J, Martinez-Murillo R, Panetsos F, Ramos M, Guinea GV et al. Cortical reshaping and functional recovery induced by silk fibroin hydrogels-encapsulated stem cells implanted in stroke animals. Front Cell Neurosci. 2018 Sep 6; 12: 296. doi:10.3389/fncel.2018.00296. PMID: 30237762.; Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv. 2011 Jun; 8 (6): 797–811. doi:10.1517/17425247.2011.568936. Epub 2011 Apr 1. PMID: 21453189.; Rajendra P, Nidamanuri B, Balan A, Venkatachalam S, Jawahar N. A review on structure, preparation and applications of silk fibroin-based nano-drug delivery systems. J Nanoparticle Res. 2022; 24: 55. doi:10.1007/s11051022-05526-z.; Kucharczyk K, Florczak A, Deptuch T, Penderecka K, Jastrzebska K, Mackiewicz A et al. Drug affinity and targeted delivery: double functionalization of silk spheres for controlled doxorubicin delivery into Her2-positive cancer cells. J Nanobiotechnology. 2020 Mar 30; 18 (1): 56. doi:10.1186/s12951-020-00609-2. PMID: 32228620.; Liu Y, Lv Z, Zhang C, Zhu X, Shi T, Zhong S et al. Preparation and immunogenicity of silk fibroin/chitosan microspheres for DNA vaccine delivery against infectious bursal disease virus. Shengwu Gongcheng Xuebao / Chinese Journal of Biotechnology. 2014; 30 (3): 393–403. doi:10.13345/j.cjb.130344.; Stinson JA, Raja WK, Lee S, Kim HB, Diwan I, Tutunjian S et al. Silk fibroin microneedles for transdermal vaccine delivery. ACS Biomater Sci Eng. 2017 Mar 13; 3 (3): 360–369. doi:10.1021/acsbiomaterials.6b00515. Epub 2017 Jan 17. PMID: 33465933.; Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol. 2023 Jan 1; 224: 422–436. doi:10.1016/j.ijbiomac.2022.10.134. Epub 2022 Oct 18. PMID: 36270404.; Zhao L, Wen Z, Jiang F, Zheng Z, Lu S. Silk/polyols/ GOD microneedle based electrochemical biosensor for continuous glucose monitoring. RSC Adv. 2020 Feb 10; 10 (11): 6163–6171. doi:10.1039/c9ra10374k. PMID: 35496012.; Márquez A, Santiago S, Dos Santos MV, Aznar-Cervantes SD, Domínguez C, Omenetto FG et al. Reusable colorimetric biosensors on sustainable silk-based platforms. ACS Appl Bio Mater. 2024 Feb 19; 7 (2): 853–862. doi:10.1021/acsabm.3c00872. Epub 2024 Jan 25. PMID: 38270977.; Dai X, Ye X, Shi L, Yu S, Wang X, Zhong B. High mechanical property silk produced by transgenic silkworms expressing the Drosophila Dumpy. Front Bioeng Biotechnol. 2024 Feb 12; 12: 1359587. doi:10.3389/fbioe.2024.1359587. PMID: 38410165.; Мойсенович ММ, Архипова АЮ, Орлова АА, Друцкая МС, Волкова СВ, Захаров СЕ и др. Композитные матриксы на основе фиброина шелка, желатина и гидроксиапатита для регенеративной медицины и культивирования клеток в трехмерной культуре. Acta Naturae. 2014; 6 (1): 103–109; Li F, Zheng Z, Luo T, Liu J, Wu J, Wang X et al. Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility. J Mater Sci. 2016; 51: 7121–7131. doi:10.1007/s10853-0159613-9.; Li ZH, Ji S, Wang YZ, Shen XC, Liang H. Silk fibroinbased scaffolds for tissue engineering. Front Mater Sci. 2013; 7: 217–234. doi:10.1007/s11706-013-0214-8.; Zhao G, Zhang X, Li B, Huang G, Xu F, Zhang X. Solvent-free fabrication of carbon nanotube/silk fibroin electrospun matrices for enhancing cardiomyocyte functionalities. ACS Biomater Sci Eng. 2020 Mar 9; 6 (3): 1630–1640. doi:10.1021/acsbiomaterials.9b01682. Epub 2020 Feb 3. PMID: 33455382.; Liu X, Xia Q, Zhou J, Zhang Y, Ju H, Deng Z. Chemical modification of silk fibroin through serine amino acid residues. Materials (Basel). 2022 Jun 22; 15 (13): 4399. doi:10.3390/ma15134399. PMID: 35806524.; Ghalei S, Handa H. A review on antibacterial silk fibroin-based biomaterials: current state and prospects. Mater Today Chem. 2022 Mar; 23: 100673. doi:10.1016/j.mtchem.2021.100673. Epub 2021 Dec 9. PMID: 34901586.; Fathi-Achachelouei M, Keskin D, Bat E, Vrana NE, Tezcaner A. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2020 Jul; 108 (5): 2041–2062. doi:10.1002/jbm.b.34544. Epub 2019 Dec 24. PMID: 31872975.; Xiao M, Yao J, Shao Z, Chen X. Silk-based 3D porous scaffolds for tissue engineering. ACS Biomater Sci Eng. 2024 May 13; 10 (5): 2827–2840. doi:10.1021/acsbiomaterials.4c00373. Epub 2024 May 1. PMID: 38690985.; Burger D, Beaumont M, Rosenau T, Tamada Y. Porous silk fibroin/cellulose hydrogels for bone tissue engineering via a novel combined process based on sequential regeneration and porogen leaching. Molecules. 2020 Nov 3; 25 (21): 5097. doi:10.3390/molecules25215097. PMID: 33153040.; Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol. 2024 Apr 25; 12: 1381838. doi:10.3389/fbioe.2024.1381838.; Dai X, Li X, Zhang C, Wang L, Ma C, Yang W, Li M. Acylation modification of Antheraea pernyi silk fibroin using succinic anhydride and its effects on enzymatic degradation behavior. J Chem. 2013. doi:10.1155/2013/640913.; Lu Q, Zhu HS, Zhang CC, Zhang F, Zhang B, Kaplan DL. Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules. 2012; 13: 826–832.; Балтаева ММ, Бабаджанова ДД, Эшчанов ХО. Серицин и его значение. Universum: технические науки. 2022; 1 (94): 89–92.; Song Y, Hu C, Wang Z, Wang L. Silk-based wearable devices for health monitoring and medical treatment. iScience. 2024 Mar 27; 27 (5): 109604. doi:10.1016/j.isci.2024.109604.; Shen X, Shi H, Wei H, Wu B, Xia Q, Yeo J, Huang W. Engineering natural and recombinant silks for sustainable biodevices. Front Chem. 2022; 10: 881028. doi:10.3389/fchem.2022.881028.; Li Z, Jiang Y, Cao G, Li J, Xue R, Gong C. Construction of transgenic silkworm spinning antibacterial silk with fluorescence. Mol Biol Rep. 2015; 42 (1): 19–25. doi:10.1007/s11033-014-3735.; https://journal.transpl.ru/vtio/article/view/1863
-
17Academic Journal
Συγγραφείς: I. A. Zamulaeva, O. N. Matchuk, L. S. Mkrtchian, A. D. Kaprin, И. А. Замулаева, О. Н. Матчук, Л. С. Мкртчян, А. Д. Каприн
Συνεισφορές: This work was not funded, Финансирование данной работы не проводилось.
Πηγή: Research and Practical Medicine Journal; Том 11, № 3 (2024); 8-23 ; Research'n Practical Medicine Journal; Том 11, № 3 (2024); 8-23 ; 2410-1893 ; 10.17709/2410-1893-2024-11-3
Θεματικοί όροι: опухолевые стволовые клетки, HPV-associated malignant neoplasms, radiation complications, rehabilitation, regenerative medicine, collagen-containing composition, Sphero®GEL, cancer stem cells, ВПЧ-ассоциированные злокачественные новообразования, лучевые осложнения, реабилитация, регенеративная медицина, коллагенсодержащая композиция, Сферо®ГЕЛЬ
Περιγραφή αρχείου: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/1033/641; https://www.rpmj.ru/rpmj/article/view/1033/642; Salvante ERG, Popoiu AV, Saxena AK, Popoiu TA, Boia ES, Cimpean AM, Rus FS, Dorobantu FR, Chis M. Glycosaminoglycans Modulate the Angiogenic Ability of Type I Collagen-Based Scaffolds by Acting on Vascular Network Remodeling and Maturation. Bioengineering (Basel). 2024 Apr 25;11(5):423. doi:10.3390/bioengineering11050423; Jadach B, Mielcarek Z, Osmałek T. Use of Collagen in Cosmetic Products. Curr Issues Mol Biol. 2024 Mar 4;46(3):2043–2070. doi:10.3390/cimb46030132; Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv Mater. 2019 Jan;31(1):e1801651. doi:10.1002/adma.201801651; Shekhter AB, Fayzullin AL, Vukolova MN, Rudenko TG, Osipycheva VD, Litvitsky PF. Medical Applications of Collagen and Collagen-Based Materials. Curr Med Chem. 2019;26(3):506–516. doi:10.2174/0929867325666171205170339; Балан В. Е., Краснопольская К. В., Оразов М. Р., Токтар Л. Р., Тихомирова Е. В. Коллагенотерапия пациенток с генитоуринарным менопаузальным синдромом – новая возможность в арсенале врача. Российский вестник акушера-гинеколога. 2020;20(4):65–75. doi:10.17116/rosakush20202004165; Tramacere F, Lancellotta V, Casà C, Fionda B, Cornacchione P, Mazzarella C, et al. Assessment of Sexual Dysfunction in Cervical Cancer Patients after Different Treatment Modality : A Systematic Review. Medicina (Kaunas). 2022 Sep 5;58(9):1223. doi:10.3390/medicina58091223; Мкртчян Л. С. Химиолучевое лечение местнораспространенного рака шейки матки и факторы прогноза. Дисс. МРНЦ им. А.Ф. Цыба – филиал ФГБУ «НМИЦ радиологии» Минздрава России, Обнинск, 2020, с. 33-34. Доступно по: https://www.dissercat.com/content/khimioluchevoe-lechenie-mestnorasprostranennogo-raka-sheiki-matki-i-faktory-prognoza. Дата обращения: 21. 08. 2024.; Shagidulin M, Onishchenko N, Sevastianov V, Krasheninnikov M, Lyundup A, Nikolskaya A, et al. Experimental Correction and Treatment of Chronic Liver Failure Using Implantable Cell-Engineering Constructs of the Auxiliary Liver Based on a Bioactive Heterogeneous Biopolymer Hydrogel. Gels. 2023 Jun 1;9(6):456. doi:10.3390/gels9060456; Матчук О. Н., Замулаева И. А. Количественные изменения популяции стволовых клеток рака шейки матки линии HeLa под влиянием фракционированного γ-облучения in vitro. Радиация и риск. 2019;28(2):112–123. doi:10.21870/0131-3878-2019-28-2-112-123; Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, et al. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci. 2018 Dec 13;19(12):4036. doi:10.3390/ijms19124036; Peitzsch C, Kurth I, Ebert N, Dubrovska A, Baumann M. Cancer stem cells in radiation response: current views and future perspectives in radiation oncology. Int J Radiat Biol. 2019 Jul;95(7):900–911. doi:10.1080/09553002.2019.1589023; Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018 Feb 28;2018:5416923. doi:10.1155/2018/5416923; Zamulaeva I, Matchuk O, Selivanova E, Mkrtchian L, Yakimova A, Gusarova V, et al. Effects of Fractionated Radiation Exposure on Vimentin Expression in Cervical Cancers: Analysis of Association with Cancer Stem Cell Response and Short-Term Prognosis. Int J Mol Sci. 2023 Feb 7;24(4):3271. doi:10.3390/ijms24043271; Luo M, Clouthier SG, Deol Y, Liu S, Nagrath S, Azizi E, Wicha MS. Breast cancer stem cells: current advances and clinical implications. Methods Mol Biol. 2015;1293:1–49. doi:10.1007/978-1-4939-2519-3_1; Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 2018 Nov;18(11):669–680. doi:10.1038/s41568-018-0056-x; Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci. 2017 Mar;74(6):951– 966. doi:10.1007/s00018-016-2334-7; Moon S, Ok Y, Hwang S, Lim YS, Kim HY, Na YJ, Yoon S. A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs. 2020 Sep 29;18(10):498. doi:10.3390/md18100498; Cescon M, Rampazzo E, Bresolin S, Da Ros F, Manfreda L, Cani Aet al. Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell Mol Life Sci. 2023 Jul 28;80(8):233. doi:10.1007/s00018-023-04887-5; Cowan JM, Juric M, Petrie RJ. Culturing and Imaging Glioma Stem Cells in 3D Collagen Matrices. Curr Protoc. 2023 Jan;3(1):e643. doi:10.1002/cpz1.643; Devarajan R, Izzi V, Peltoketo H, Rask G, Kauppila S, Väisänen MR, et al. Targeting collagen XVIII improves the efficiency of ErbB inhibitors in breast cancer models. J Clin Invest. 2023 Sep 15;133(18):e159181. doi:10.1172/jci159181; Morimoto T, Takemura Y, Miura T, Yamamoto T, Kakizaki F, An H, et al. Novel and efficient method for culturing patient-derived gastric cancer stem cells. Cancer Sci. 2023 Aug;114(8):3259–3269. doi:10.1111/cas.15840; Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci. 2024 Jan 14;31(1):7. doi:10.1186/s12929-024-00994-y; Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel). 2024 May 11;16(10):1847. doi:10.3390/cancers16101847; Пономарева А. С., Баранова Н. В., Милосердов И. А., Севастьянов В. И. Влияние биоматриксов на жизнеспособность и инсулинпродуцирующую функцию островков Лангерганса человека in vitro. Вестник трансплантологии и искусственных органов. 2022;24(4):109–117. doi:10.15825/1995-1191-2022-4-109-117; Севастьянов В. И. Клеточно-инженерные конструкции в тканевой инженерии и регенеративной медицине. Вестник трансплантологии и искусственных органов. 2015;17(2):127–130. doi:10.15825/1995-1191-2015-2-127-130; Chhabra R. Cervical cancer stem cells: opportunities and challenges. J Cancer Res Clin Oncol. 2015 Nov;141(11):1889–1897. doi:10.1007/s00432-014-1905-y; Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Pentimalli F, Giordano A, et al. Cancer Stem Cells and Their Possible Implications in Cervical Cancer : A Short Review. Int J Mol Sci. 2022 May 5;23(9):5167. doi:10.3390/ijms23095167; Javed S, Sharma BK, Sood S, Sharma S, Bagga R, Bhattacharyya S, et al. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer. BMC Cancer. 2018 Apr 2;18(1):357. doi:10.1186/s12885-018-4237-5; Басок Ю.Б., Григорьев А.М., Кирсанова Л.А., Кириллова А.Д., Суббот А.М., Цветкова А.В., и др. Сравнительное исследование хондрогенеза мезенхимальных стромальных клеток жировой ткани человека при культивировании на коллагенсодержащих носителях в условиях in vitro. Вестник трансплантологии и искусственных органов. 2021;23(3):90–100. doi:10.15825/1995-1191-2021-3-90-100; https://www.rpmj.ru/rpmj/article/view/1033
-
18Academic Journal
Συγγραφείς: Daria K. Shishkova, Alexey V. Frolov, Victoria E. Markova, Yulia O. Markova, Anastasia I. Lazebnaya, Anton G. Kutikhin, Дарья Кирилловна Шишкова, Алексей Витальевич Фролов, Виктория Евгеньевна Маркова, Юлия Олеговна Маркова, Анастасия Ивановна Лазебная, Антон Геннадьевич Кутихин
Συνεισφορές: Работа выполнена при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2024-0001 «Разработка новых фармакологических подходов к экспериментальной терапии атеросклероза, технологий серийного производства реактивов и расходных материалов для изучения физиологии и патофизиологии сердечно-сосудистой системы и программного обеспечения на основе искусственного интеллекта для автоматизированной диагностики патологий системы кровообращения и автоматизированного расчета сердечно-сосудистого риска» и финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках национального проекта «Наука и университеты».
Πηγή: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 118-129 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 118-129 ; 2587-9537 ; 2306-1278
Θεματικοί όροι: Импортозамещение, Proliferation, Angiogenesis, Regenerative medicine, Cell culture medium, Immunophenotyping, Import substitution industrialization, Пролиферация, Ангиогенез, Регенеративная медицина, Питательные среды, Иммунофенотипирование
Περιγραφή αρχείου: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1523/923; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1751; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1752; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1753; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1754; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1755; Crampton S.P., Davis J., Hughes C.C. Isolation of human umbilical vein endothelial cells (HUVEC). J Vis Exp. 2007;(3):183. doi:10.3791/183.; Lei J., Peng S., Samuel S.B., Zhang S., Wu Y., Wang P., Li Y.F., Liu H. A simple and biosafe method for isolation of human umbilical vein endothelial cells. Anal Biochem. 2016;508:15-8. doi:10.1016/j.ab.2016.06.018.; Chandel S., Kumaragurubaran R., Giri H., Dixit M. Isolation and Culture of Human Umbilical Vein Endothelial Cells (HUVECs). Methods Mol Biol. 2024;2711:147-162. doi:10.1007/978-1-0716-3429-5_12.; Hauser S., Jung F., Pietzsch J. Human Endothelial Cell Models in Biomaterial Research. Trends Biotechnol. 2017;35(3):265-277. doi:10.1016/j.tibtech.2016.09.007.; Medina-Leyte D.J., Domínguez-Pérez M., Mercado I., Villarreal-Molina M.T., Jacobo-Albavera L. Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. Appl Sci. 2020;10(3):938. doi:10.3390/app10030938.; Dienemann S., Schmidt V., Fleischhammer T., Mueller J.H., Lavrentieva A. Comparative analysis of hypoxic response of human microvascular and umbilical vein endothelial cells in 2D and 3D cell culture systems. J Cell Physiol. 2023;238(5):1111-1120. doi:10.1002/jcp.31002.; Lau S., Gossen M., Lendlein A., Jung F. Venous and Arterial Endothelial Cells from Human Umbilical Cords: Potential Cell Sources for Cardiovascular Research. Int J Mol Sci. 2021;22(2):978. doi:10.3390/ijms22020978.; Mayani H. Biological differences between neonatal and adult human hematopoietic stem/progenitor cells. Stem Cells Dev. 2010;19(3):285-98. doi:10.1089/scd.2009.0327.; Sun H., Pratt R.E., Dzau V.J., Hodgkinson C.P. Neonatal and adult cardiac fibroblasts exhibit inherent differences in cardiac regenerative capacity. J Biol Chem. 2023;299(5):104694. doi:10.1016/j.jbc.2023.104694.; Legros H., Launay S., Roussel B.D., Marcou-Labarre A., Calbo S., Catteau J., Leroux P., Boyer O., Ali C., Marret S., Vivien D., Laudenbach V. Newborn- and adult-derived brain microvascular endothelial cells show age-related differences in phenotype and glutamate-evoked protease release. J Cereb Blood Flow Metab. 2009;29(6):1146-58. doi:10.1038/jcbfm.2009.39.; Robertson J.O., Erzurum S.C., Asosingh K. Pathological Roles for Endothelial Colony-Forming Cells in Neonatal and Adult Lung Disease. Am J Respir Cell Mol Biol. 2023;68(1):13-22. doi:10.1165/rcmb.2022-0318PS.; Bertagnolli M., Xie L.F., Paquette K., He Y., Cloutier A., Fernandes R.O., Béland C., Sutherland M.R., Delfrate J., Curnier D., Bigras J.L., Rivard A., Thébaud B., Luu T.M., Nuyt A.M. Endothelial Colony-Forming Cells in Young Adults Born Preterm: A Novel Link Between Neonatal Complications and Adult Risks for Cardiovascular Disease. J Am Heart Assoc. 2018;7(14):e009720. doi:10.1161/JAHA.118.009720.; McAleese C. Insights into endothelial metabolic heterogeneity. Nat Rev Cardiol. 2024 Jun 5. doi:10.1038/s41569-024-01049-3. Online ahead of print.; Trimm E., Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197-210. doi:10.1038/s41569-022-00770-1.; Jung R., Trivedi C.M. Unveiling the Spatiotemporal Diversity of the Endothelium in Development: A Multi-Omics Approach. Circ Res. 2024;134(5):547-549. doi:10.1161/CIRCRESAHA.124.324328.; Chen J., Zhang X., DeLaughter D.M., Trembley M.A., Saifee S., Xiao F., Chen J., Zhou P., Seidman C.E., Seidman J.G., Pu W.T. Molecular and Spatial Signatures of Mouse Embryonic Endothelial Cells at Single-Cell Resolution. Circ Res. 2024;134(5):529-546. doi:10.1161/CIRCRESAHA.123.323956.; Becker L.M., Chen S.H., Rodor J., de Rooij L.P.M.H., Baker A.H., Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res. 2023;119(1):6-27. doi:10.1093/cvr/cvac018.; Liu Z., Ruter D.L., Quigley K., Tanke N.T., Jiang Y., Bautch V.L. Single-Cell RNA Sequencing Reveals Endothelial Cell Transcriptome Heterogeneity Under Homeostatic Laminar Flow. Arterioscler Thromb Vasc Biol. 2021;41(10):2575-2584. doi:10.1161/ATVBAHA.121.316797.; Salybekov A.A., Kobayashi S., Asahara T. Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci. 2022;23(14):7697. doi:10.3390/ijms23147697.; Zhang Q., Cannavicci A., Kutryk M.J.B. Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int. 2022;2022:4460041. doi:10.1155/2022/4460041.; Chambers S.E.J., Pathak V., Pedrini E., Soret L., Gendron N., Guerin C.L., Stitt A.W., Smadja D.M., Medina R.J. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl Med. 2021;10 (Suppl 2):S54-S61. doi:10.1002/sctm.21-0022.; Dight J., Zhao J., Styke C., Khosrotehrani K., Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis. 2022;25(1):15-33. doi:10.1007/s10456-021-09817-2.; Kutikhin A.G., Sinitsky M.Y., Yuzhalin A.E., Velikanova E.A. Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol. 2018;118:46-69. doi:10.1016/j.yjmcc.2018.03.007.; Liao G., Zheng K., Shorr R., Allan D.S. Human endothelial colony-forming cells in regenerative therapy: A systematic review of controlled preclinical animal studies. Stem Cells Transl Med. 2020;9(11):1344-1352. doi:10.1002/sctm.20-0141.; Deng D., Zhang Y., Tang B., Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther. 2024;15(1):175. doi:10.1186/s13287-024-03773-6.; Nguyen H.T., Peirsman A., Tirpakova Z., Mandal K., Vanlauwe F., Maity S., Kawakita S., Khorsandi D., Herculano R., Umemura C., Yilgor C., Bell R., Hanson A., Li S., Nanda H.S., Zhu Y., Najafabadi A.H., Jucaud V., Barros N., Dokmeci M.R., Khademhosseini A. Engineered Vasculature for Cancer Research and Regenerative Medicine. Micromachines (Basel). 2023;14(5):978. doi:10.3390/mi14050978.; Wingo M., Rafii S. Endothelial reprogramming for vascular regeneration: Past milestones and future directions. Semin Cell Dev Biol. 2022;122:50-55. doi:10.1016/j.semcdb.2021.09.003.; Cho S., Aakash P., Lee S., Yoon Y.S. Endothelial cell direct reprogramming: Past, present, and future. J Mol Cell Cardiol. 2023;180:22-32. doi:10.1016/j.yjmcc.2023.04.006.; Loh K.M., Ang L.T. Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Semin Cell Dev Biol. 2024;155(Pt C):62-75. doi:10.1016/j.semcdb.2023.06.004.; Florido M.H.C., Ziats N.P. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A. 2024;112(8):1286-1304. doi:10.1002/jbm.a.37669.; Matveeva V., Khanova M., Sardin E., Antonova L., Barbarash O. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018;19(11):3453. doi:10.3390/ijms19113453.; Kutikhin A.G., Tupikin A.E., Matveeva V.G., Shishkova D.K., Antonova L.V., Kabilov M.R., Velikanova E.A. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells. 2020;9(4):876. doi:10.3390/cells9040876.; Malakhova A.A., Grigor'eva E.V., Pavlova S.V., Malankhanova T.B., Valetdinova K.R., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Zakian S.M., Medvedev S.P. Generation of induced pluripotent stem cell lines ICGi021-A and ICGi022-A from peripheral blood mononuclear cells of two healthy individuals from Siberian population. Stem Cell Res. 2020;48:101952. doi:10.1016/j.scr.2020.101952.; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi036-A generated by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia caused due to compound heterozygous p.Ser177Leu/p.Cys352Arg mutations in LDLR. Stem Cell Res. 2022;59:102653. doi:10.1016/j.scr.2022.102653.; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi038-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to compound heterozygous c.1246C > T/c.940 + 3_940 + 6del mutations in LDLR. Stem Cell Res. 2022;60:102702. doi:10.1016/j.scr.2022.102702.; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Kalinin A.P., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi037-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to heterozygous p.Trp443Arg mutations in LDLR. Stem Cell Res. 2022;60:102703. doi:10.1016/j.scr.2022.102703.; Gimble J.M., Ray S.P., Zanata F., Wu X., Wade J., Khoobehi K., Ferreira L.M., Bunnell B.A. Adipose Derived Cells and Tissues for Regenerative Medicine. ACS Biomater Sci Eng. 2017;3(8):1477-1482. doi:10.1021/acsbiomaterials.6b00261.; Laschke M.W., Seifert M.S., Scheuer C., Kontaxi E., Metzger W., Menger M.D. High glucose exposure promotes proliferation and in vivo network formation of adipose-tissue-derived microvascular fragments. Eur Cell Mater. 2019;38:188-200. doi:10.22203/eCM.v038a13.; Antonyshyn J.A., Mazzoli V., McFadden M.J., Gramolini A.O., Hofer S.O.P., Simmons C.A., Santerre P.J. Immunomagnetic Isolation and Enrichment of Microvascular Endothelial Cells from Human Adipose Tissue. Bio Protoc. 2022;12(10):e4422. doi:10.21769/BioProtoc.4422.; Antonyshyn J.A., MacQuarrie K.D., McFadden M.J., Gramolini A.O., Hofer S.O.P., Santerre J.P. Paracrine cross-talk between human adipose tissue-derived endothelial cells and perivascular cells accelerates the endothelialization of an electrospun ionomeric polyurethane scaffold. Acta Biomater. 2024;175:214-225. doi:10.1016/j.actbio.2023.12.037.; Jonkman J.E., Cathcart J.A., Xu F., Bartolini M.E., Amon J.E., Stevens K.M., Colarusso P. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr. 2014;8(5):440-51. doi:10.4161/cam.36224.; Aisenbrey E.A., Murphy W.L. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539-551. doi:10.1038/s41578-020-0199-8.; Passaniti A., Kleinman H.K., Martin G.R. Matrigel: history/background, uses, and future applications. J Cell Commun Signal. 2022;16(4):621-626. doi:10.1007/s12079-021-00643-1.; Gao Y., Galis Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi:10.1161/ATVBAHA.120.314346.; Tombor L.S., Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol. 2022;117(1):35. doi:10.1007/s00395-022-00941-8.; Mühleder S., Fernández-Chacón M., Garcia-Gonzalez I., Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci. 2021;78(4):1329-1354. doi:10.1007/s00018-020-03664-y.; Jerka D., Bonowicz K., Piekarska K., Gokyer S., Derici U.S., Hindy O.A., Altunay B.B., Yazgan I., Steinbrink K., Kleszczyński K., Yilgor P., Gagat M. Unraveling Endothelial Cell Migration: Insights into Fundamental Forces, Inflammation, Biomaterial Applications, and Tissue Regeneration Strategies. ACS Appl Bio Mater. 2024;7(4):2054-2069. doi:10.1021/acsabm.3c01227.; Qiu J., Hirschi K.K. Endothelial Cell Development and Its Application to Regenerative Medicine. Circ Res. 2019;125(4):489-501. doi:10.1161/CIRCRESAHA.119.311405.; Pérez-Gutiérrez L., Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 2023;24(11):816-834. doi:10.1038/s41580-023-00631-w.; Simons M., Gordon E., Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611-25. doi:10.1038/nrm.2016.87.
-
19Academic Journal
Συγγραφείς: O. V. Payushina, D. A. Tsomartova, Ye. V. Chereshneva, M. Yu. Ivanova, M. S. Pavlova, S. L. Kuznetsov, О. В. Паюшина, Д. А. Цомартова, Е. В. Черешнева, М. Ю. Иванова, М. С. Павлова, С. Л. Кузнецов
Πηγή: Andrology and Genital Surgery; Том 25, № 1 (2024); 31-39 ; Андрология и генитальная хирургия; Том 25, № 1 (2024); 31-39 ; 2412-8902 ; 2070-9781
Θεματικοί όροι: эректильная дисфункция, regenerative medicine, male infertility, prostate diseases, erectile dysfunction, регенеративная медицина, мужское бесплодие, заболевания предстательной железы
Περιγραφή αρχείου: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/733/564; Jovic D., Yu Y., Wang D. et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep 2022;18(5):1525–45. PMID: 35344199. DOI:10.1007/s12015-022-10369-1.; Thanaskody K., Jusop A.S., Tye G.J. et al. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022;10:1005926. PMID: 36407112. DOI:10.3389/fcell.2022.1005926.; Maldonado V.V., Patel N.H., Smith E.E. et al. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023;17(1):44. PMID: 37434264. DOI:10.1186/s13036-023-00361-9.; Han Y., Li X., Zhang Y. et al. Mesenchymal stem cells for regenerative medicine. Cells 2019;8(8):886. PMID: 31412678. DOI:10.3390/cells8080886.; Ghasemzadeh-Hasankolaei M., Eslaminejad M.B., Sedighi-Gilani M. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim 2016;52(1):49–61. PMID: 26395124. DOI:10.1007/s11626-015-9945-4.; Salem M., Mirzapour T., Bayrami A., Sagha M. Germ cell differentiation of bone marrow mesenchymal stem cells. Andrologia 2019;51(4):e13229. PMID: 30746735. DOI:10.1111/and.13229.; Malekmohamadi N., Abdanipour A., Ghorbanlou M. et al. Differentiation of bone marrow derived mesenchymal stem cells into male germ-like cells in co-culture with testicular cells. Endocr Regul 2019;53(2):93–9. PMID: 31517623. DOI:10.2478/enr-2019-0011.; Ghaem Maghami R., Mirzapour T., Bayrami A. Differentiation of mesenchymal stem cells to germ-like cells under induction of Sertoli cell-conditioned medium and retinoic acid. Andrologia 2018;50(3). PMID: 28944567. DOI:10.1111/and.12887.; Luo Y., Xie L., Mohsin A. et al. Efficient generation of male germ-like cells derived during co-culturing of adipose-derived mesenchymal stem cells with Sertoli cells under retinoic acid and testosterone induction. Stem Cell Res Ther 2019;10(1):91. PMID: 30867048. DOI:10.1186/s13287-019-1181-5.; Cakici C., Buyrukcu B., Duruksu G. et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int 2013;2013:529589. PMID: 23509736. DOI:10.1155/2013/529589.; Ghasemzadeh-Hasankolaei M., Batavani R., Eslaminejad M.B., Sayahpour F. Transplantation of autologous bone marrow mesenchymal stem cells into the testes of infertile male rats and new germ cell formation. Int J Stem Cells 2016;9(2):250–63. PMID: 27430978. DOI:10.15283/ijsc16010.; Monsefi M., Fereydouni B., Rohani L., Talaei T. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med 2013;11(7):537–44. PMID: 24639788; Lu J., Liu Z., Shu M. et al. Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Res Ther 2021;12(1):199. PMID: 33743823. DOI:10.1186/s13287-021-02275-z.; Zickri M.B., Moustafa M.H., Fasseh A.E., Kamar S.S. Antioxidant and antiapoptotic paracrine effects of mesenchymal stem cells on spermatogenic arrest in oligospermia rat model. Ann Anat 2021;237:151750. PMID: 33940119. DOI:10.1016/j.aanat.2021.151750.; Abdelaziz M.H., Salah El-Din E.Y., El-Dakdoky M.H., Ahmed T.A. The impact of mesenchymal stem cells on doxorubicininduced testicular toxicity and progeny outcome of male prepubertal rats. Birth Defects Res 2019;111(13):906–19. PMID: 31210400. DOI:10.1002/bdr2.1535.; AbdRabou M.A., Mehany A.B.M., Farrag I.M. et al. Therapeutic effect of murine bone marrow-derived mesenchymal stromal/stem cells and human placental extract on testicular toxicity resulting from doxorubicin in rats. Biomed Res Int 2021;2021:9979670. PMID: 34409109. DOI:10.1155/2021/9979670.; Sherif I.O., Sabry D., Abdel-Aziz A., Sarhan O.M. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res Ther 2018;9(1):196. PMID: 30021657. DOI:10.1186/s13287-018-0946-6.; Meligy F.Y., Abo Elgheed A.T., Alghareeb S.M. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastruct Pathol 2019;43(1):28–55. PMID: 30741078. DOI:10.1080/01913123.2019.1572256.; Hassen M.T., Mohamed H.K., Montaser M.M. et al. Molecular, immunomodulatory, and histopathological role of mesenchymal stem cells and beetroot extract on cisplatin induced testicular damage in albino rats. Animals (Basel) 2021;11(4):1142. PMID: 33923635. DOI:10.3390/ani11041142.; G., Basalova N., Kirpatovsky V. et al. A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Res Ther 2019;10(1):342. PMID: 31753023. DOI:10.1186/s13287-019-1479-3.; Safitri E., Purnobasuki H. Effectiveness of mesenchymal stem cells cultured under hypoxia to increase the fertility rate in rats (Rattus norvegicus). Vet World 2021;14(11):3056–64. PMID: 35017856. DOI:10.14202/vetworld.2021.3056-3064.; Abdollahifar M.A., Azad N., Faraji Sani M. et al. Impaired spermatogenesis caused by busulfan is partially ameliorated by treatment with conditioned medium of adipose tissue derived mesenchymal stem cells. Biotech Histochem 2022;97(2):107–17. PMID: 33843374. DOI:10.1080/10520295.2021.1905182.; Önen S., Köse S., Yersal N., Korkusuz P. Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep 2022;12(1):11494. PMID: 35798781. DOI:10.1038/s41598-022-15358-5.; Cai Y.T., Xiong C.L., Liu T.S. et al. Secretions released from mesenchymal stem cells improve spermatogenesis restoration of cytotoxic treatment with busulfan in azoospermia mice. Andrologia 2021;53(8):e14144. PMID: 34143903. DOI:10.1111/and.14144.; Gong D., Zhang C., Li T. et al. Are Sertoli cells a kind of mesenchymal stem cells? Am J Transl Res 2017;9(3):1067–74. PMID: 28386334.; Hou L., Dong Q., Wu Y.J. et al. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro. Kaohsiung J Med Sci 2016;32(1):1–9. PMID: 26853168. DOI:10.1016/j.kjms.2015.10.008.; Ji W., Chen Y., Wang L. et al. Differentiation of human umbilical cord mesenchymal stem cells into Leydig-like cells with defined molecular compounds. Hum Cell 2020;33(2):318–29. PMID: 32034722. DOI:10.1007/s13577-020-00324-y.; Zhang Z.Y., Xing X.Y., Ju G.Q. et al. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model. Asian J Androl 2017;19(5):543–7. PMID: 27586027. DOI:10.4103/1008-682X.186186.; Safitri E., Hariadi M. Comparison of biotechnological culture of hypoxia-conditioned rat mesenchymal stem cells with conventional in vitro culture of normoxia-conditioned rat mesenchymal stem cells for testicular failure therapy with low libido in rats. Vet World 2019;12(6):916–24. PMID: 31440014. DOI:10.14202/vetworld.2019.916-924.; Peak T.C., Haney N.M., Wang W. et al. Stem cell therapy for the treatment of Leydig cell dysfunction in primary hypogonadism. World J Stem Cells 2016;8(10):306–15. PMID: 27822338. DOI:10.4252/wjsc.v8.i10.306.; Hsiao C.H., Ji A.T., Chang C.C. et al. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015;6(1):113. PMID: 26025454. DOI:10.1186/s13287-015-0079-0.; Hsiao C.H., Ji A.T., Chang C.C. et al. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res Ther 2019;10(1):270. PMID: 31445515. DOI:10.1186/s13287-019-1351-5.; Zhong L., Yang M., Zou X. et al. Human umbilical cord multipotent mesenchymal stromal cells alleviate acute ischemiareperfusion injury of spermatogenic cells via reducing inflammatory response and oxidative stress. Stem Cell Res Ther 2020;11(1):294. PMID: 32680554. DOI:10.1186/s13287-020-01813-5.; Chen Y.T., Chuang F.C., Yang C.C. et al. Combined melatoninadipose derived mesenchymal stem cells therapy effectively protected the testis from testicular torsion-induced ischemiareperfusion injury. Stem Cell Res Ther 2021;12(1):370. PMID: 34187560. DOI:10.1186/s13287-021-02439-x.; Sharifian P., Yari S., Hasanein P., Manteghi Nezhad Y. Conditioned medium of bone marrow mesenchymal stem cells improves sperm parameters and reduces histological alteration in rat testicular ischaemia/reperfusion model. Andrologia 2022;54(11):e14624. PMID: 36270637. DOI:10.1111/and.14624.; Aghamir S.M., Salavati A., Yousefie R. et al. Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture? Urology 2014;84(1):82–6. PMID: 24797037. DOI:10.1016/j.urology.2014.03.009.; ClinicalTrials.gov. NCT02414295. Sperm production in Kleinfelter syndrome patients after mesenchymal stem cell injection. Available from: https://clinicaltrials.gov/study/NCT02414295.; ClinicalTrials.gov. NCT02025270. MSCs for treatment of azoospermic patients. Available from: https://clinicaltrials.gov/study/NCT02025270.; ClinicalTrials.gov. NCT02008799. Intra testicular artery injection of bone marrow stem cell in management of azoospermia. Available from: https://clinicaltrials.gov/study/NCT02008799.; ClinicalTrials.gov. NCT02041910. Testicular injection of autologous stem cells for treatment of patients with azoospermia. Available from: https://clinicaltrials.gov/study/NCT02041910.; ClinicalTrials.gov. NCT02641769. Intra-testicular transplantation of autologous stem cells for treatment of non-obstructive azoospermia male infertility. Available from: https://clinicaltrials.gov/study/NCT02641769.; ClinicalTrials.gov. NCT03762967. Autologous adipose-derived adult stromal vascular cell administration for male patients with infertility. Available from: https://clinicaltrials.gov/study/NCT03762967.; Han G.W., Liu C.C., Gao W.H. et al. [Bone marrow mesenchymal stem cells suppress E coli-induced bacterial prostatitis in rats]. Zhonghua Nan Ke Xue 2015;21(4):294–9. (In Chinese). PMID: 26027094.; Liu H., Zhu X., Cao X. et al. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021;12(1):514. PMID: 34563249. DOI:10.1186/s13287-021-02579-0.; Goudarzi F., Kiani A., Moradi M. et al. Intraprostatic injection of exosomes isolated from adipose-derived mesenchymal stem cells for the treatment of chronic non-bacterial prostatitis. J Tissue Eng Regen Med 2021;15(12):1144–54. PMID: 34559469. DOI:10.1002/term.3251.; Wang L., Xie L., Tintani F. et al. Aberrant transforming growth factor-β activation recruits mesenchymal stem cells during prostatic hyperplasia. Stem Cells Transl Med 2017;6(2):394–404. PMID: 28191756. DOI:10.5966/sctm.2015-0411.; Brennen W.N., Isaacs J.T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 2018;15(11):703–15. PMID: 30214054. DOI:10.1038/s41585-018-0087-9.; Rahimi Tesiye M., Abrishami Kia Z., Rajabi-Maham H. Mesenchymal stem cells and prostate cancer: A concise review of therapeutic potentials and biological aspects. Stem Cell Res 2022;63:102864. PMID: 35878578. DOI:10.1016/j.scr.2022.102864.; Takahara K., Ii M., Inamoto T. et al. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis. Biochem Biophys Res Commun 2014;446(4):1102–7. PMID: 24680678. DOI:10.1016/j.bbrc.2014.03.080.; Safari F., Shakery T., Sayadamin N. Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models. Cell Biochem Funct 2021;39(6):813–20. PMID: 34128234. DOI:10.1002/cbf.3654.; Schweizer M.T., Wang H., Bivalacqua T.J. et al. A phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer. Stem Cells Transl Med 2019;8(5):441–9. PMID: 30735000. DOI:10.1002/sctm.18-0230.; Bivalacqua T.J., Deng W., Kendirci M. et al Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol 2007;292(3):H1278–90. PMID: 17071732. DOI:10.1152/ajpheart.00685.2006.; Qiu X., Lin H., Wang Y. et al. Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats. J Sex Med 2011;8(2):427–36. PMID: 21091881. DOI:10.1111/j.1743-6109.2010.02118.x.; Sun C., Lin H., Yu W. et al. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. Int J Androl 2012;35(4):601–7. PMID: 22428616. DOI:10.1111/j.1365-2605.2012.01250.x.; Zhu J.Q., Lu H.K., Cui Z.Q. et al. Therapeutic potential of human umbilical cord blood mesenchymal stem cells on erectile function in rats with cavernous nerve injury. Biotechnol Lett 2015;37(7):1515– 25. PMID: 25801670. DOI:10.1007/s10529-015-1816-2.; Ouyang X., Han X., Chen Z. et al. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Res Ther 2018;9(1):246. PMID: 30257719. DOI:10.1186/s13287-018-1003-1.; Yang J., Zhang Y., Zang G. et al. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. Andrology 2018;6(3):498–509. PMID: 29603682. DOI:10.1111/andr.12483.; Chen Z., Han X., Ouyang X. et al. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury. Theranostics 2019;9(22):6354–68. PMID: 31588222. DOI:10.7150/thno.34008.; Liu Y., Zhao S., Luo L. et al. Mesenchymal stem cell-derived exosomes ameliorate erection by reducing oxidative stress damage of corpus cavernosum in a rat model of artery injury. J Cell Mol Med 2019;23(11):7462–73. PMID: 31512385. DOI:10.1111/jcmm.14615.; Qiu X., Villalta J., Ferretti L. et al. Effects of intravenous injection of adipose-derived stem cells in a rat model of radiation therapyinduced erectile dysfunction. J Sex Med 2012;9(7):1834–41. PMID: 22548750. DOI:10.1111/j.1743-6109.2012.02753.x.; Kim J.H., Yun J.H., Song E.S. et al. Improvement of damaged cavernosa followed by neuron-like differentiation at injured cavernous nerve after transplantation of stem cells seeded on the PLA nanofiber in rats with cavernous nerve injury. Mol Biol Rep 2021;48(4):3549–59. PMID: 33866496. DOI:10.1007/s11033-021-06332-x.; Bahk J.Y., Jung J.H., Han H. et al. Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: Preliminary report of 7 cases. Exp Clin Transplant 2010;8:150–60. PMID: 20565373.; Al Demour S., Jafar H., Adwan S. et al. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: an open label phase I clinical trial. Urol Int 2018;101(3):358–65. PMID: 30173210. DOI:10.1159/000492120.; Al Demour S., Adwan S., Jafar H. et al. Safety and efficacy of 2 intracavernous injections of allogeneic Wharton’s jellyderived mesenchymal stem cells in diabetic patients with erectile dysfunction: Phase 1/2 clinical trial. Urol Int 2021;105(11–12):935– 43. PMID: 34384079. DOI:10.1159/000517364.; Mirzaei M., Bagherinasabsarab M., Pakmanesh H. et al. The effect of intracavernosal injection of stem cell in the treatment of erectile dysfunction in diabetic patients: A randomized single-blinded clinical trial. Urol J 2021;18(6):675–81. 6503. PMID: 34655071. DOI:10.22037/uj.v18i.; You D., Jang M.J., Song G. et al. Safety of autologous bone marrow-derived mesenchymal stem cells in erectile dysfunction: an open-label phase 1 clinical trial. Cytotherapy 2021;23(10):931–38. PMID: 34326007.DOI:10.1016/j.jcyt.2021.06.001.; Haahr M.K., Harken Jensen C., Toyserkani N.M. et al. A 12-month follow-up after a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: An open-label phase I clinical trial. Urology 2018; 121:203.e6–13. PMID: 29958973. DOI:10.1016/j.urology.2018.06.018.63.; Levy J.A., Marchand M., Iorio L. et al. Effects of stem cell treatment in human patients with Peyronie disease. J Am Osteopath Assoc 2015;115(10):e8–13. PMID: 26414724. DOI:10.7556/jaoa.2015.124.; Castiglione F., Hedlund P., Van der Aa F. et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur Urol 2013;63(3):551–60. PMID: 23040209. DOI:10.1016/j.eururo.2012.09.034.; ClinicalTrials.gov. NCT02414308. Management of Peyronie’s disease with adipose tissue stem cell. Available from: https://clinicaltrials.gov/study/NCT02414308.; ClinicalTrials.gov. NCT05147779. Safety of cultured allogeneic adult umbilical cord stem cells for Peyronie’s disease, ED, and interstitial cystitis. Available from: https://clinicaltrials.gov/study/NCT05147779.; ClinicalTrials.gov. NCT04771442. Stem cell treatment of Peyronie´s disease. Available from: https://clinicaltrials.gov/study/NCT04771442.; Xie X., Du X., Li K. et al. Construction of engineered corpus cavernosum with primary mesenchymal stem cells in vitro. Sci Rep 2017;7(1):18053. PMID: 29273785. DOI:10.1038/s41598-017-18129-9.; Laks M., Freitas-Filho L.G., Sayeg K. et al. Penile reconstruction using mesenchymal stem cells. Acta Cir Bras 2015;30(8):529–36. PMID: 26352332. DOI:10.1590/S0102-865020150080000003.; https://agx.abvpress.ru/jour/article/view/733
-
20Academic Journal
Συγγραφείς: M. V. Epifanova, А. А. Kostin, S. A. Artemenko, А. А. Epifanov, М. В. Епифанова, А. А. Костин, С. А. Артеменко, А. А. Епифанов
Πηγή: Andrology and Genital Surgery; Том 25, № 2 (2024); 69-79 ; Андрология и генитальная хирургия; Том 25, № 2 (2024); 69-79 ; 2412-8902 ; 2070-9781
Θεματικοί όροι: регенеративная медицина, platelet-rich plasma, extracorporeal shock wave therapy, growth factors, regenerative medicine, аутоплазма, обогащенная тромбоцитарными факторами роста, экстракорпоральная ударно-волновая терапия, факторы роста
Περιγραφή αρχείου: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/760/583; Nehra A. Oral and non-oral combination therapy for erectile dysfunction. Rev Urol 2007;9:99–105.; Mangır N., Türkeri L. Stem cell therapies in post-prostatectomy erectile dysfunction: A critical review. Can J Urol 2017;24:8609–8619.; Pérez-Aizpurua X., Garranzo-Ibarrola M., Simón-Rodríguez C. et al. Stem Cell Therapy for Erectile Dysfunction: A Step towards a Future Treatment. Life (Basel) 2023;13(2):502. DOI:10.3390/life13020502.; Anastasiadis E., Ahmed R., Khoja A.K. et al. Erectile dysfunction: Is platelet-rich plasma the new frontier for treatment in patients with erectile dysfunction? A review of the existing evidence. Front Reprod Health 2022;4:944765. DOI:10.3389/frph.2022.944765.; Alves R., Grimalt R.A. Review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin Append Disord 2018;41:18–24. DOI:10.1159/000477353.; Epifanova M.V., Gvasalia B.R., Durashov M.A. et al. Platelet-Rich Plasma Therapy for Male Sexual Dysfunction: Myth or Reality? Sex Med Rev 2020;8(1):106-113. DOI:10.1016/j.sxmr.2019.02.002.; EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2023. ISBN 978-94-92671-19-6.; Епифанова, М.В. Применение технологий регенеративной медицины при сексуальной дисфункции и нарушении фертильности у мужчин : дис. . д-р. мед. наук : 3.1.13 / Епифанова Майя Владимировна. – М., 2021. – 400 с.; Cavallo C., Roffi A., Grigolo B. et al. Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. Biomed Res Int 2016;2016:6591717. DOI:10.1155/2016/6591717.; Чалый М.Е., Григорян В.А., Епифанова М.В. и соавт. Эффективность интракавернозного введения аутоплазмы, обогащенной тромбоцитами, в лечении эректильной дисфункции. Урология. 2015;4:76–9; Zaghloul A., Elnashaar A., Said S. et al. Assessment of the intracavernosal injection platelet‐rich plasma in addition to daily oral tadalafil intake in diabetic patients with erectile dysfunction non-responding to on-demand oral pde5 inhibitors. Andrologia 2022;54(6). e14421. DOI:10.1111/and.14421.; Taş T., Çakıroğlu B., Arda E. et al. Early Clinical Results of the Tolerability, Safety, and Efficacy of Autologous Platelet-Rich Plasma Administration in Erectile Dysfunction. Sex Med 2021;9(2):100313. DOI:10.1016/j.esxm.2020.100313.; Shaher H., Fathi A., Elbashir S. et al. Is Platelet Rich Plasma Safe and Effective in Treatment of Erectile Dysfunction? Randomized Controlled Study. Urology 2023;175:114-119. DOI:10.1016/j.urology.2023.01.028.; Poulios E., Mykoniatis I., Pyrgidis N. et al. Platelet-Rich Plasma (PRP) Improves Erectile Function: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J Sex Med 2021;18(5):926-935. DOI:10.1016/j.jsxm.2021.03.008.; Masterson T.A., Molina M., Ledesma B. et al. Platelet-rich Plasma for the Treatment of Erectile Dysfunction: A Prospective, Randomized, Double-blind, Placebo-controlled Clinical Trial. J Urol 2023;210(1):154-161. DOI:10.1097/JU.0000000000003481.; Alkhayal S., Lourdes M. PO-01-091 Platelet Rich Plasma Penile Rejuvenation as a Treatment for Erectile Dysfunction: An Update, The Journal of Sexual Medicine 2019; 16 Issue Supplement 2: S71. DOI:10.1016/j.jsxm.2019.03.228.; Ruffo A., Franco M., Illiano E. et al. Effectiveness And Safety Of Platelet-rich Plasma (PrP) cavernosal injections plus external shockwave treatment for penile erectile dysfunction: first results from a prospective, randomized, controlled, interventional study. Eur Urol Suppl 2019;18:e1622–e1623. DOI:10.1016/S1569-9056(19)31175-3.; Ruffo A., Stanojevic N., Romeo G. et al. Management Of Erectile dysfunction using combination treatment of low-intensity shockwaves (LISW) and platelet rich plasma (PRP) intracavernosal injections. J Sex Med 2020;17:S133–S134. DOI:10.1016/j.jsxm.2020.04.048.; https://agx.abvpress.ru/jour/article/view/760