Showing 1 - 20 results of 41 for search '"РАМАН-СПЕКТРОСКОПИЯ"', query time: 0.61s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 2 (2023); 110-121 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 2 (2023); 110-121 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-2

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/520/421; Lu A.-H., Salabas Е.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007; 46(8): 1222—1244. https://doi.org/10.1002/anie.200602866; Gubin S.P., Spichkin Y.I., Yurkov G.Yu., Tishin A.M. Nanomaterial for high-density magnetic data storage. Russian Journal of Inorganic Chemistry. 2002; 47(1): S32—S67.; Xu Y.H., Bai J., Wang J.-P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. Journal of Magnetism and Magnetic Materials. 2007; 311(1): 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174; Khadzhiev S.N., Kulikova M.V., Ivantsov M.I., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Bondarenko G.N., Oknina N.V. Fischer-Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry. 2016; 56: 522—528. https://doi.org/10.1134/S0965544116060049; Qiu F., Dai Y., Li Li, Xu Ch., Huang Y., Chen Ch., Wang Y., Jiao L., Yuan H. Synthesis of Cu@FeCo core-shellnanoparticles for the catalytic hydrolysis of ammonia borane. International Jornal of Hydrogen Energy. 2014; 39(1): 436—441.; Xu M.H., Zhong W., Qi X.S., Au C.T., Deng Y., Du Y.W. Highly stable Fe-Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds. 2010; 495(1): 200—204. https://doi.org/10.1016/j.jallcom.2010.01.121; Bahgat M., Paek M.-K., Pak J.-J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCo1-xFe2O4. Journal of Alloys and Compounds. 2008; 466(1-2): 59—66. https://doi.org/10.1016/j.jallcom.2008.01.147; Azizi A., Yoozbashizadeh H., Sadrnezhaad S.K. Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe-16.5Ni-16.5Co nano-powder. Journal of Magnetism and Magnetic Materials. 2009; 321(18): 2729—2732. https://doi.org/10.1016/j.jmmm.2009.03.085; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203. https://doi.org/10.1016/S0304-8853(00)00081-0; Dalavi S.B., Theerthagiri J., Raja M.M., Panda R.N. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys. Journal of Magnetism and Magnetic Materials. 2013; 344: 30—34. https://doi.org/10.1016/j.jmmm.2013.05.026; Prasad N.Kr., Kumar V. Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. Journal of Materials Science: Materials in Electronics. 2015; 26(12): 10109—10118. https://doi.org/10.1007/s10854-015-3695-7; Zehani K., Bez R., Boutahar A., Hlil E.K., Lassri H., Moscovici J., Mliki N., Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticlesJ. Journal of Alloys and Compounds. 2014; 591: 58—64. https://doi.org/10.1016/j.jallcom.2013.11.208; Yang Y., Xu C., Xia Y., Wang T., Li F. Synthesis and microwave absorption properties of FECO nanoplates. Journal of Alloys and Compounds. 2010; 493(1-2): 549—552. https://doi.org/10.1016/j.jallcom.2009.12.153; Liu X.G., Ou Z.Q., Geng D.Y., Han Z., Jiang J.J., Liu W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011; Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203.; Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657—664. https://doi.org/10.1134/S1063739721080072; Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E.Yu., Popkova A.V., Novotortsev V.M. Synthesis, structure and electromagnetic properties of nanocomposites with threecomponent FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(10): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin E.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105; Mondal B.N., Basumallick A., Nath D.N., Cnattopaahyuy P.P. Phase evolution and magnetic, behavior of Сu-Ni-Co-Fe quaternary alloys synthesized by ball milling. Material Chemistry and Physics. 2009; 116(2): 358—362. https://doi.org/10.1016/j.matchemphys.2009.03.036; Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П. Формирование металл-углеродных нанокомпозитов на основе наночастиц сплава Cu-Fe и карбонизированного полиакрилонитрила. Физика и химия обработки материалов. 2021; (1): 58—66. https://doi.org/10.30791/0015-3214-2021-1-58-66; Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095—14107. https://doi.org/10.1103/physrevb.61.14095; Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007; 143(1-2): 47—57. https://doi.org/10.1016/j.ssc.2007.03.052; Afghahi S.S., Shokuhfar A. Two stepsinthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. Journal of Magnetism and Magnetic Materials. 2014; 370: 37—44. https://doi.org/10.1016/j.jmmm.2014.06.040; Родионов В.В. Механизмы взаимодействия СВЧ-излучения с наноструктурированными углеродсодержащими материалами. Дисс. … канд. физ.-мат. наук. Курск; 2015. 169 с.; https://met.misis.ru/jour/article/view/520

  4. 4
    Academic Journal

    Source: Eastern-European Journal of Enterprise Technologies; Том 2, № 6 (92) (2018): Technology organic and inorganic substances; 53-60
    Восточно-Европейский журнал передовых технологий; Том 2, № 6 (92) (2018): Технологии органических и неорганических веществ; 53-60
    Східно-Європейський журнал передових технологій; Том 2, № 6 (92) (2018): Технології органічних та неорганічних речовин; 53-60

    File Description: application/pdf

  5. 5
    Academic Journal

    Contributors: The synthesis of nanocomposites in this study was carried out as part of a State Program of Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences., В части синтеза нанокомпозитов работа выполнена в рамках Государственного задания Института нефтехимического синтеза имени А.В. Топчиева.

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 23, № 4 (2020); 260-269 ; Известия высших учебных заведений. Материалы электронной техники; Том 23, № 4 (2020); 260-269 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2020-4

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/433/429; Xu Y. H., Bai J., Wang J. P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications // Journal of Magnetism and Magnetic Materials. 2007. V. 311, Iss. 1. P. 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174; Khadzhiev S. N., Kulikova M. V., Ivantsov M. I., Zemtsov L. M., Karpacheva G. P., Muratov D. G., Bondarenko G. N., Oknina N. V. Fischer–Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor // Petroleum Chemistry. 2016. V. 56. P. 522—528. DOI:10.1134/S0965544116060049; Efimov M. N., Mironova E. Yu., Pavlov A. A., Vasilev A. A., Muratov D. G., Dzidziguri E. L., Yaroslavtsev A. B., Karpacheva G. P. Novel polyacrylonitrile-based C/Co-Ru metal-carbon nanocomposites as effective catalysts for ethanol steam reforming // International Journal of Nanoscience. 2020. V. 19, N 04, P. 1950031. DOI:10.1142/S0219581X19500315; Gubin S. P., Spichkin Y. I., Yurkov G. Yu., Tishin A. M. Nanomaterial for high-density magnetic data storage // Russian Journal of Inorganic Chemistry. 2002. V. 47. P. S32—S67.; Lu An-H., Salabas E. L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application // Angewandte Chemie International Edition. 2007. V. 46, N 8. P. 1222—1244. DOI:10.1002/anie.200602866; Afghahi S. S., Shokuhfar. A. S. Two step synthesis, electromagnetic and microwave absorbing properties of FeCo@C core-hell nanostructure // Journal of Magnetism and Magnetic Materials. 2014. V. 370. P. 37—44. DOI:10.1016/J.JMMM.2014.06.040; Liu X. G., Ou Z. Q., Geng D. Y., Han Z., Jiang J. J., Liu W., Zhang Z. D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles // Carbon. 2010. V. 48, Iss. 3. P. 891—897. DOI:10.1016/j.carbon.2009.11.011; Liu Q., Cao B., Feng C., Zhang W., Zhu S., Zhang D. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles // Composites Science and Technology. 2012. V. 72, Iss. 13. P. 1632—1636. DOI:10.1016/J.COMPSCITECH.2012.06.022; Xie Z., Geng D., Liu X., Ma S., Zhang Z. Magnetic and microwave-absorption properties of graphite-coated (Fe,Ni) nanocapsules // Journal of Materials Science and Technology. 2011. V. 27, Iss. 7. P. 607—614. DOI:10.1016/S1005-0302(11)60115-1; Ibrahim E. M. M., Hampel S., Wolter A. U. B., Kath M., El-Gendy A. A., Klingeler R., Täschner C., Khavrus V. O., Gemming T., Leonhardt A., Büchner B. Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres // The Journal of Physical Chemistry C. 2012. V. 116, N 42. P. 22509—22517. DOI:10.1021/JP304236X; Yang Y., Qi S., Wang J. Preparation and microwave absorbing properties of nickel-coated graphite nanosheet with pyrrole via in situ polymerization // Journal of Alloys and Compound. 2012. V. 520. P. 114—121. DOI:10.1016/j.jallcom.2011.12.136; Lu B., Dong X. L., Huang H., Zhang X. F., Zhu X. G., Lei J. P., Sun J. P. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles // Journal of Magnetism and Magnetic Materials. 2008. V. 320, Iss. 6. P. 1106—1111. DOI:10.1016/J.JMMM.2007.10.030; Wang B., Zhang J., Wang T., Qiao L., Li F. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles // Journal of Alloys and Compounds. 2013. V. 567. P. 21—25. DOI:10.1016/J.JALLCOM.2013.03.028; Fan Y., Yang H., Liu X., Zhu H., Zou G. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite // Journal of Alloys and Compounds. 2008. V. 461, Iss. 1–2. P. 490—494. DOI:10.1016/J.JALLCOM.2007.07.034; Zhang T., Huang D., Yang Y., Kang F., Gu J. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance // Journal of Materials Science and Engineering: B. 2013. V. 178, Iss. 1. P. 1—9. DOI:10.1016/j.mseb.2012.06.005; Муратов Д. Г., Кожитов Л. В., Коровушкин В. В., Коровин Е. Ю., Попкова А. В., Новоторцев В. М. Синтез, структура и электромагнитные свойства нанокомпозитов с трехкомпонентными наночастицами Fe, Co, Ni // Известия вузов. Физика. 2018. Т. 61, № 10. С. 40—49.; Муратов Д. Г., Кожитов Л. В., Карпенков Д. Ю., Якушко Е. В., Коровин Е.Ю., Васильев А. В., Попкова А. В., Казарян Т. М., Шадринов А. В. Синтез и магнитные свойства нанокомпозитов Fe-Co-Ni/С // Известия вузов. Физика. 2017. Т. 60, № 11. С. 67—73.; Кожитов Л. В., Муратов Д. Г., Костишин В. Г., Сусляев В. И., Коровин Е. Ю., Попкова А. В. Синтез, магнитные и электромагнитные свойства нанокомпозитов FeCo/C // Журнал неорганической химии. 2017. Т. 62, № 11. С. 1507—1514. DOI:10.7868/S0044457X17110137; Vasilev A. A., Efimov M. N., Bondarenko G. N., Muratov D. G., Dzidziguri E. L., Ivantsov M. I., Kulikova M. V., Karpacheva G. P. Fe—Co alloy nanoparticles supported on IR pyrolyzed chitosan as catalyst for Fischer-Tropsch synthesis // Chemical Physics Letters. 2019. V. 730. P. 8—13. https://doi.org/10.1016/j.cplett.2019.05.034; Муратов Д. Г., Васильев А. А., Ефимов М. Н., Карпачева Г. П., Дзидзигури Э. Л., Чернавский П. А. Металл-углеродные нанокомпозиты FeNi/C: получение, фазовый состав, магнитные свойства // Физика и химия обработки материалов. 2018. № 6. С. 26—34. DOI:10.30791/0015-3214-2018-6-26-34; Vasilev A. A., Dzidziguri E. L., Muratov D. G., Zhilyaeva N. A., Efimov M. N., Karpacheva G. P. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol // IOP Conference Series: Materials Science and Engineering. 2018. V. 347. P. 012011. DOI:10.1088/1757-899X/347/1/012011; Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects // Solid State Communications. 2007. V. 143, N 1–2. P. 47—57. DOI:10.1016/j.ssc.2007.03.052; Ferrari A. C., Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon // Physical Review B. 2001. V. 64. N 7. P. 0754141—07541413. DOI:10.1103/PhysRevB.64.075414; https://met.misis.ru/jour/article/view/433

  6. 6
    Academic Journal

    Source: Eastern-European Journal of Enterprise Technologies; Том 3, № 6 (87) (2017): Technology organic and inorganic substances; 21-28
    Восточно-Европейский журнал передовых технологий; Том 3, № 6 (87) (2017): Технологии органических и неорганических веществ; 21-28
    Східно-Європейський журнал передових технологій; Том 3, № 6 (87) (2017): Технології органічних та неорганічних речовин; 21-28

    File Description: application/pdf

  7. 7
    Academic Journal

    Contributors: Laffont, Rémi, Томский государственный университет Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт) Научные подразделения БИ, Biogéosciences UMR 6282 (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Institute of Ecological Problems of the North, UroRAS, Tomsk State University Tomsk, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Centre de Microscopie Électronique Appliquée à la Biologie (CMEAB), Toulouse Réseau Imagerie-Genotoul (TRI-Genotoul), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Work supported by the GRASP project (MRTNCT-2006- 035868), INSU program 'INTERVIE', LIA 'LEAGE' and BIO-GEO-CLIM Grant No. 14.В25.31.0001 of the Ministry of Education and Science of the Russian Federation.

    Source: Chemical geology. 2014. Vol. 374/375. P. 44-60

    File Description: application/pdf

    Linked Full Text
  8. 8
    Academic Journal

    Source: Электронная обработка материалов 52 (2) 88-91

    File Description: application/pdf

    Relation: info:eu-repo/grantAgreement/EC/FP7/17014/EU/Marker-assisted breeding of new seedless grapevine varieties with resistance to stressful environmental conditions/INTAS; https://ibn.idsi.md/vizualizare_articol/48118; urn:issn:00135739

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20