Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"Полиоргаанная недостаточность"', χρόνος αναζήτησης: 0,39δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: Исследование выполнено за счет средств гранта Российского научного фонда, проект № 25-75-10160.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 5 (2025); 139-159 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 5 (2025); 139-159 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1782/1096; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1782/2273; Gutierrez G, Lund N, Bryan-Brown CW. Cellular oxygen utilization during multiple organ failure. Crit Care Clin. 1989;5(2):271-287.; Bersten A, Sibbald WJ. Circulatory disturbances in multiple systems organ failure. Crit Care Clin. 1989;5(2):233-254.; Рябов Г.А. Гипоксия критических состояний. Медицина. 1988; Preau, S., Vodovar, D., Jung, B. Energetic dysfunction in sepsis: a narrative review. Ann. Intensive Care 11, 104 (2021). https://doi.org/10.1186/s13613-021-00893-7; Ostergaard L, Granfeldt A, Secher N, Tietze A, Iversen NK, Jensen MS, et al. Microcirculatory dysfunction and tissue oxygenation in critical illness. Acta Anaesthesiol Scand. 2015;59:1246–59; Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985). 2016;120:226–35; Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233-49. doi:10.1113/jphysiol.1985.sp015794. PMID: 4057091; PMCID: PMC1193029.; Fry BC, Roy TK, Secomb TW. Capillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks. Physiol Rep. 2013 Aug;1(3):e00050. doi:10.1002/phy2.50.; Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005;9 Suppl 4:S20–6; Koning NJ, Simon LE, Asfar P, Baufreton C, Boer C. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2014;307:H967–75; Segal SS. Regulation of blood flow in the microcirculation. Microcirculation. 2005;12(1):33-45. doi:10.1080/10739680590895028; Jacob, M., & Chappell, D. (2013). Reappraising Starling: the physiology of the microcirculation. Current opinion in critical care, 19(4), 282–289. https://doi.org/10.1097/MCC.0b013e3283632d5e; Hautefort, A., Pfenniger, A., & Kwak, B. R. (2019). Endothelial connexins in vascular function. Vascular biology (Bristol, England), 1(1), H117–H124. https://doi.org/10.1530/VB-19-0015; Levick, J. R., & Michel, C. C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular research, 87(2), 198–210. https://doi.org/10.1093/cvr/cvq062; Pillinger, N. L., & Kam, P. (2017). Endothelial glycocalyx: basic science and clinical implications. Anaesthesia and intensive care, 45(3), 295–307. https://doi.org/10.1177/0310057X1704500305; Wang, X., Shen, Y., Shang, M., Liu, X., & Munn, L. L. (2023). Endothelial mechanobiology in atherosclerosis. Cardiovascular research, 119(8), 1656–1675. https://doi.org/10.1093/cvr/cvad076; Sukriti, S., Tauseef, M., Yazbeck, P., & Mehta, D. (2014). Mechanisms regulating endothelial permeability. Pulmonary circulation, 4(4), 535–551. https://doi.org/10.1086/677356; Claesson-Welsh L. (2015). Vascular permeability--the essentials. Upsala journal of medical sciences, 120(3), 135–143. https://doi.org/10.3109/03009734.2015.1064501; Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S., & Schwartz, M. A. (2016). Endothelial fluid shear stress sensing in vascular health and disease. The Journal of clinical investigation, 126(3), 821–828. https://doi.org/10.1172/JCI83083; Souilhol, C., Serbanovic-Canic, J., Fragiadaki, M., Chico, T. J., Ridger, V., Roddie, H., & Evans, P. C. (2020). Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nature reviews. Cardiology, 17(1), 52–63. https://doi.org/10.1038/s41569-019-0239-5; Goldenberg, N. M., Steinberg, B. E., Slutsky, A. S., & Lee, W. L. (2011). Broken barriers: a new take on sepsis pathogenesis. Science translational medicine, 3(88), 88ps25. https://doi.org/10.1126/scitranslmed.3002011; Seppä, A. M. J., Skrifvars, M. B., & Pekkarinen, P. T. (2023). Inflammatory response after out-of-hospital cardiac arrest-Impact on outcome and organ failure development. Acta anaesthesiologica Scandinavica, 67(9), 1273–1287. https://doi.org/10.1111/aas.14291; Hellenthal, K. E. M., Brabenec, L., & Wagner, N. M. (2022). Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells, 11(12), 1935. https://doi.org/10.3390/cells11121935; Vu, H. H., Moellmer, S. A., McCarty, O. J. T., & Puy, C. (2025). New mechanisms and therapeutic approaches to regulate vascular permeability in systemic inflammation. Current opinion in hematology, 32(3),130–137; Grundmann, S., Fink, K., Rabadzhieva, L., Bourgeois, N., Schwab, T., Moser, M., Bode, C., & Busch, H. J. (2012). Perturbation of the endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation, 83(6), 715–720. https://doi.org/10.1016/j.resuscitation.2012.01.028; [Ostrowski, S. R., Haase, N., Müller, R. B., Møller, M. H., Pott, F. C., Perner, A., & Johansson, P. I. (2015). Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Critical care (London, England), 19(1), 191. https://doi.org/10.1186/s13054-015-0918-5; Ильина Я.Ю., Фот Е.В., Кузьков В.В., Киров М.Ю. Сепсис-индуцированное повреждение эндотелиального гликокаликса (обзор литературы). Вестник интенсивной терапии имени А.И. Салтанова. 2019;(2):32–39. doi:10.21320/1818-474X-2019-2-32-39.; Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X., & Choi, A. M. (2007). Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling, 9(1), 49–89. https://doi.org/10.1089/ars.2007.9.49; Huet, O., Dupic, L., Harrois, A., & Duranteau, J. (2011). Oxidative stress and endothelial dysfunction during sepsis. Frontiers in bioscience (Landmark edition), 16(5), 1986–1995. https://doi.org/10.2741/3835; Boisramé-Helms, J., Kremer, H., Schini-Kerth, V., & Meziani, F. (2013). Endothelial dysfunction in sepsis. Current vascular pharmacology, 11(2), 150–160.; Johansson, P. I., Stensballe, J., & Ostrowski, S. R. (2017). Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Critical care (London, England), 21(1), 25. https://doi.org/10.1186/s13054-017-1605-5; Welling, H., Henriksen, H. H., Gonzalez-Rodriguez, E. R., Stensballe, J., Huzar, T. F., Johansson, P. I., & Wade, C. E. (2020). Endothelial glycocalyx shedding in patients with burns. Burns : journal of the International Society for Burn Injuries, 46(2), 386–393. https://doi.org/10.1016/j.burns.2019.05.009; Naumann, D. N., Hazeldine, J., Davies, D. J., Bishop, J., Midwinter, M. J., Belli, A., Harrison, P., & Lord, J. M. (2018). Endotheliopathy of Trauma is an on-Scene Phenomenon, and is Associated with Multiple Organ Dysfunction Syndrome: A Prospective Observational Study. Shock (Augusta, Ga.), 49(4), 420–428. https://doi.org/10.1097/SHK.0000000000000999; Ладожская-Гапеенко Е.Е. Дисфункция микроциркуляции при критических состояниях (обзор литературы). Вестник анестезиологии и реаниматологии. 2024;21(6):116-121. https://doi.org/10.24884/2078-5658-2024-21-6-116-121; den Uil CA, Klijn E, Lagrand WK, Brugts JJ, Ince C, Spronk PE, Simoons ML. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008 Sep-Oct;51(2):161-70. doi:10.1016/j.pcad.2008.07.002. PMID: 18774014.; De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010 Jun;16(3):250-4. doi:10.1097/MCC.0b013e3283383621. PMID: 20179590.; Ince C, Ashruf JF, Avontuur JA, Wieringa PA, Spaan JA, Bruining HA (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level.Am J Physiol 264:H294–H301; Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock altersdistribution of blood flow within the intestinal wall. Crit Care Med 24:1345–1351; Schwartz DR, Malhotra A, Fink MP. Microcirculatory weak units--an alternative explanation. Crit Care Med. 2000 Aug;28(8):3127-9. doi:10.1097/00003246-200008000-00103. PMID: 10966332.; Hilty MP, Jung C. Tissue oxygenation: how to measure, how much to target. Intensive Care Med Exp. 2023 Sep 23;11(1):64. doi:10.1186/s40635-023-00551-1. PMID: 37740840; PMCID: PMC10517908.; van Genderen ME, Klijn E, Lima A, de Jonge J, Sleeswijk Visser S, Voorbeijtel J, Bakker J, van Bommel J. Microvascular perfusion as a target for fluid resuscitation in experimental circulatory shock. Crit Care Med. 2014 Feb;42(2):e96-e105. doi:10.1097/CCM.0b013e3182a63fbf. PMID: 24158169.Spronk, P.E. Microcirculatory and Mitochondrial Distress Syndrome (MMDS): A New Look at Sepsis. in Functional Hemodynamic Monitoring: Update in Intensive Care and; Emergency Medicine. (ed. Pinsky, M.R., Payen, D.) 47–67 (Springer, 2005).; Brealey В, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet,Volume 360, Issue 9328, 2002: 219-223, https://doi.org/10.1016/S0140-6736(02)09459-X.; Lang, C. H., Bagby, G. J., Ferguson, J. L. & Spritzer, J. J. Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am. J. Physiol. 246, 331–337 (1984).; Protti, A. & Singer, M. Bench-to-bedside review: Potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit. Care. 10, 228. https://doi.org/10.1186/cc5014 (2006).; Donati, A. et al. From macrohemodynamic to the microcirculation. Crit. Care. Res. Pract. 2013, 892710. https://doi.org/10.1155/2013/892710 (2013).; Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care. 2002 Dec;6(6):491-9. doi:10.1186/cc1824. Epub 2002 Sep 12.; Porta F, Takala J, Weikert C, Bracht H, Kolarova A, Lauterburg BH, et al. Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care. (2006) 10:R118. doi:10.1186/cc5013; Taccone FS, Su F, De Deyne C, Abdellhai A, Pierrakos C, He X, et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. (2014) 42:e114–22. doi:10.1097/CCM.0b013e3182a641b8; Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014 Jan 1;5(1):66-72. doi:10.4161/viru.26907. Epub 2013 Nov 1.; Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P, Stotz M, Singer M. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010 Sep 15;182(6):745-51. doi:10.1164/rccm.201003-0326OC. Epub 2010 Jun 10.; Valeanu, L., Bubenek-Turconi, S.-I., Ginghina, C., & Balan, C. (2021). Hemodynamic Monitoring in Sepsis—A Conceptual Framework of Macro- and Microcirculatory Alterations. Diagnostics, 11(9), 1559. https://doi.org/10.3390/diagnostics11091559; Wang, H., Ding, H., Wang, Z.-Y., & Zhang, K. (2024). Research progress on microcirculatory disorders in septic shock: A narrative review. Medicine, 103(8), e37273. https://doi.org/10.1097/MD.0000000000037273; Bultinck J, Sips P, Vakaet L, et al. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells: in vivo iNOS expression pattern in (septic) shock. FASEB J. 2006;20(13):2363–2365.; Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1):e1170; Anand T, Reyes AA, Sjoquist MC, et al. Resuscitating the endothelial glycocalyx in trauma and hemorrhagic shock. Ann Surg Open. 2023;4(3):e298.; Maneta, E., Aivalioti, E., Tual-Chalot, S., Emini Veseli, B., Gatsiou, A., Stamatelopoulos, K., & Stellos, K. (2023). Endothelial dysfunction and immunothrombosis in sepsis. Frontiers in immunology, 14, 1144229. https://doi.org/10.3389/fimmu.2023.1144229; Jansson, D., Rustenhoven, J., Feng, S., Hurley, D., Oldfield, R. L., Bergin, P. S., Mee, E. W., Faull, R. L., & Dragunow, M. (2014). A role for human brain pericytes in neuroinflammation. Journal of neuroinflammation, 11, 104. https://doi.org/10.1186/1742-2094-11-104; McMullan, R.R., McAuley, D.F., O’Kane, C.M. et al. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Crit Care 28, 97 (2024). https://doi.org/10.1186/s13054-024-04875-6; De Backer, D., Hajjar, L., & Monnet, X. (2024). Vasoconstriction in septic shock. Intensive care medicine, 50(3), 459–462. https://doi.org/10.1007/s00134-024-07332-8; Landry, D. W., & Oliver, J. A. (2001). The pathogenesis of vasodilatory shock. The New England journal of medicine, 345(8), 588–595. https://doi.org/10.1056/NEJMra002709; Burgdorff, A. M., Bucher, M., & Schumann, J. (2018). Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. The Journal of international medical research, 46(4), 1303–1310. https://doi.org/10.1177/0300060517743836; Bakker J, Ince C. Monitoring coherence between the macro and microcirculation in septic shock. Curr Opin Crit Care. 2020;26(3):267–272.; LeDoux, D., Astiz, M. E., Carpati, C. M., & Rackow, E. C. (2000). Effects of perfusion pressure on tissue perfusion in septic shock. Critical care medicine, 28(8), 2729–2732. https://doi.org/10.1097/00003246-200008000-00007; Dubin, A., Edul, V. S., Pozo, M. O., Murias, G., Canullán, C. M., Martins, E. F., Ferrara, G., Canales, H. S., Laporte, M., Estenssoro, E., & Ince, C. (2008). Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Critical care medicine, 36(2), 535–542. https://doi.org/10.1097/01.CCM.0000300083.74726.43; Hernandez, G., Boerma, E. C., Dubin, A., Bruhn, A., Koopmans, M., Edul, V. K., Ruiz, C., Castro, R., Pozo, M. O., Pedreros, C., Veas, E., Fuentealba, A., Kattan, E., Rovegno, M., & Ince, C. (2013). Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. Journal of critical care, 28(4), 538.e9–538.e5.38E14. https://doi.org/10.1016/j.jcrc.2012.11.022; Trzeciak, S., Dellinger, R. P., Parrillo, J. E., Guglielmi, M., Bajaj, J., Abate, N. L., Arnold, R. C., Colilla, S., Zanotti, S., Hollenberg, S. M., & Microcirculatory Alterations in Resuscitation and Shock Investigators (2007). Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Annals of emergency medicine, 49(1), 88–98.e982. https://doi.org/10.1016/j.annemergmed.2006.08.021; Tachon, G., Harrois, A., Tanaka, S., Kato, H., Huet, O., Pottecher, J., Vicaut, E., & Duranteau, J. (2014). Microcirculatory alterations in traumatic hemorrhagic shock. Critical care medicine, 42(6), 1433–1441. https://doi.org/10.1097/CCM.0000000000000223; Sakr, Y., Dubois, M. J., De Backer, D., Creteur, J., & Vincent, J. L. (2004). Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Critical care medicine, 32(9), 1825–1831. https://doi.org/10.1097/01.ccm.0000138558.16257.3f; Stenberg, T. A., Kildal, A. B., Sanden, E., How, O. J., Hagve, M., Ytrehus, K., Larsen, T. S., & Myrmel, T. (2014). The acute phase of experimental cardiogenic shock is counteracted by microcirculatory and mitochondrial adaptations. PloS one, 9(9), e105213. https://doi.org/10.1371/journal.pone.0105213; Elbers, P. W., & Ince, C. (2006). Mechanisms of critical illness--classifying microcirculatory flow abnormalities in distributive shock. Critical care (London, England), 10(4), 221. https://doi.org/10.1186/cc4969; Ince, C., Boerma, E.C., Cecconi, M. et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 44, 281–299 (2018). https://doi.org/10.1007/s00134-018-5070-7; Guay CS, Khebir M, Shiva Shahiri T, Szilagyi A, Cole EE, Simoneau G, Badawy M. Evaluation of automated microvascular flow analysis software AVA 4: a validation study. Intensive Care Med Exp. 2021 Apr 2;9(1):15. doi:10.1186/s40635-021-00380-0. PMID: 33796954; PMCID: PMC8017044.; Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care. 2016 Feb 10;20:35. doi:10.1186/s13054-016-1213-9. PMID: 26861691; PMCID: PMC4748457.; Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999 Oct;5(10):1209-12. doi:10.1038/13529. PMID: 10502828.; Bottino DA and Bouskela E (2023) Non-invasive techniques to access in vivo the skin microcirculation in patients. Front. Med. 9:1099107. doi:10.3389/fmed.2022.1099107; De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010 Nov;36(11):1813-25. doi:10.1007/s00134-010-2005-3. Epub 2010 Aug 6. PMID: 20689916.; Damiani E, Carsetti A, Casarotta E, et al. Microcirculation-guided resuscitation in sepsis: the next frontier?. Front Med (Lausanne). 2023;10:1212321. Published 2023 Jul 5. doi:10.3389/fmed.2023.1212321; Tafner PFDA, Chen FK, Rabello R Filho, Corrêa TD, Chaves RCF, Serpa A Neto. Recent advances in bedside microcirculation assessment in critically ill patients. Recentes avanços na avaliaçåo da microcirculaçåo à beira do leito em pacientes graves. Rev Bras Ter Intensiva. 2017;29(2):238-247. doi:10.5935/0103-507X.20170033; Tachon G, Harrois A, Tanaka S, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42(6):1433-1441. doi:10.1097/CCM.0000000000000223; Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015 Dec;3(1):40. doi:10.1186/s40635-015-0040-7. Epub 2015 Jan 31.; Kiseleva E., Ryabkov M., Baleev M., Bederina E., Shilyagin P., Moiseev A., Beschastnov V., Romanov I., Gelikonov G., Gladkova N. Prospects of Intraoperative Multimodal OCT Application in Patients with Acute Mesenteric Ischemia // Diagnostics (Basel). 2021. 11(4). 705. doi:10.3390/diagnostics11040705.; Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991 Nov 22;254(5035):1178-81. doi:10.1126/science.1957169. PMID: 1957169; PMCID: PMC4638169.; Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995 Sep;1(9):970-2. doi:10.1038/nm0995-970. PMID: 7585229.; Nioka S, Chen Y. Optical tecnology developments in biomedicine: history, current and future. Transl Med UniSa. 2011 Oct 17;1:51-150. PMID: 23905030; PMCID: PMC3728850.; Park JR, Lee B, Lee MJ, Kim K, Oh WY. Visualization of three-dimensional microcirculation of rodents' retina and choroid for studies of critical illness using optical coherence tomography angiography. Sci Rep. 2021 Jul 12;11(1):14302. doi:10.1038/s41598-021-93631-9. PMID: 34253747; PMCID: PMC8275781.; Lee B, Kang W, Oh SH, Cho S, Shin I, Oh EJ, Kim YJ, Ahn JS, Yook JM, Jung SJ, Lim JH, Kim YL, Cho JH, Oh WY. In vivo imaging of renal microvasculature in a murine ischemia-reperfusion injury model using optical coherence tomography angiography. Sci Rep. 2023 Apr 19;13(1):6396. doi:10.1038/s41598-023-33295-9. PMID: 37076541; PMCID: PMC10115874.; Hessler, M., Nelis, P., Ertmer, C. et al. Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: A proof of principle study. Sci Rep 10, 5408 (2020). https://doi.org/10.1038/s41598-020-62128-2; Courtie E, Gilani A, Veenith T and Blanch RJ (2022) Optical coherence tomography angiography as a surrogate marker for end-organ resuscitation in sepsis: A review. Front. Med. 9:1023062. doi:10.3389/fmed.2022.1023062; Hilty MP, Akin S, Boerma C, Donati A, Erdem Ö, Giaccaglia P, Guerci P, Milstein DM, Montomoli J, Toraman F, Uz Z, Veenstra G, Ince C. Automated Algorithm Analysis of Sublingual Microcirculation in an International Multicentral Database Identifies Alterations Associated With Disease and Mechanism of Resuscitation. Crit Care Med. 2020 Oct;48(10):e864-e875. doi:10.1097/CCM.0000000000004491. PMID: 32931192.; Sigg AA, Zivkovic V, Bartussek J, Schuepbach RA, Ince C, Hilty MP. The physiological basis for individualized oxygenation targets in critically ill patients with circulatory shock. Intensive Care Med Exp. 2024 Aug 22;12(1):72. doi:10.1186/s40635-024-00651-6. PMID: 39174691; PMCID: PMC11341514.; Jacquet-Lagrèze M, Magnin M, Allaouchiche B, Abrard S. Is handheld video microscopy really the future of microcirculation monitoring? Crit Care. 2023 Sep 12;27(1):352. doi:10.1186/s13054-023-04642-z. PMID: 37700327; PMCID: PMC10498643.; Dubin A, Kanoore Edul VS, Caminos Eguillor JF, Ferrara G. Monitoring Microcirculation: Utility and Barriers - A Point-of-View Review. Vasc Health Risk Manag. 2020 Dec 31;16:577-589. doi:10.2147/VHRM.S242635. PMID: 33408477; PMCID: PMC7780856.; De Backer, Daniel. Is microcirculatory assessment ready for regular use in clinical practice?. Current Opinion in Critical Care 25(3):p 280-284, June 2019. %7C DOI:10.1097/MCC.0000000000000605; Magnin, M., Foulon, É., Lurier, T., Allaouchiche, B., Bonnet-Garin, J. M., & Junot, S. (2020). Evaluation of microcirculation by Sidestream Dark Field imaging: Impact of hemodynamic status on the occurrence of pressure artifacts - A pilot study. Microvascular research, 131, 104025. https://doi.org/10.1016/j.mvr.2020.104025; Massey, M. J., Larochelle, E., Najarro, G., Karmacharla, A., Arnold, R., Trzeciak, S., Angus, D. C., & Shapiro, N. I. (2013). The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. Journal of critical care, 28(6), 913–917. https://doi.org/10.1016/j.jcrc.2013.06.015; Massey, M.J., Shapiro, N.I. A guide to human in vivo microcirculatory flow image analysis. Crit Care 20, 35 (2015). https://doi.org/10.1186/s13054-016-1213-9; Dobbe, J. G., Streekstra, G. J., Atasever, B., van Zijderveld, R., & Ince, C. (2008). Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Medical & biological engineering & computing, 46(7), 659–670. https://doi.org/10.1007/s11517-008-0349-4; Ince C. (2008). The elusive microcirculation. Intensive care medicine, 34(10), 1755–1756. https://doi.org/10.1007/s00134-008-1131-7; Struijker-Boudier, H. A., Rosei, A. E., Bruneval, P., Camici, P. G., Christ, F., Henrion, D., Lévy, B. I., Pries, A., & Vanoverschelde, J. L. (2007). Evaluation of the microcirculation in hypertension and cardiovascular disease. European heart journal, 28(23), 2834–2840. https://doi.org/10.1093/eurheartj/ehm448; Dababneh, L., Cikach, F., Alkukhun, L., Dweik, R. A., & Tonelli, A. R. (2014). Sublingual microcirculation in pulmonary arterial hypertension. Annals of the American Thoracic Society, 11(4), 504–512. https://doi.org/10.1513/AnnalsATS.201308-277OC; Wadowski, P. P., Hülsmann, M., Schörgenhofer, C., Lang, I. M., Wurm, R., Gremmel, T., Koppensteiner, R., Steinlechner, B., Schwameis, M., & Jilma, B. (2018). Sublingual functional capillary rarefaction in chronic heart failure. European journal of clinical investigation, 48(2), 10.1111/eci.12869. https://doi.org/10.1111/eci.12869; Ruzek, L., Svobodova, K., Olson, L. J., Ludka, O., & Cundrle, I., Jr (2017). Increased microcirculatory heterogeneity in patients with obstructive sleep apnea. PloS one, 12(9), e0184291. https://doi.org/10.1371/journal.pone.0184291; Scorcella C, Damiani E, Domizi R, Pierantozzi S, Tondi S, Carsetti A, Ciucani S, Monaldi V, Rogani M, Marini B, Adrario E, Romano R, Ince C, Boerma EC, Donati A. MicroDAIMON study: Microcirculatory DAIly MONitoring in critically ill patients: a prospective observational study. Ann Intensive Care. 2018 May 15;8(1):64. doi:10.1186/s13613-018-0411-9. PMID: 29766322; PMCID: PMC5953911.; Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013 Apr;39(4):612-9. doi:10.1007/s00134-012-2793-8. Epub 2012 Dec 20. PMID: 23263029; PMCID: PMC3607718.; Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014 Dec;40(12):1795-815. doi:10.1007/s00134-014-3525-z. Epub 2014 Nov 13. PMID: 25392034; PMCID: PMC4239778.