Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"Павел Альбертович Никишев"', χρόνος αναζήτησης: 0,41δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The reported study was funded by RFBR and BRFBR, project number 20-53-04032., Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-53-04032.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 12, № 4S (2023): приложение; 90-101 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4S (2023): приложение; 90-101 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1444/868; Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016; 2(4): 454–472. doi:10.1021/acsbiomaterials.5b00429; Tetali S.S.V., Fricker A.T.R., van Domburg Y.A., Roy I. Intelligent biomaterials for cardiovascular applications. Curr. Opin. Biomed. Eng. 2023; 28: 100474. doi:10.1016/j.cobme.2023.100474; Huab X., Wangab T., Li F., Mao X. Surface modifications of biomaterials in different applied fields. RSC Adv. 2023; 13: 20495-20511. doi:10.1039/D3RA02248J; Narayan R. Nanobiomaterials; Woodhead Publishing: Cambridge, UK; 2018. pp. 357–384.; Shahbaz A., Hussain N., Mahmood T., Iqbal H.M.N., Emran T.B., Show P.L., Bilal M. Polymer nanocomposites for biomedical applications. In Micro and Nano Technologies, Smart Polymer Nanocomposites Design, Synthesis, Functionalization, Properties, and Applications. Editor(s): Ali N., Bilal M., Khan A., Nguyen T.A., Gupta R.K. Elsevier; 2023. pp. 379-394. doi:10.1016/B978-0-323-91611-0.00012-8; Maiti D., Tong X., Mou X., Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2019; 9: 1401. doi:10.3389/fphar.2018.01401; Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Joo S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014; 9: 393. doi:10.1186/1556-276X-9-393; Kalakonda P., Banne S., Kalakonda P. Enhanced mechanical properties of multiwalled carbon nanotubes/thermoplastic polyurethane nanocomposites. Nanomater. Nanotechnol. 2019; 9: 184798041984085. doi: 1847980419840858; Crosby A.J., Lee J. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007; 47(2): 217–229. doi:10.1080/15583720701271278; Tjong S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006; 53(3-4): 73–197. doi:10.1016/j.mser.2006.06.001; Jumaili A., Alancherry S., Bazaka K., Jacob M. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials. 2017; 10(9): 1066. doi:10.3390/ma10091066; Mohd Nurazzi N., Asyraf M.R.M., Khalina A., Abdullah N., Sabaruddin F.A., Kamarudin S.H., Ahmad S., Mahat A.M., Lee C.L., Aisyah H.A. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers. 2021; 13(7): 1047. doi:10.3390/polym13071047; Alshehri R., Ilyas A.M., Hasan A., Arnaout A., Ahmed F., Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J. Med. Chem. 2016; 59(18): 8149–8167. doi:10.1021/acs.jmedchem.5b01770; Mishra M.K., Sar-Mishra B., Kennedy J.P. Polym. Bull. 1986; 16: 47-53. doi:10.1007/BF01046608; Rezvova M.A., Yuzhalin A.E., Glushkova T.V., Makarevich M.I., Nikishau P.A., Kostjuk S.V., Klyshnikov K.Yu., Matveeva V.G., Khanova M.Yu., Ovcharenko E.A. Biocompatible Nanocomposites Based on Poly(styrene-block-isobutylene-block-styrene) and Carbon Nanotubes for Biomedical Application. Polymers. 2020; 12(9): 2158. doi:10.3390/polym12092158; Pinchuk L., Wilson G.J., Barry J.J., Schoephoerster R.T., Parel J.M., Kennedy J.P. Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials. 2008; 29(4): 448–460. doi:10.1016/j.biomaterials.2007.09.041; Silva M., Alves N.M., Paiva, M.C. Graphene-polymer nanocomposites for biomedical applications. Polym. Adv. Technol. 2017; 29(2): 687–700. doi:10.1002/pat.4164; Gilmore K.J., Moulton S.E., Wallace G.G. Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-β-isobutylene-β-styrene). Carbon. 2007; 45(2): 402–410. doi:10.1016/j.carbon.2006.09.015; Nezami R.F., Athanasiou L.S., Edelman E.R. Chapter 28 - Endovascular drug-delivery and drug-elution systems, Editor(s): Jacques Ohayon, Gerard Finet, Roderic Ivan Pettigrew, In Biomechanics of Living Organs, Biomechanics of Coronary Atherosclerotic Plaque, Academic Press. 2021; 4: 595-631.; Salah N., Alfawzan A.M., Saeed A., Alshahrie A., Allafi W. Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Sci. Rep. 2019; 9: 20288. doi:10.1038/s41598-019-56777-1.; Zhang J., Jiang D. Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites. Composites Science and Technology. 2011; 71(4): 466–470. doi:10.1016/j.compscitech.2010.12.020.; Gaharwar A.K., Patel A., Dolatshahi-Pirouz A., Zhang H., Rangarajan K., Iviglia, G., Shin S.-R., Hussain M.A., Khademhosseini A. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomater. Sci. 2015; 3: 46–58.