Εμφανίζονται 1 - 20 Αποτελέσματα από 104 για την αναζήτηση '"ПЦР-ДИАГНОСТИКА"', χρόνος αναζήτησης: 0,68δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Vegetable crops of Russia; № 2 (2025); 20-29 ; Овощи России; № 2 (2025); 20-29 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2607/1637; Анисимов Б.В. Мировое производство картофеля: тенденции рынка, прогнозы и перспективы (аналитический обзор). Картофель и овощи. 2021;(10):3-8. https://doi.org/DOI 10.25630/PAV.2021.45.71.008 https://www.elibrary.ru/oqkwfb; Терновых К.С., Попов Д.Ю. Современные тенденции в развитии картофелеводства. Московский экономический журнал. 2020;(12):39. https://doi.org/10.24411/2413-046X-2020-10871 https://www.elibrary.ru/mhzczo; Сердеров В.К., Ханбабаев Т.Г., Сердерова Д.В. Изменение содержания сухого вещества и крахмала в клубнях картофеля в зависимости от условий возделывания. Овощи России. 2019;2(46):80-83. https://doi.org/10.18619/2072-9146-2019-2-80-83 https://www.elibrary.ru/zivwrn; Поддубная О.В., Поддубный О.А. Сравнительный анализ содержания крахмала в клубнях картофеля. Эпоха науки. 2020;(24):72-76. https://doi.org/10.24411/2409-3203-2020-12414 https://www.elibrary.ru/oktzlx; Коршунов А.В., Филиппова Г.И., Гаитова Н.А., Митюшкин А.В., Кутовенко Л.Н. Управление содержанием крахмала в картофеле. Аграрный вестник Урала. 2011;2(81):47-50. https://www.elibrary.ru/pasytn; Красников. С.Н., Черемисин А.И., Согуляк С.В., Красникова О.В., Пантеева К.О. Оценка продуктивности и качества новых перспективных сортов картофеля для условий Западной Сибири. Картофель и овощи. 2023;(7):37-40. https://doi.org/10.25630/PAV.2023.80.58.005 https://www.elibrary.ru/rdedbs; Сайнакова А.Б., Романова М.С., Красников С.Н., Литвинчук О.В., Алексеев Я.И., Никулин А.В., Терентьева Е.В. Исследование коллекционных образцов картофеля на наличие генетических маркеров устойчивости к фитопатогенам. Вавиловский журнал генетики и селекции. 2018;22(1):18-24. https://doi.org/10.18699/VJ18.326 https://www.elibrary.ru/ypntpr; Бирюкова В.А., Шмыгля И.В., Жарова В.А., Бекетова М.П., Рогозина Е., Митюшкин А.В., Мелешин А.А. Молекулярные маркеры генов экстремальной устойчивости к Y вирусу картофеля в сортах и гибридах Solanum tuberosum L. Российская сельскохозяйственная наука. 2019;(5):17-22. https://doi.org/10.31857/S2500-26272019517-22 https://www.elibrary.ru/qwjzno; Козлова В.В., Пахомова Н.Г. Защита картофеля от фитофтороза. Владимирский земледелец. 2010;(3):26a. https://www.elibrary.ru/ncsimb; Мухордова М.Е., Черемисин А.И., Урман М.В. Комплексная оценка перспективного селекционного материала картофеля в условиях Омской области. Кормопроизводство. 2023;(3):12-17. https://www.elibrary.ru/taiolp; Урман М.В., Мухордова М.Е. Оценка перспективных сортообразцов картофеля на устойчивость к патогенам. Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии XXIII: Материалы 23-ей Всероссийской молодежной научной конференции, Москва, 14–16 ноября 2023 года. – Москва: Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии». 2023. С. 47-49. https://doi.org/10.48397/ARRIAB.2023.23.XXIII.022https://www.elibrary.ru/ogbnuv; Mori K., Sakamoto Y., Mukojima N., Tamiya S., Nakao T., Ishii T., Hosaka K. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica. 2011;(180):347- 355. https://doi.org/10.1007/s10681-011-0381-6; Kasai K., Morikawa Y., Sorri V. A., Valkonen J. P., Gebhardt C., Watanabe K. N. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome. 2000;43(1):1-8. https://doi.org/10.1139/g99-092; Song Y. S., Hepting L., Schweizer G., Hartl L., Wenzel G., Schwarzfischer A. Mapping of extreme resistance to PVY (Rysto) on chromosome XII using anther-culture-derived primary dihaploid potato lines. Theoretical and applied genetics. 2005;(111):879-887. https://doi.org/10.1007/s00122-005-0010-7; Marczewski W., Hennig J., Gebhardt C. The Potato virus S resistance gene Ns maps to potato chromosome VIII. Theoretical and Applied Genetics. 2002;105(4):564–567. https://doi.org/10.1007/s00122-002-0976-3; Marczewski W., Flis B., Syller J., Schäfer-Pregl R., & Gebhardt, C. A Major Quantitative Trait Locus for Resistance to Potato leafroll virus Is Located in a Resistance Hotspot on Potato Chromosome XI and Is Tightly Linked to N-Gene-Like Markers. Molecular Plant-Microbe Interactions. 2001;14(12):1420–1425. https://doi.org/10.1094/MPMI.2001.14.12.1420; Wang M., Allefs S., van den Berg R. G., Vleeshouwers V. G., van der Vossen E. A. G., Vosman B. Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics. 2008;116(7):933–943. https://doi.org/10.1007/s00122-008-0725-3; Li L., Tacke E., Hofferbert H.-R., Lubeck J., Strahwald J., Draffehn Astrid M., Walkemeier B., Gebhardt Ch. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theoretical and Applied Genetics. 2013;126(4):1039–1052. https://doi.org/10.1007/s00122-012-2035-z; Кондратюк А.В., Козлова Л.Н., Козлов В.А., Кильчевский А.В. Оценка эффективности ДНК-маркеров в селекции по биохимическим признакам качества клубней картофеля. Доклады Национальной академии наук Беларуси. 2016;60 (2):85-89. https://www.elibrary.ru/turjet; Урбанович О.Ю., Кузмицкая П.В., Картель Н.А. Генетические основы селекции растений. Том 4. Минск: Республиканское унитарное предприятие "Издательский дом "Белорусская наука", 2014. 654 с. ISBN 978-985-08-1791-4. https://www.elibrary.ru/ugolkn; Yavuz C., Demirel U., Çalışkan M.E. Assessment of the usability of four molecular markers to identify potato genotypes suitable for processing. Biotech Studies. 2024;33(2):74-81. https://doi.org/10.38042/biotechstudies.1483793.; https://www.vegetables.su/jour/article/view/2607

  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: The work was carried out within the framework of the State Assignment of the Vector State Scientific Centre of Virology and Biotechnology of Rospotrebnadzor, Работа выполнена в рамках выполнения Государственного задания ФБУН ГНЦ ВБ Вектор Роспотребнадзора

    Πηγή: South of Russia: ecology, development; Том 18, № 4 (2023); 114-124 ; Юг России: экология, развитие; Том 18, № 4 (2023); 114-124 ; 2413-0958 ; 1992-1098

    Περιγραφή αρχείου: application/pdf

    Relation: https://ecodag.elpub.ru/ugro/article/view/2998/1388; NAHMS‐USDA Bovine Leukosis Virus on U.S. // Dairy Operations. 2007.; Enzootic bovine leucosis // World Organisation for Animal Health. URL: https://www.woah.org/en/disease/enzootic-bovine-leukosis/ (дата обращения: 16. 11. 2023); Gulyukin M.I., et al. Control and trends in the epizootic situation of bovine leukemia in 2000–2016 // Russian Journal of Agricultural and Socio‐Economic Sciences. 2017. V. 71. N 11. P. 530–537. doi:10.18551/rjoas.2017-11.70; Nuotio L., et al. Eradication of enzootic bovine leukosis from Finland // Preventive Veterinary Medicine. 2003. V. 59. N 1–2. P. 43–49. doi:10.1016/s0167-5877(03)00057-6; Thompson K.G., Johnstone A.C., Hilbink F. Enzootic bovine leukosis in New Zealand ‐ a case report and update // New Zealand Veterinary Journal. 1993. V. 41. N 4. P. 190–194. doi:10.1080/00480169.1993.35767; Bartlett P.C., et al. Current Developments in the Epidemiology and Control of Enzootic Bovine Leukosis as Caused by Bovine Leukemia Virus // Pathogens. V. 9. Iss. 12. doi:10.3390/pathogens9121058; Yang Y., et al. Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score // Journal of Dairy Science. 2016. V. 99. N 5. P. 3688–3697. doi:10.3168/jds.2015-10580; Murakami K., et al. The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle // Vet Microbiol. 2011. V. 148. N 1. P. 84–88. doi:10.1016/j.vetmic.2010.08.001; Lee E., et al. Sequencing and phylogenetic analysis of the gp51 gene from Korean bovine leukemia virus isolates // Virol J. 2015. V. 12. N 1. doi:10.1186/s12985-015-0286-4; Kuzmin V., et al. Spread Dynamics of Leucosis in Cattle in Livestock Farms of the Russian Federation for 2000–2018 // KnE Life Sciences. 2019. P. 666–673. doi:10.18502/kls.v4i14.5655; Budulov N.R., et al. Bovine leukemia virus occurrence in Dagestan // Veterinary Science Today. 2023. V. 12. N 2. P. 111–118. doi:10.29326/2304-196X-2023-12-2-111-118; Gao A., Kouznetsova V.L., Tsigelny I.F. Bovine leukemia virus relation to human breast cancer: Meta‐analysis // Microb. Pathog. 2020. V. 149. P. 104417. doi:10.1016/j.micpath.2020.104417; Schwingel D., et al. Bovine leukemia virus DNA associated with breast cancer in women from South Brazil // Scientific Reports. 2019. V. 9. N 1. P. 1–7. doi:10.1038/s41598-019-39834-7; Buehring G.C., et al. Bovine leukemia virus linked to breast cancer in Australian women and identified before breast cancer development // PLoS One. 2017. V. 12. N 6. doi:10.1371/journal.pone.0179367; Зиннатов Ф.Ф, Гибадулина И.Р., Хазипов Н.З., Тюрикова Р.П., Камалов Б.В. Детекция и типизация вируса лейкоза крупного рогатого скота // Вятский медицинский вестник. 2007. N 4. С. 48–50.; Крюков В.И., Шалимова О.А., Друшляк Н.Г., Пикунова А.В. ДНК‐диагностика в селекции крупного рогатого скота // Вестник ОрелГАУ: Научное обеспечение животноводства. 2012. N 1. С. 62–68.; Чижова Л.Н., Белов Д.Е. Использование полимеразной цепной реакции в диагностике лейкоза КРС // Сборник научных трудов Ставропольского научно‐исследовательского института животноводства и кормопроизводства. 2004. Т. 2. N 2–2. С. 65–69.; Бабошко Д.А., Гашникова Н.М., Тотменин А.В., Нефедова А.А., Осипова И.П., Екушов В.Е., Рожков О.А., Кузьмин А.И., Флеер М.В. Генетическое разнообразие ВЛКРС, распространенных на территории Коченевского района Новосибирской области // Ветеринария и кормление. N 7. C. 51–53. URL: https://elibrary.ru/item.asp?id=47444643&ysclid=lr6e05h43950789258; https://ecodag.elpub.ru/ugro/article/view/2998

  5. 5
  6. 6
    Academic Journal

    Συνεισφορές: The research was conducted with support from the Russian Science Foundation, project No. 19-76-30005

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 6 (2023); 582-590 ; Вавиловский журнал генетики и селекции; Том 27, № 6 (2023); 582-590 ; 2500-3259 ; 10.18699/VJGB-23-65

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3929/1744; Abeysekara N.S., Faris J.D., Chao S., McClean P.E., Friesen T.L. Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat. Phytopathology. 2012;102(1):94-104. DOI:10.1094/PHYTO-02-11-0040.; Andrie R.M., Pandelova I., Ciuffetti L.M. A combination of phenotypic and genotypic characterization strengthens Pyrenophora triticirepentis race identification. Phytopathology. 2007;97(6):694-701. DOI:10.1094/PHYTO-97-6-0694.; Ciuffetti L.M., Tuori R.P., Gaventa J.M. A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell. 1997;9(2):135-144. DOI:10.1105/tpc.9.2.135.; Croll D., Crous P.W., Pereira D., Mordecai E.A., McDonal B.A., Brunner P.C. Genome-scale phylogenies reveal relationships among Parastagonospora species infecting domesticated and wild grasses. Persoonia. 2021;46:116-128. DOI:10.3767/persoonia.2021.46.04.; Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990;12(1):13-15.; Faris J.D., Zhang Z., Lu H.J., Lu S.W., Reddy L., Cloutier S., Fellers J.P., Meinhardt S.W., Rasmussen J.B., Xu S.S., Oliver R.P., Simons K.J., Friesen T.L. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. USA. 2010;107(30):13544-13549. DOI:10.1073/pnas.1004090107.; Faris J.D., Zhang Z., Rasmussen J.B., Friesen T.L. Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Mol. Plant Mi- crobe Interact. 2011;24(12):1419-1426. DOI:10.1094/MPMI-04-11-0094.; Ficke A., Cowger C., Bergstrom G., Brodal G. Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch – a case study in wheat. Plant Dis. 2018;102(4): 696-707. DOI:10.1094/PDIS-09-17-1375-FE.; Friesen T.L., Chu C.G., Liu Z.H., Xu S.S., Halley S., Faris J.D. Hostselective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theor. Appl. Genet. 2009;118(8):1489-1497. DOI:10.1007/s00122-0090997-2.; Friesen T.L., Holmes D.J., Bowden R.L., Faris J.D. ToxA is present in the U.S. Bipolaris sorokiniana population and is a significant virulence factor on wheat harboring Tsn1. Plant Dis. 2018;102(12): 2446-2452. DOI:10.1094/PDIS-03-18-0521-RE.; Gao Y., Faris J.D., Liu Z., Kim Y.M., Syme R.A., Oliver R.P., Xu S.S., Friesen T.L. Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum – wheat pathosystem. Mol. Plant Microbe Interact. 2015;28(5):615-625. DOI:10.1094/MPMI-12-14-0396-R.; Hafez M., Gourlie R., Despins T., Turkington T.K., Friesen T.L., Abou khaddour R. Parastagonospora nodorum and related species in Western Canada: genetic variability and effector genes. Phytopatho logy. 2020;110(12):1946-1958. DOI:10.1094/PHYTO-05-20-0207-R.; Kariyawasam G.K., Richards J.K., Wyatt N.A., Running K.L.D., Xu S.S., Liu Z., Borowicz P., Faris J.D., Friesen T.L. The Parastagonospora nodorum necrotrophic effector SnTox5 targets the wheat gene Snn5 and facilitates entry into the leaf mesophyll. New Phytol. 2022;233(1):409-426. DOI:10.1111/nph.17602.; Kolomiets T.M., Pakholkova E.V., Dubovaya L.P. Selection of Starting Material for the Creation of Wheat Cultivars with Long-term Resistance to Septoria. Moscow: Pechatnyy gorod Publ., 2017. (in Russian) Konkova E.A., Lyashcheva S.V., Sergeeva A.I. Screening of the world winter bread wheat collection for leafstem disease resistance in the Lower Volga Region. Zernovoe Khozyajstvo Rossii = Grain Economy of Russia. 2022;14(2):36-40. DOI:10.31367/2079-8725-202280-2-36-40. (in Russian); Kovalenko N.M., Shaydayuk E.L., Gultyaeva E.I. Characterization of commercial common wheat cultivars for resistance to tan spot causative agent. Biotekhnologiya i Selektsiya Rasteniy = Plant Biotechnology and Breeding. 2022;5(2):15-24. DOI:10.30901/26586266-2022-2-o3. (in Russian); Liu Z., Faris J.D., Oliver R.P., Tan K.C., Solomon P.S., McDonald M.C., McDonald B.A., Nunez A., Lu S., Rasmussen J.B., Friesen T.L. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog. 2009;5(9):e1000581. DOI:10.1371/journal.ppat.1000581.; Liu Z., Zhang Z., Faris J.D., Oliver R.P., Syme R., McDonald M.C., McDonald B.A., Solomon P.S., Lu S., Shelver W.L., Xu S., Friesen T.L. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog. 2012;8(1):e1002467. DOI:10.1371/journal.ppat.1002467.; McDonald M.C., Ahren D., Simpendorfer S., Milgate A., Solomon P.S. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Mol. Plant Pathol. 2017;19:432439. DOI:10.1111/mpp.12535.; Navathe S., Yadav P.S., Chand R., Mishra V.K., Vasistha N.K., Meher P.K., Joshi A.K., Gupta P.K. ToxA-Tsn1 interaction for spot blotch susceptibility in Indian wheat: an example of inverse genefor-gene relationship. Plant Dis. 2020;104(1):71-81. DOI:10.1094/PDIS-05-19-1066-RE.; Pakholkova E.V. Septoria disease of grain crops in various regions of the Russian Federation: Cand. Sci. (Biol.). Dissertation. Bol’shiye Vya zemy, 2003. (in Russian); Pyzhikova G.V., Karaseva E.V. Methods of studying Septoria on isolated wheat leaves. Sel’skokhozyaystvennaya Biolo giya = Agricultural Biology. 1985;12:112-114. (in Russian); Pyzhikova G.V., Sanina A.A., Suprun L.M., Kurakhtanova T.I., Gogava T.I., Meparishvili S.U., Antsiferova L.V., Kuznetsov N.S., Ignatov A.N., Kuzmichev A.A. Methods for Assessing the Resistance of Breeding Material and Wheat Cultivars to Septoria. Мoscow, 1989. (in Russian); Richards J.K., Kariyawasam G.K., Seneviratne S., Wyatt N.A., Xu S.S., Liu Z., Faris J.D., Friesen T.L. A triple threat: the Parastagonospora nodorum SnTox267 effector exploits three distinct host genetic factors to cause disease in wheat. New Phytol. 2022;233(1):427-442. DOI:10.1111/nph.17601.; Sanin S.S., Ibragimov T.Z., Strizhekozin Yu.A. Method for calculating wheat yield losses diseases. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2018;1:11-15. (in Russian); Sharma S. Genetics of Wheat Domestication and Septoria Nodorum Blotch Susceptibility in Wheat. Fargo, North Dakota: North Dakota State University, 2019.; Shi G., Zhang Z., Friesen T.L., Bansal U., Cloutier S., Wicker T., Rasmussen J.B., Faris J.D. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol. Genet. Genom. 2016a;291(1): 107-119. DOI:10.1007/s00438-015-1091-x.; Shi G., Zhang Z., Friesen T.L., Raats D., Fahima T., Brueggeman R.S., Lu S., Trick H.N., Liu Z., Chao W., Frenkel Z., Xu S.S., Rasmussen J.B., Faris J.D. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2016b; 2(10):e1600822. DOI:10.1126/sciadv.1600822.; van Schie C.C., Takken F.L. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 2014;52:551-581. DOI:10.1146/annurev-phyto-102313-045854.; Virdi S.K., Liu Z., Overlander M.E., Zhang Z., Xu S.S., Friesen T.L., Faris J.D. New insights into the roles of host gene-necrotrophic effector interactions in governing susceptibility of durum wheat to tan spot and Septoria nodorum blotch. G3 (Bethesda). 2016;6(12): 4139-4150. DOI:10.1534/g3.116.036525.; Zeleneva Yu.V., Ablova I.B., Sudnikova V.P., Mokhova L.M., Konkova E.A. Species composition of wheat septoria pathogens in the European part of Russia and identifying SnToxA, SnTox1 and Sn Tox3 effector genes. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2022;56(6):441-447. DOI:10.31857/S0026364822060113. (in Russian); Zhang Z., Friesen T.L., Simons K.J., Xu S.S., Faris J.D. Development, identification, and validation of markers for markerassisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol. Breeding. 2009;23:35-49. DOI:10.1007/s11032-008-9211-5.; Zhang Z., Friesen T.L., Xu S.S., Shi G., Liu Z., Rasmussen J.B., Faris J.D. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J. 2011;65(1):27-38. DOI:10.1111/j.1365-313X.2010.04407.x.; https://vavilov.elpub.ru/jour/article/view/3929

  7. 7
    Academic Journal

    Πηγή: Ukrainian Journal «Health of Woman»; No. 6(163) (2022): Ukrainian Journal Health of Woman; 22-25
    Ukrainian Journal «Health of Woman»; № 6(163) (2022): Ukrainian Journal Health of Woman; 22-25
    Український журнал "Здоров'я жінки"; № 6(163) (2022): Український журнал Здоров’я жінки; 22-25

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://ujhw.med-expert.com.ua/article/view/283588

  8. 8
  9. 9
    Academic Journal

    Συνεισφορές: This study was supported by the Russian Science Foundation, project No. 20-46-07001.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 3 (2022); 272-280 ; Вавиловский журнал генетики и селекции; Том 26, № 3 (2022); 272-280 ; 2500-3259 ; 10.18699/VJGB-22-27

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3361/1613; Andika I.B., Weia Sh., Cao Ch., Salaipetha L., Kondo H., Suna L. Phytopathogenic fungus hosts a plant virus: a naturally occurring cross-kingdom viral infection. Proc. Natl. Acad. Sci. USA. 2017;114(46):12267-12272. DOI 10.1073/pnas.1714916114.; Behjatnia A., Dry I., Krake L., Condé B.D., Connelly M.I., Randles J., Rezaian M.A. New potato spindle tuber viroid and tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology. 1996;86:880-886. DOI 10.1094/Phyto-86-880.; Bhat Al.I., Rao G.P. Characterization of Plant Viruses. Methods and Protocols. Humana, New York: Springer Science+Business Media, 2020. DOI 10.1007/978-1-0716-0334-5_1.; Black W., Mastenbroek C., Mills W.R., Peterson L.C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica. 1953;2:173-178. DOI 10.1007/BF00053724.; Brown D.J.F., Ploeg A.T., Robinson D.J. A review of reported associations between Trichodorus and Paratrichodorus species (Nematoda : Trichodoridae) and tobraviruses with a description of laboratory methods for examining virus transmission by trichodorids. Rev. Nématol. 1989;12(3):235-241.; Bulletin OEPP/EPPO Bulletin. 2011. Potato spindle tuber viroid on potato. 2011;41(3):394-399.; Cai Q., Qiao L., Wang M., He B., Lin F.M., Palmquist J., Huang S.D., Jin H. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360:1126-1129. DOI 10.1126/science.aar4142.; Cottilli P., Belda-Palazón B., Adkar-Purushothama C.R., Perreault J.-P., Schleiff E., Rodrigo I., Ferrando A., Lisón P. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Res. 2019;47(16):8649-8661. DOI 10.1093/nar/gkz679.; Diener T.O., Raymer W.B. Potato spindle tuber virus: a plant virus with properties of a free nucleic acid. II. Characterization and partial purification. Virology. 1969;37(3):351-366. DOI 10.1016/0042-6822(69)90219-0.; Fernow K.H., Peterson L.C., Plaisted R.L. Spindle tuber virus in seeds and pollen of infected plants. Am. Potato J. 1970;47:75-80. DOI 10.1007/BF02864807.; Gross H.J., Domdey H., Lossow C., Jank P.R.M., Alberty H., Sänger H.L. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature. 1978;273:203-208. DOI 10.1038/273203a0.; Han L., Luan Y.-S. Horizontal transfer of small RNAs to and from plants. Front. Plant Sci. 2015;6:1113. DOI 10.3389/fpls.2015.01113.; Hou Y., Zhai Y., Feng L., Karimi H.Z., Rutter B.D., Zeng L., Choi D.S., Zhang B., Gu W., Chen X., Ye W., Innes R.W., Zhai J., Ma W. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe. 2019;25(1):153-165.e5. DOI 10.1016/j.chom.2018.11.007.; Jahan S.N., Åsman A.K.M., Corcoran P., Fogelqvist J., Vetukuri R.R., Dixelius C. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J. Exp. Bot. 2015;66:2785-2794. DOI 10.1093/jxb/erv094.; Kastalyeva T.B., Mozhaeva K.A., Pisetskaya N.F., Romanova S.A., Trofimets L.N. The potato spindle tuber viroid and bringing potato into a healthy state. Vestnik RASKHN = Herald of the Russian Academy of Agricultural Sciences. 1992;3:22-24. (in Russian); Khavkin E.E. Potato late blight as a model of pathogen-host plant coevolution. Russ. J. Plant Physiol. 2015;62(3):408-419. DOI 10.1134/S1021443715030103.; Kryczyński S., Paduch-Cichal E.L., Skrzeczkowski J. Transmission of three viroids through seed and pollen of tomato plants. J. Phytopathol. 1988;121(1):51-57. DOI 10.1111/j.1439-0434.1988.tb00952.x.; Leesutthiphonchai W., Vu A.L., Ah-Fong A.M.V., Judelson H.S. How does Phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathology. 2018;108(8):916-924. DOI 10.1094/PHYTO-04-18-0130-IA.; Mackie A.E., Rodoni B.C., Barbetti M.J., McKirdy S.J., Jones R.A.C. Potato spindle tuber viroid: alternative host reservoirs and strain found in a remote subtropical irrigation area. Eur. J. Plant Pathol. 2016;145(2):433-446. DOI 10.1007/s10658-016-0857-2.; Manzer F.E., Merriam D. Field transmission of potato spindle tuber virus and virus X by cultivating and hilling equipment. Am. Potato J. 1961;38:346-352.; Mascia T., Vučurović A., Minutillo S.A., Nigro F., Labarile R., Savoia M.A., Palukaitis P., Gallitelli D. Infection of Colletotrichum acutatum and Phytophthora infestans by taxonomically different plant viruses. Eur. J. Plant Pathol. 2019;153(4):1001-1017. DOI 10.1007/s10658-018-01615-9.; Matsushita Y., Yanagisawa H. Distribution of Tomato planta macho viroid in germinating pollen and transmitting tract. Virus Genes. 2018;54:124-129. DOI 10.1007/s11262-017-1510-7.; Matsushita Y., Yanagisawa H., Khiutti A., Mironenko N., Ohto Y., Afanasenko O. Genetic diversity and pathogenicity of potato spindle tuber viroid and chrysanthemum stunt viroid isolates in Russia. Eur. J. Plant Pathol. 2021;161:529-542. DOI 10.1007/s10658-021-02339-z.; Mazumdar P., Singh P., Kethiravan D., Ramathani I., Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. Planta. 2021;253(6):119. DOI 10.1007/s00425-021-03636-x.; Medina M.V., Platt H.W. Comparison of different culture media on the mycelial growth, sporangia and oospore production of Phytophthora infestans. Am. J. Potato Res. 1999;76:121-125. DOI 10.1007/BF02853576.; Mertelik J., Kloudova K., Cervena G., Necekalova J., Mikulkova H., Levkanicova Z., Dedic P., Ptacek J. First report of Potato spindle tuber viroid (PSTVd) in Brugmansia spp., Solanum jasminoides, Solanum muricatum and Petunia spp. in the Czech Republic. Plant Pathol. 2010;59(2):392. DOI 10.1111/j.1365-3059.2009.02115.x.; Owens R.A., Khurana S.M.P., Smith D.R., Singh M.N., Garg I.D. A new mild strain of potato spindle tuber viroid isolated from wild Solanum spp. in India. Plant Dis. 1992;76(5):527-529. DOI 10.1094/PD-76-0527.; Pearson M.N., Beever R.E., Boine B., Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 2009;10(1):115-128. DOI 10.1111/j.1364-3703.2008.00503.x.; Pfannenstiel M.A., Slack S.A. Response of potato cultivars to infection by the potato spindle tuber viroid. Phytopathology. 1980;70(9):922-926. DOI 10.1094/Phyto-70-922.; Puchta H., Herold T., Verhoeven K., Roenhorst A., Ramm K., SchmidtPuchta W., Sänger H.L. A new strain of potato spindle tuber viroid (PSTVd-N) exhibits major sequence differences as compared to all other PSTVd strains sequenced so far. Plant Mol. Biol. 1990;15(3):509-511. DOI 10.1007/BF00019169.; Querci M., Owens R.A., Bartolini I., Lazarte V., Salazar L.F. Evidence for heterologous encapsidation of potato spindle tuber viroid in particles of potato leafroll virus. J. Gen. Virol. 1997;78(Pt.6):1207-1211. DOI 10.1099/0022-1317-78-6-1207.; Ristaino J.B., Madritch M., Trout C.L., Parra G. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Appl. Environ. Microbiol. 1998;64(3):948-954. DOI 10.1128/AEM.64.3.948–954.; Salazar L.F., Querci M., Bartolini I., Lazarte V. Aphid transmission of potato spindle tuber viroid assisted by potato leafroll virus. Fitopatologia. 1995;30(1):56-58.; Serra P., Carbonell A., Navarro B., Gago-Zachert S., Li S., Di Serio F., Flores R. Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment. Proc. Natl. Acad. Sci. USA. 2020;117(19):10126-10128. DOI 10.1073/pnas.1922249117.; Singh R.P. Seed transmission of potato spindle tuber virus in tomato and potato. Am. Potato J. 1970;47:225-227. DOI 10.1007/BF02872303.; Singh R.P. Experimental host range of the potato spindle tuber ‘virus’. Am. Potato J. 1973;50:111-123. DOI 10.1007/BF02857207.; Singh R.P., Boucher A., Somerville T.H. Detection of Potato spindle tuber viroid in the pollen and various parts of potato plant pollinated with viroid-infected pollen. Plant Dis. 1992;76:951-953.; Singh S., Awasthi L.P., Jangre A., Nirmalkar V.K. Chapter 22 – Transmission of plant viruses through soil-inhabiting nematode vectors. In: Awasthi L.P. (Ed.) Applied Plant Virology. Acad. Press, 2020;291-300. DOI 10.1016/B978-0-12-818654-1.00022-0.; Sutela S., Poimala A., Vainio E.J. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol. Ecol. 2019;95(9):fiz119. DOI 10.1093/femsec/fiz119.; Syller J., Marczewski W., Pawłowicz J. Transmission by aphids of potato spindle tuber viroid encapsidated by potato leafroll luteovirus particles. Eur. J. Plant Pathol. 1997;103:285-289. DOI 10.1023/A:1008648822190.; Takeda R., Ding B. Viroid intercellular trafficking: RNA motifs, cellular factors and broad impacts. Viruses. 2009;1(2):210-221. DOI 10.3390/v1020210.; Verhoeven J.T.J., Roenhorst J.W. High stability of original predominant pospiviroid genotypes upon mechanical inoculation from ornamentals to potato and tomato. Arch. Virol. 2010;155:269-274. DOI 10.1007/s00705-009-0572-9.; Vetukuri R.R., Åsman A.K.M., Tellgren-Roth C., Jahan S.N., Reimegård J., Fogelqvist J., Savenkov E., Söderbom F., Avrova A.O., Whisson S.C., Dixelius C. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS One. 2012;7(12):e51399. DOI 10.1371/journal.pone.0051399.; Wang M., Dean R.A. Movement of small RNAs in and between plants and fungi. Mol. Plant Pathol. 2020;21:589-601. DOI 10.1111/mpp.12911.; Wei Sh., Bian R., Andika I.B., Niu E., Liu Q., Kondo H., Yang L., Zhou H., Pang T., Lian Z., Liu X., Wu Y., Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. Proc. Natl. Acad. Sci. USA. 2019;116(26):13042-13050. DOI 10.1073/pnas.1900762116.; Wei S., Bian R., Andika I.B., Niu E., Liu Q., Kondo H., Yang L., Zhou H., Pang T., Lian Z., Liu X., Wu Y., Sun L. Nucleotide substitutions in plant viroid genomes that multiply in phytopathogenic fungi. Proc. Natl. Acad. Sci. USA. 2020;117(19):10129-10130. DOI 10.1073/pnas.2001670117.; White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (Eds.) PCR Protocols, a Guide to Methods and Applications. Acad. Press, 1990;315-322. DOI 10.1016/B978-0-12-372180-8.50042-1.; Yanagisawa H., Sano T., Hase S., Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology. 2019;526(2):22-31. DOI 10.1016/j.virol.2018.09.021.; Zeng J., Gupta V.K., Jiang Y., Yang B., Gong L., Zhu H. Crosskingdom small RNAs among animals, plants and microbes. Cells. 2019;8(4):371. DOI 10.3390/cells8040371.; https://vavilov.elpub.ru/jour/article/view/3361

  10. 10
    Academic Journal

    Πηγή: Russian Journal of Infection and Immunity; Vol 11, No 5 (2021); 917-926 ; Инфекция и иммунитет; Vol 11, No 5 (2021); 917-926 ; 2313-7398 ; 2220-7619

    Περιγραφή αρχείου: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Πηγή: Problems of Particularly Dangerous Infections; № 2 (2020); 141-143 ; Проблемы особо опасных инфекций; № 2 (2020); 141-143 ; 2658-719X ; 0370-1069 ; 10.21055/0370-1069-2020-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/1342/1135; Novel Coronavirus – China. Disease outbreak news. (Cited 01 Apr 2020). [Internet]. Available from: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.; World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). (Cited 01 Apr 2020). [Internet]. Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-finalreport.pdf.; World Health Organization. Critical preparedness, readiness and response actions for COVID-19: interim guidance. (Cited 27 Mar 2020). [Internet]. Available from: https://www.who.int/publications-detail/critical-preparedness-readiness-and-response-actionsfor-covid-19.; World Health Organization. Laboratory testing strategy recommendations for COVID-19: interim guidance. (Cited 10 Apr 2020). [Internet]. Available from: https://www.who.int/publications-detail/laboratory-testing-strategy-recommendations-for-covid-19interim-guidance.; https://journal.microbe.ru/jour/article/view/1342

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20