-
1Academic Journal
Συγγραφείς: N. P. Kiryushchenkova, I. A. Novikov, Н. П. Кирющенкова, И. А. Новиков
Πηγή: Biomedical Photonics; Том 14, № 2 (2025); 12-20 ; 2413-9432
Θεματικοί όροι: протопорфирин IX, skin neoplasm, fluorescence, tumor border, protoporphyrin IX, новоо6разование кожи, флуоресценция, граница опухоли
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/716/485; Kaprin A.D., Starinsky V.V., Shakhzadova A.O. eds. Malignant neoplasms in Russia in 2020 (morbidity and mortality). M.: P.A. Herzen Moscow Oncology Research Institute. – 2021. (In Russ.); Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA Cancer J Clin. – 2021. – Vol.71. – P. 209-249. https://doi.org/10.3322/caac.21660; Peris K., Fargnoli M.C., Garbe C., Kaufmann R., Bastholt L., Seguin N.B., Bataille V., Marmol V. D., Dummer R., Harwood C.A., Hauschild A., Höller C., Haedersdal M., Malvehy J., Middleton M.R., Morton C.A., Nagore E., Stratigos A.J., Szeimies R.M., Tagliaferri L., Trakatelli M., Zalaudek I., Eg- germont A., Grob J.J. Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplinary guidelines // Eur J Cancer. – 2019. – Vol. 118. – P.10-34.; Vornicescu C., Șenilă S.C., Bejinariu N.I., VesaȘ.C., Boșca A.B., Chirilă D.N., MelincoviciC.S., Sorițău O., Mihu C.M. Predictive factors for the recur- rence of surgically excised basal cell carcinomas: A retrospective clini- cal and immunopathological pilot study // Experimental and Thera- peutic Medicine. – 2021. – Vol. 22(5). – P.1336. https://doi.org/10.3892/ etm.2021.10771; Policard A. Etudes sur les aspects offerts par des tumeurs experimen- tales ex aminées a la lumière de Wood // C R Soc Biol. – 1924. – Vol. 91. – P. 1423-1428.; GalkinaE.M., Utz S.R. Fluorescence diagnosis in dermatology (review) // Saratov Journal of Medical Scientific Research. – 2013. – Vol. 9(3). – P. 566-572. (In Russ.); Wizenty J., Schumann T., Theil, D., Stockmann M., Pratschke J., Tacke F., Aigner F., Wuensch T. Recent Advances and the Potential for Clini- cal Use of Autofluorescence Detection of Extra-Ophthalmic Tissues // Molecules. – 2020. – Vol. 25(9). – P. 2095.; Croce A.C., Bottiroli G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis // Eur. J. Histochem. – 2014. – Vol. 58. – P. 2461.; Vo-Dinh T. Biomedical photonics handbook: biomedical diagnostics // CRC press. Boca Raton. – 2014.; McNicholas K., MacGregor M.N., Gleadle J.M. In order for the light to shine so brightly, the darkness must be present-why do cancers fluo- resce with 5-aminolaevulinic acid? // Br J Cancer. – 2019. – Vol. 121(8). – P. 631-639. https://doi.org/10.1038/s41416-019-0516-4.; Pavlova N.N., Thompson C.B. The emerging hallmarks of cancer metabolism // Cell Metab. – 2016. – Vol. 23 (1). – P.27-47. https://doi. org/10.1016/j.cmet.2015.12.006.; Potapov A.A., Goriaĭnov S.A., Loshchenov V.B., Savel'eva T.A., Gavrilov A.G., Okhlopkov V.A., Zhukov V.Iu., Zelenkov P.V., Gol'bin D.A., Shurkhaĭ V.A., Shishkina L.V., Grachev P.V., Kholodtsova M.N., Kuz'min S.G., Voro- zhtsov G.N., Chumakova A.P. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas // ZhVoprNeirokhirIm N. N. Bur- denko. – 2013. – Vol. 77(2). – P. 3-10. (In Eng., Russ.); Na R., Stender I.M., Wulf H.C. Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence // Acta Derm Venereol. – 2001. – Vol. 81. – P. 246-249. https://doi.org/10.1080/00015550152572859; Hegyi J., Hegyi V., New developments in fluorescence diagnostics. In: Michael R. Hamblin, Pinar Avci, Gaurav K. Gupta, eds // Imaging in Der- matology. Academic Press. – 2016. – P. 89-94. https://doi.org/10.1016/ B978-0-12-802838-4.00009-1; Grusha Ia.O., Kiryushchenkova N.P., Novikov I.A., Fedorov A.A., Ismailo- va D.S. Histological verification of autofluorescence borders of perior- bital skin tumors // Vestnik Oftalmologii. – 2020. – Vol. 136(6). – P. 32-41. (In Russ.) https://doi.org/10.17116/oftalma202013606132; Kienle A., Foschum F., Hohmann A. Light propagation in structural anisotropic media in the steady-state and time domains // Phys. Med. Biol. – 2013. – Vol. 58(17). – P. 6205. https://doi.org/10.1088/0031- 9155/58/17/6205; Jacques S.L. Optical properties of biological tissues: a review // Phys Med Biol. – 2013. – Vol. 58(11). – P. 37-61. https://doi.org/0.1088/0031- 9155/58/11/R37.; Nickell S. et al. Anisotropy of light propagation in human skin // Phys. Med. Biol. – 2000. – Vol. 45. – P. 2873-2886.; Tuchin V.V. Lasers and optical fibers in biomedical studies (2d ed.) // Fizmatlit. – 2010 (In Russ.); Tuchin V.V. Optical biomedical diagnosis // Izvestiya of Saratov Uni- versity. Physics. – 2005. – Vol. 1(5). – P. 39-53. (In Russ.) https://doi. org/10.18500/1817-3020-2005-5-1-39-53.; Anderson RR, Parrish JA. The optics of human skin // J Invest Derma- tol. – 1981. – Vol.77 (1). – P. 13-9. https://doi.org/10.1111/1523-1747. ep12479191.; Colas V., Daul C., Khairallah G., Amouroux M., Blondel W. Spatially re- solved diffuse reflectance and autofluorescence photon depth dis- tribution in human skin spectroscopy: a modeling study // Proc. SPIE 11553.- Optics in Health Care and Biomedical Optics X. – 115531A. https://doi.org/10.1117/12.2575069; Brancaleon L., Durkin A.J., Tu J.H., Menaker G., Fallon J.D., Kollias N. In vivo Fluorescence Spectroscopy of Nonmelanoma Skin Cancer // Pho- tochemistry and Photobiology. –2001. – Vol. 73(2). – P. 178-183. https:// doi.org/10.1562/0031-8655(2001)0732.0.CO;2; Masuda Y., Ogura Y., Inagaki Y., Yasui T., Aizu Y. Analysis of the influence of collagen fibres in the dermis on skin optical reflectance by Monte Carlo simulation in a nine-layered skin model // Skin Res Technol. – 2018. – Vol. 24. – P. 248-255. https://doi.org/10.1111/srt.12421; Smirnova O.D., Rogatkin D., Litvinova K. Collagen as in vivo quantita- tive fluorescent biomarkers of abnormal tissue changes // J. Innov. Opt. Health Sci. – 2012. – Vol. 05(2). – P.1250010.; Yagi R., Kawabata S., Ikeda N. et al. Intraoperative 5-aminolevulinic acid- induced photodynamic diagnosis of metastatic brain tumors with his- topathological analysis // World J SurgOnc – 2017. – Vol. 15 – P. 179. https://doi.org/10.1186/s12957-017-1239-8; Redondo P., Marquina M., Pretel M., Aguado L., Iglesias M.E. Methyl- ALA-Induced Fluorescence in Photodynamic Diagnosis of Basal Cell Carcinoma Prior to Mohs Micrographic Surgery // ArchDermatol. – 2008. – Vol. 144(1). – P. 115-117. https://doi.org/10.1001/archderma- tol.2007.3; Kiryushchenkova N.P., Grusha Y., The use of autofluorescence diagnos- tics in monitoring and evaluating the effectiveness of local chemo- therapy for superficial basal cell carcinoma of the skin (clinical case) // Modern technologies in ophthalmology. – 2020. – Vol. 4 (35). – P. 162-163. (In Russ.) https://doi.org/10.25276/2312-4911-2020-4-162-163; Hefti M., von Campe G., Moschopulosa M., Siegnerb A., Looserc H., Landolt H. 5-aminolaevulinic acid-induced protoporphyrin IX fluores- cence in high-grade glioma surgery // SWISS MED WKLY – 2008. –Vol. 138(11-12). – P. 180-185.; Sapronov M.V., Skornyakova N.M. Computer visualization of Rayleigh scattering indicatrix in dynamic // Scientific visualization. – 2017. – Vol. 3(9). – P. 42-53. (In Russ.); Kalyagina N., Loschenov V., Wolf D., Daul C., Blondel W., Savelieva T. Ex- perimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical mod- el of a bladder wall // Applied Physics B. – 2011. – Vol. 105(3). – P. 631- 639.doi:10.1007/s00340-011-4678-x; Colas V., Amouroux M., Daul C., Perrin-Mozet C., Blondel W. Compara- tive study of optical properties estimation on liquid optical phantoms using spatially-resolved diffuse reflectance spectroscopy and double integrating spheres methods // Proc. SPIE 12147. – Tissue Optics and Photonics II. – P. 1214705. https://doi.org/10.1117/12.2621496
-
2Academic Journal
Συγγραφείς: V. E. Zavedeeva, K. T. Efendiev, D. M. Kustov, L. Yu. Loschenova, V. B. Loschenov, В. Е. Заведеева, К. Т. Эфендиев, Д. М. Кустов, Л. Ю. Лощенова, В. Б. Лощенов
Πηγή: Biomedical Photonics; Том 14, № 1 (2025); 36-46 ; 2413-9432
Θεματικοί όροι: спектры флюоресценции, photodynamic therapy, 5-aminolevulinic acid, porphyrins, protoporphyrin IX, chlorin-type photoproducts, fluorescence spectra, фотодинамическая терапия, 5-аминолевулиновая кислота, порфирины, протопорфирин IX, фотопродукты хлоринового типа
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/697/482; Beika M., Harada Y., Minamikawa T., Yamaoka Y., Koizumi N., Murayama Y., Konishi H., Shiozaki A., Fujiwara H., Otsuji E., Takamatsu T. and Tanaka H. Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid. International Journal of Molecular Sciences, 2021, Vol. 22(18), рр. 10121. https://doi.org/10.3390/ijms221810121; Du H., Amy Fuh R., Li J., Corkan L.A. and S. Lindsey J. PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochemistry and Photobiology, 1998, Vol. 68, рр.141-142. https://doi.org/10.1111/j.1751-1097.1998.tb02480.x; Dixon J. M., Taniguchi M. and S. Lindsey J. PhotochemCAD 2. A refined program with accompanying spectral data bases for photochemical calculations. Photochemistry and Photobiology, 2004, Vol. 81, рр. 212-213. https://doi.org/10.1111/j.1751-1097.2005.tb01544.x; Khilov, Aleksandr Vladimirovich, et al. "Analytical model of fluorescence intensity for the estimation of fluorophore localisation in biotissue with dual-wavelength fluorescence imaging." Quantum Electronics, 2021, Vol. 51(2), рр. 95. DOI 10.1070/QEL17503; Efendiev K., Alekseeva P.M., Bikmukhametova I.R., Piterskova L.S., Orudzhova K.F., Agabekova U.D., Slovokhodov E.K. and Loschenov V.B. Comparative investigation of 5-aminolevulinic acid and hexyl aminolevulinate-mediated photodynamic diagnostics and therapy of cervical dysplasia and vulvar leukoplakia. Laser Physics Letters, 2021, Vol. 18(6), рр. 065601. DOI 10.1088/1612-202X/abf5cf; Kirillin, M., Khilov, A., Kurakina, D., Orlova, A., Perekatova, V., Shishkova, V., . & Sergeeva, E. (2021). Dual-wavelength fluorescence monitoring of photodynamic therapy: from analytical models to clinical studies. Cancers, 13(22), рр. 5807. https://doi.org/10.3390/cancers13225807; Bagdonas S., Ma L.W., Iani V., Rotomskis R., Juzenas P. and Moan J. Phototransformations of 5-Aminolevulinic Acid–induced Protoporphyrin IX in vitro: A Spectroscopic Study. Photochemistry and photobiology, 2000, Vol. 72(2), рр. 186-192. https://doi.org/10.1562/0031-8655(2000)0720186POAAIP2.0.CO2; Ogbonna Sochi J., Y. York W.B., Nishimura T., Hazama H., Fukuhara H., Inoue K. and Awazu K. Increased fluorescence observation intensity during the photodynamic diagnosis of deeply located tumors by fluorescence photoswitching of protoporphyrin IX. Journal of Biomedical Optics, 2023, рр. 055001-055001. https://doi.org/10.1117/1.JBO.28.5.055001; Sidney Cox G., Bobillier C. and G. Whitten D. Photooxydation and singlet oxygen sensitization by protoporphyrin IX and its photooxydation products. Photochemistry and Photobiology, 1982, Vol. 36, рр. 401-407. https://doi.org/10.1111/j.1751-1097.1982.tb04393.x; Rick K., Sroka R., Stepp H., Kriegmair M.,. Huber R.M, Jacob K. and Baumgartner R. Phototransformations of 5-Aminolevulinic Pharmacokinetics of Saminolevulinic acid-induced protoporphyrin IX in skin and blood. Journal of Photochemistry and Photobiology: Biology, 1997, Vol. 40, рр. 313-319. https://doi.org/10.1016/S1011-1344(97)00076-6; Fritsch C., Lehmann P., Stahl W., Schulte K.W., Blohm E., Lang K., Sies H. and Ruzicka T. Optimum porphyrin accumulation in epithelial skin tumours and psoriatic lesions after topical application of δ-aminolaevulinic acid. British Journal of Cancer, 1999, Vol. 79, рр. 1603-1608. https://doi.org/10.1038/sj.bjc.6690255; Brault D., Aveline B., Delgado O. and Vever-Bizet Ch. Chlorin-type photosensitizers derived from vinyl porphyrins. Photochemistry and Photobiology, 2001, Vol. 73(4), рр. 331-338. https://doi.org/10.1117/12.199160; Robinson D. J., de Brujin H. S., van der Veen N., Stringer M. R., Brown S. B. and Star W. M. Fluorescence photobleaching of ALA-induced PpIX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochemistry and Photobiology, 1998, Vol. 67, рр. 140-149. https://doi.org/10.1111/j.1751-1097.1998.tb05177.x; Ogbonna, Sochi J., Katsuyoshi Masuda, and Hisanao Hazama. "The effect of fluence rate and wavelength on the formation of protoporphyrin IX photoproducts. "Photochemical & Photobiological Sciences, 2024, Vol. 23(9), рр.1627-1639. https://doi.org/10.1007/s43630-024-00611-9
-
3Academic Journal
Συγγραφείς: V. I. Ivanova-Radkevich, O. M. Kuznetsova, E. V. Filonenko, В. И. Иванова-Радкевич, О. М. Кузнецова, Е. В. Филоненко
Πηγή: Biomedical Photonics; Том 13, № 2 (2024); 43-48 ; 2413-9432
Θεματικοί όροι: трансмембранные переносчики, 5-aminolevulinic acid, protoporphyrin IX, transmembrane transporters, 5-аминолевулиновая кислота, протопорфирин IX
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/652/467; https://www.pdt-journal.com/jour/article/view/652/494; Filonenko E. V. Clinical implementation and scientific development of photodynamic therapy in Russia in 2010-2020 // Biomed. Photonics. – 2021. – Т. 10. – С. 4-22.; Zharkova N. N. et al. Fluorescence observations of patients in the course of photodynamic therapy of cancer with the photosensitizer PHOTOSENS // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 400-403.; Sokolov V. V. et al. Clinical fluorescence diagnostics in the course of photodynamic therapy of cancer with the photosensitizer PHO-TOGEM // Photodynamic Therapy of Cancer II. – SPIE, 1995. – Т. 2325. – С. 375-380.; Filonenko E. V. et al. Photodynamic therapy in the treatment of intraepithelial neoplasia of the cervix, vulva and vagina // Bio-medical Photonics. – 2021. – Т. 9. – №. 4. – С. 31-39. https://doi.org/10.24931/2413-9432-2020-9-4-31-39.; Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of psoriasis // Biomedical Photonics. – 2023. – Т. 12. – №. 1. – С. 28-36. doi:10.24931/2413-9432–2023-12-1-28-36.; Ivanova-Radkevich V. I. Biochemical basis of selective accumulation and targeted delivery of photosensitizers to tumor tissues // Biochemistry (Moscow). – 2022. – Т. 87. – №. 11. – С. 1226-1242. https://doi.org/10.1134/S0006297922110025.; Lai H. W., Nakayama T., Ogura S. Key transporters leading to specific protoporphyrin IX accumulation in cancer cell following administration of aminolevulinic acid in photodynamic therapy/diagnosis // International Journal of Clinical Oncology. – 2021. – Т. 26. – С. 26-33; Brandsch M. Drug transport via the intestinal peptide transporter PepT1 // Current opinion in pharmacology. – 2013. – Т. 13. – №. 6. – С. 881-887.; Döring F. et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications // The Journal of clinical investigation. – 1998. – Т. 101. – №. 12. – С. 2761-2767.; Hagiya Y. et al. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer // Photodiagnosis and photodynamic therapy. – 2013. – Т. 10. – №. 3. – С. 288-295.; Xie Y., Hu Y., Smith D. E. The proton‐coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5‐aminolevulinic acid // British journal of pharmacology. – 2016. – Т. 173. – №. 1. – С. 167-176.; Jappar D. et al. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice // Drug metabolism and disposition. – 2010. – Т. 38. – №. 10. – С. 1740-1746.; Neumann J., Brandsch M. δ-Aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct // Journal of Pharmacology and Experimental Therapeutics. – 2003. – Т. 305. – №. 1. – С. 219-224.; Chung C. W. et al. Aminolevulinic acid derivatives-based photodynamic therapy in human intra-and extrahepatic cholangiocarcinoma cells // European Journal of Pharmaceutics and Biopharmaceutics. – 2013. – Т. 85. – №. 3. – С. 503-510.; Hagiya Y. et al. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro //Photodiagnosis and photodynamic therapy. – 2012. – Т. 9. – №. 3. – С. 204-214.; Lai H. W. et al. Novel strategy to increase specificity of ALA-Induced PpIX accumulation through inhibition of transporters involved in ALA uptake // Photodiagnosis and Photodynamic Therapy. – 2019. – Т. 27. – С. 327-335.; Tchernitchko D. et al. A variant of peptide transporter 2 predicts the severity of porphyria-associated kidney disease // Journal of the American Society of Nephrology. – 2017. – Т. 28. – №. 6. – С. 1924-1932.; Xiang J. et al. PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes // Brain research. – 2006. – Т. 1122. – №. 1. – С. 18-23.; Anderson C. M. H. et al. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carri ers coexpressed in the small intestine // Journal of Pharmacology and Experimental Therapeutics. – 2010. – Т. 332. – №. 1. – С. 220-228.; Boll M. et al. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters // Journal of Biological Chemistry. – 2002. – Т. 277. – №. 25. – С. 22966-22973.; Kristensen A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation //Pharmacological reviews. – 2011. – Т. 63. – №. 3. – С. 585-640.; Zhou Y. et al. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents // Journal of Biological Chemistry. – 2012. – Т. 287. – №. 42. – С. 35733-35746.; https://www.proteinatlas.org/ENSG00000115657-ABCB6/tissue; Tran T. T. et al. Neurotransmitter Transporter Family Including SLC 6 A 6 and SLC 6 A 13 Contributes to the 5‐Aminolevulinic Acid (ALA)‐Induced Accumulation of Protoporphyrin IX and Photodamage, through Uptake of ALA by Cancerous Cells // Photochemistry and photobiology. – 2014. – Т. 90. – №. 5. – С. 1136-1143.; Bermudez Moretti M. et al. δ-aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by BETA transporters // British journal of cancer. – 2002. – Т. 87. – №. 4. – С. 471-474.; Manceau H. et al. TSPO2 translocates 5‐aminolevulinic acid into human erythroleukemia cells // Biology of the Cell. – 2020. – Т. 112. – №. 4. – С. 113-126.; Krishnamurthy P., Schuetz J. D. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival // Biometals. – 2005. – Т. 18. – С. 349-358.; Desuzinges-Mandon E. et al. ABCG2 transports and transfers heme to albumin through its large extracellular loop // Journal of biological chemistry. – 2010. – Т. 285. – №. 43. – С. 33123-33133.; Horsey A. J. et al. The multidrug transporter ABCG2: still more questions than answers// Biochemical Society Transactions. – 2016. – Т. 44. – №. 3. – С. 824-830.; Wu X. G., Peng S. B., Huang Q. Transcriptional regulation of breast cancer resistance protein // Yi Chuan= Hereditas. – 2012. – Т. 34. – №. 12. – С. 1529-1536.; Krishnamurthy P. et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme // Journal of Biological Chemistry. – 2004. – Т. 279. – №. 23. – С. 24218-24225.; Morita M. et al. Fluorescence‐based discrimination of breast cancer cells by direct exposure to 5‐aminolevulinic acid // Cancer medicine. – 2019. – Т. 8. – №. 12. – С. 5524-5533.; Boswell-Casteel R. C., Fukuda Y., Schuetz J. D. ABCB6, an ABC transporter impacting drug response and disease // The AAPS journal. – 2018. – Т. 20. – С. 1-10.; Quigley J. G. et al. Identification of a human heme exporter that is essential for erythropoiesis // Cell. – 2004. – Т. 118. – №. 6. – С. 757-766.; Quigley J. G. et al. Cloning of the cellular receptor for feline leukemia virus subgroup C (FeLV-C), a retrovirus that induces red cell aplasia // Blood, The Journal of the American Society of Hematology. – 2000. – Т. 95. – №. 3. – С. 1093-1099.; Alves L. R. et al. Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells // PLoS One. – 2011. – Т. 6. – №. 7. – С. e21358.; Chiabrando D. et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation // The Journal of clinical investigation. – 2012. – Т. 122. – №. 12. – С. 4569-4579.; Zhou S. et al. FLVCR1 predicts poor prognosis and promotes malignant phenotype in esophageal squamous cell carcinoma via upregulating CSE1L // Frontiers in Oncology. – 2021. – Т. 11. – С. 660955.; Brown J. K., Fung C., Tailor C. S. Comprehensive mapping of receptor-functioning domains in feline leukemia virus subgroup C receptor FLVCR1 // Journal of virology. – 2006. – Т. 80. – №. 4. – С. 1742-1751.; Duffy S. P. et al. The Fowler syndrome-associated protein FLVCR2 is an importer of heme // Molecular and cellular biology. – 2010. – Т. 30. – №. 22. – С. 5318-5324.; Hayashi M. et al. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid // PLoS One. – 2015. – Т. 10. – №. 3. – С. e0122351.
-
4Academic Journal
Συγγραφείς: Ya. O. Grusha, N. P. Kiryushchenkova, Я. О. Груша, Н. П. Кирющенкова
Πηγή: Ophthalmology in Russia; Том 21, № 4 (2024); 764-768 ; Офтальмология; Том 21, № 4 (2024); 764-768 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-4
Θεματικοί όροι: протопорфирин, eyelid resection, BCC, autofluorescence diagnosis, fluorescent borders, protoporphyrin, резекция века, БКР, аутофлуоресцентная диагностика, флуоресцентные границы
Περιγραφή αρχείου: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/2501/1276; Baxter JM, Patel AN, Varma S. Facial basal cell carcinoma. BMJ. 2012;345:e5342. doi:10.1136/bmj.e5342.; Vivian TY, Merritt HA, Sniegowski M, Esmaeli B. Eyelid and ocular surface carcinoma: Diagnosis and management. Clinics in Dermatology. 2015;33:159–169.; Груша ЯО, Исмаилова ДС, Ризопулу ЭФ. Хирургическое лечение злокачественных новообразований век эпителиального происхождения. Опухоли головы и шеи. 2012;2:24–29.; Alvaro Toribio JA. Double Lateral Flap: A New Technique for Lower Eyelid Reconstruction Alternative to the Tenzel Procedure. AesthPlastSurg. 2015;39(6):935–341.; Iljin A, Zieliński T, Antoszewski B, Sporny S. Clinicopathological analysis of recurrent basal cell carcinoma of the eyelid. Postepy Dermatol Alergol. 2016 Feb;33(1):42–46. doi:10.5114/pdia.2015.48039.; Lara F, Santamaría JR, Garbers LE. Recurrence rate of basal cell carcinoma with positive histopathological margins and related risk factors. An Bras Dermatol. 2017 JanFeb;92(1):58–62. doi:10.1590/abd1806-4841.20174867.; Груша ЯО, Ризопулу ЭФ, Федоров АА, Новиков ИА, Сдобникова ЛЕ. Модифицированная мейбография при злокачественных новообразованиях век эпителиального происхождения. Вестник офтальмологии. 2019;135(5):141–149. doi:10.17116/oftalma2019135052141.; Груша ЯО, Ризопулу ЭФ, Федоров АА, Новиков ИА. Мейбография при новообразованиях век. М.: ГЭОТАРМедиа, 2020. 96 с.; Груша ЯО, Кирющенкова НП, Новиков ИА, Федоров АА, Исмаилова ДС. Гистологическая верификация аутофлуоресцентных границ новообразований кожи периорбитальной области. Вестник офтальмологии. 2020;136(6):32–41. doi:10.17116/oftalma202013606132.; Wan B, Ganier C, DuHarpur X, Harun N, Watt FM, Patalay R, Lynch MD. Applications and future directions for optical coherence tomography in dermatology. Br J Dermatol. 2021;184:1014–1022.; Peris K, Fargnoli MC, Garbe C, Kaufmann R, Bastholt L, Seguin NB, Bataille V, Marmol V del, Dummer R, Harwood CA, Hauschild A, Höller C, Haedersdal M, Malvehy J, Middleton MR, Morton CA, Nagore E, Stratigos AJ, Szeimies RM, Tagliaferri L, Trakatelli M, Zalaudek I, Eggermont A, Grob JJ. Diagnosis and treatment of basal cell carcinoma: European consensusbased interdisciplinary guidelines. Eur J Cancer. 2019;118:10–34. doi:10.1016/j.ejca.2019.06.003.; Клинические рекомендации. Базальноклеточный рак кожи. Министерство здравоохранения Российской Федерации. 2020. https://cr.minzdrav.gov.ru/recomend/467_1 (дата обращения 30.11.2023).; Vornicescu C, Șenilă SC, Bejinariu NI, Vesa ȘC, Boșca AB, Chirilă DN, Melincovici CS, Sorițău O, Mihu CM. Predictive factors for the recurrence of surgically excised basal cell carcinomas: A retrospective clinical and immunopathological pilot study. Experimental and Therapeutic Medicine. 2021;22(5):1336. doi:10.3892/etm.2021.10771.; Girardi FM, Wagner VP, Martins MD, Abentroth AL, Hauth LA. Factors associated with incomplete surgical margins in basal cell carcinoma of the head and neck. Braz J Otorhinolaryngol. 2021 NovDec;87(6):695–701. doi:10.1016/j.bjorl.2020.02.007.; Fritsch C, Ruzicka T. FDAP: Correlation of in vivo — tumor fluorescence and histopathology. In: Fritsch C, Ruzicka T. Fluorescence Diagnosis and Photodynamic Therapy of Skin Diseases: Atlas and Handbook. Springer Science & Business Media. 2012;46–48.; https://www.ophthalmojournal.com/opht/article/view/2501
-
5Academic Journal
Συγγραφείς: N. N. Petrishchev, G. V. Papayan, A. V. Krylov, E. V. Krylova, S. Kim
Πηγή: Biomedical Photonics, Vol 6, Iss 2, Pp 21-26 (2017)
Θεματικοί όροι: флуоресцентная диагностика, photosensitizer, фотосенсибилизатор, псориаз, psoriasis, autofluorescence, 01 natural sciences, 3. Good health, 03 medical and health sciences, fluorescence diagnosis, 0302 clinical medicine, 5-аминолевулиновая кислота, 5-aminolevulinic acid, аутофлуоресценция, 0103 physical sciences, Medical technology, protoporphyrin ix, R855-855.5, протопорфирин IX
Σύνδεσμος πρόσβασης: https://www.pdt-journal.com/jour/article/download/160/160
https://doaj.org/article/0840fc70024c4843913f38f60849f543
https://doaj.org/article/e9646e7e004746b99d388ca3b5efba1a
https://core.ac.uk/display/145662747
https://www.pdt-journal.com/jour/article/view/160
https://www.pdt-journal.com/jour/article/viewFile/160/160 -
6Academic Journal
Συγγραφείς: I. A. Osmakov, T. A. Savelieva, V. B. Loschenov, S. A. Goryajnov, A. A. Potapov, И. А. Осьмаков, Т. А. Савельева, В. Б. Лощенов, С. А. Горяйнов, А. А. Потапов
Πηγή: Biomedical Photonics; Том 7, № 4 (2018); 23-34 ; 2413-9432 ; 10.24931/2413-9432-2018-7-4
Θεματικοί όροι: кластерный анализ, fluorescence, diffuse reflectance, 5‑ALA, protoporphyrin IX, neurosurgery, gliomas, cluster analysis, флуоресценция, диффузное отражение, 5‑АЛК, протопорфирин IX, нейрохирургия, глиомы
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/272/200; https://www.pdt-journal.com/jour/article/view/272/264; De Robles P., Fiest K.M., Frolkis A.D., et al. The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis // Neuro-Oncology. – 2015. – Vol. 17(6). – P. 776–783. doi:10.1093/neuonc/nou283; Claes A., Idema A.J., Wesseling P. Diffuse glioma growth: a guerilla war // Acta Neuropathol. – 2007. – Vol. 114. – P. 443–458. doi:10.1007/s00401–007–0293–7; Sutter M., Eggspuehler A., Grob D., et al. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors // Eur Spine J. – 2007. – Vol. 16, Suppl. 2. – P. 197–208.; Savel’eva T.A., Loshchenov V.B., Goryainov S.A., et al. A spectroscopic method for simultaneous determination of protoporphyrin IX and hemoglobin in the nerve tissues at intraoperative diagnosis // Russian Journal of General Chemistry. – 2015. – Vol. 85, No. 6. – P. 1549–1557.; MacQueen J. Some methods for classifcation and analysis of multivariate observations. In Proc. 5th Berkeley Symp. on Math. Statistics and Probability. – 1967. – P. 281–297; Jianbo S., Jitendra M. Normalized Cuts and Image Segmentation // IEEE Transactions on PAMI. – 2000. – Vol. 22(8). – pp. 888–905.; Jordan M.I., Xu L. Convergence results for the EM algorithm to mixtures of experts architectures: Tech. Rep. A.I. Memo No. 1458. – MIT, Cambridge, MA, 1993. – 33 p.; Potapov A.A., Goriaĭnov S.A., Loshchenov V.B., et al. Intraoperative Combined Spectroscopy (Optical Biopsy) of Cerebral Gliomas // N. N. Burdenko Journal of Neurosurgery. – 2013. – Vol. 2. – P. 3–10.
-
7Academic Journal
Συγγραφείς: M. N. Kholodtsova, P. V. Grachev, W. C. Blondel, P. V. Zelenkov, A. A. Potapov, I. A. Shcherbakov, V. B. Loschenov, М. Н. Холодцова, П. В. Грачев, В. C. Блондель, П. В. Зеленков, А. А. Потапов, И. А. Щербаков, В. Б. Лощенов
Πηγή: Biomedical Photonics; Том 7, № 2 (2018); 4-12 ; 2413-9432 ; 10.24931/2413-9432-2018-7-2
Θεματικοί όροι: флуоресцентная спектроскопия, metal nanoparticles, optical probing depth, fluorescence probing depth, glial tumours, biological tissue, multi-layered tissue, spatially resolved spectroscopy, 5-aminolevulinic acid, protoporphyrin IX, stereotactic biopsy, fluorescence spectroscopy, наночастицы металлов, глубина оптического зондирования, глубина зондирования флуоресценции, глиальные опухоли, биологическая ткань, многослойная ткань, пространственно разрешенная спектроскопия, 5-аминолевулиновая кислота, протопорфирин IX, стереотактическая биопсия
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/231/185; Champion J., Katare Y., Mitragotri S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers // Jour- nal of Controlled Release. – 2007. – Vol. 121. – P. 3–9.; Weibo C., Ting G., Hao H., Sun J. Applications of gold nanopar- ticles in cancer and nanotechnology // Nanotechnology, Science and Applications. – 2008. – № 1. – P. 17–32.; Bohren C., Huffman D. Absorption and Scattering of Light by Small Particles. – Wiley, VCH Verlag GmbH, 1998. – 545 p.; Cihan C., Arifler D. Influence of phase function on modeled opti- cal response of nanoparticle-labeled epithelial tissues // Journal of Biomedical Optics. – 2011. – Vol. 16(8). – 085002.; Потапов А.А., Гаврилов А.Г., Горяйнов С.А. и др. Способ проведения интраоперационной комбинированной спектроскопической диагностики опухолей головного и спинного мозга Simultanious parenchymal organ biopsy and spectroscopic inspection device. – Патент РФ №2497558, 2013. – 16 с.; Markwardt N.A., Haj-Hosseini N., Hollnburger B., et al. 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence- guided stereotactic biopsy of brain tumors // Journal of Biopho- tonics. – 2015. – Vol. 9(9). – P. 901–912.; Blondel W.C., Ghribi M., Leroux A., et al. Spectral features selec- tion and classification for bimodal optical spectroscopy applied to bladder cancer in vivo diagnosis // IEEE Transactions on Biomedi- cal Engineering. – 2014. – Vol 61(1). – P. 207–216.; Rick K., Sroka R., Stepp H., Kriegmair M., et al. Pharmacokinetics of 5-aminolevulinic acid-induced protoporphyrin ix in skin and blood // Journal of Photochemistry and Photobiology B-Biology. – 1997. – Vol. 40(3). – P. 313–319.; Wuithschick M., Birnbaum A., Witte S., et al. Turkevich in new robes: Key questions answered for the most common gold nanoparticle synthesis // ACS Nano. – 2015. – Vol. 9(7). – P. 7052–7071.; Hrelescu C., Sau T.K. Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars // Nano Letters. –2011. – Vol. 11. – P. 402–407.; Scaffard L., Tocho J. Size dependence of refractive index of gold nanoparticles // Nanotechnology. – 2006. – Vol. 17. – P. 1309–1315.; Kholodtsova M., Samsonova I., Blondel W., Loschenov V. Metal nanoparticles of different shapes influence on optical properties of multilayered biological tissues // Proceedings of SPIE. -2015. – Vol. 9542. – 954205.; Kang K., Wang J., Jasinski J., Achilefu S. Fluorescence manipulation by gold nanoparticles: From complete quenching to extensive enhance- ment // Journal of Nanobiotechnology. – 2011. – Vol. 9. – P. 16.; Ninni P.D., Martelli F., Zaccanti G. The use of India Ink in tissue-simu- lating phantoms // Optics Express. – 2010. – Vol. 18(26). – P. 26854–26865.; Ninni P.D., Martelli, F., Zaccanti G. Intralipid: towards a diffusive ref- erence standard for optical tissue phantoms // Physics in Medicine and Biology. – 2011. – Vol. 56. – P. 21–28.; Flock S.T., Jacques S.L., Wilson B.C., et al. Optical properties of intralipid: A phantom medium for light propagation studies // Lasers in Surgery and Medicine. – 1992. – Vol. 12(5) – P.510–519.; Yaroslavsky N., Schulze P., Yaroslavsky I.V., et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range // Physics in Medicine and Biology. – 2002. – Vol. 47(12). – P. 2059–2073.; Bashkatov, A., Genina, E., Tuchin, V., Optical properties of skin, subcutaneous, and muscle tissues: a review // Journal of Innova- tive Optical Health Science. – 2011. – Vol. 04(01). – P.9–38.; Kholodtsova M.N., Grachev P.V., Savelieva T.A., et al. Scattered and fluorescent photon track reconstruction in a biological tissue // International Journal of Photoenergy. – 2014. – 517510.; Haiss W., Thanh N., Aveyard J., Fernig, D. Determination of size and concentration of gold nanoparticles from uv-vis spectra // Ana- lytical Chemistry. – 2007. – Vol. 79. – P.4215–4221.
-
8Academic Journal
Συγγραφείς: R. I. Yakubovskaya, A. A. Pankratov, E. V. Filonenko, E. A. Lukyanets, V. I. Ivanova-Radkevich, A. A. Trushin, A. D. Kaprin, Р. И. Якубовская, А. А. Панкратов, Е. В. Филоненко, Е. А. Лукьянец, В. И. Иванова-Радкевич, А. А. Трушин, А. Д. Каприн
Πηγή: Biomedical Photonics; Том 7, № 3 (2018); 43-46 ; 2413-9432 ; 10.24931/2413-9432-2018-7-3
Θεματικοί όροι: мочевой пузырь, protoporphyrin IX, 5-aminolevulinic acid, hexyl ester of 5-aminolevulinic acid, bladder cancer, протопорфирин IX, 5-аминолевулиновая кислота, гексиловый эфир 5-аминолевулиновой кислоты
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/252/195; https://www.pdt-journal.com/jour/article/view/252/252; Соколов В.В., Чиссов В.И., Филоненко Е.В. и др. Флюоресцентная диагностика и фотодинамическая терапия с препаратами фотосенс и аласенс: опыт 11-летнего клинического применения // Российский биотерапевтический журнал. – 2006. – Т. 5, № 1. – С. 32–33.; Fotinos N., Campo M.A., Popowycz F., et al. 5-Aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives // Photochem Photobiol. – 2006. – Vol. 82, No. 4. – P. 994–1015.; Соколов В.В., Филоненко Е.В., Телегина Л.В. и др. Комбинация флуоресцентного изображения и локальной спектрофотометрии при флуоресцентной диагностике раннего рака гортани и бронхов // Квантовая электроника. – 2002. – Т. 32, № 11. – С. 963–969.; Kelly J.F., Snell M.E. Hematoporphyrin derivate: a possible aid in diagosis and therapy of carcinoma of the bladder // J. Urol. – 1976. – Vol. 115. – P. 150–151.; Geavlete B., Mulţescu R., Georgescu D., Geavlete P. Hexvix induced fluorescence blue light cystoscopy – a new perspective in superficial bladder tumors diagnosis // Chirurgia (Bucur). – 2008 – Vol. 103(5). – P. 559–564.; Stepp H., Baumgartner R., Beyer W., et al. Fluorescence imaging and spectroscopy of ALA-induced protoporphyrin IX preferentially accumulated in tumor tissue // Proc. SPIE. – 1995. – Vol. 2627. – P. 13–24.; Kennedy J.C., Pottier R.H. Endogenous protoporhyrin IX, a clinically useful photosensitizer for photodynamic therapy (review) // Photohem. Photobiol. – 1994. – No. 4. – P. 275–292.; Филоненко Е.В., Гришаева А.Б. Методологические аспекты флюоресцентной диагностики злокачественных опухолей с препаратом аласенс // Рос. онкол. журн. – 2011. – № 5. – С. 30–33.; Schmidbauer J., Witjes F., Schmeller N., et al. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy // J. Urol. – 2004. – Vol. 171. – P. 135–138.; Панкратов А.А., Венедиктова Ю.Б., Андреева Т.А. и др. Оценка общетоксических свойств препарата гексасенс в эксперименте // Российский онкологический журнал. – 2010. – № 3. – С. 19–21.
-
9Academic Journal
Συγγραφείς: A. M. Zaytsev, M. I. Kurzhupov, E. V. Filonenko
Πηγή: Biomedical Photonics, Vol 3, Iss 2, Pp 31-38 (2014)
Θεματικοί όροι: флюоресцентная диагностика, аласенс, протопорфирин IX, Medical technology, R855-855.5
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/14100041b0344132a42ffaa92bf8c0a1
-
10Academic Journal
Συγγραφείς: Кривошеев, Александр, Куимов, Андрей, Кондратова, Мария, Тугулева, Татьяна
Θεματικοί όροι: МЕТАБОЛИЧЕСКИЙ СИНДРОМ, НАРУШЕНИЕ ПОРФИРИНОВОГО ОБМЕНА, δ-АМИНОЛЕВУЛИНОВАЯ КИСЛОТА, δ-AMINOLEVULINIC ACID, ПОРФОБИЛИНОГЕН, УРОПОРФИРИН, КОПРОПОРФИРИН, ПРОТОПОРФИРИН, ИНСУЛИНОРЕЗИСТЕНТНОСТЬ, ЖЕНЩИНЫ
Περιγραφή αρχείου: text/html
-
11Academic Journal
Συγγραφείς: Novikov I.A., Grusha Y.O., Kirushchenkova N.P.
Πηγή: Annals of the Russian academy of medical sciences; Vol 67, No 10 (2012); 62-69 ; Вестник Российской академии медицинских наук; Vol 67, No 10 (2012); 62-69 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn6710
Θεματικοί όροι: fluorescent diagnostics, autofluorescence, protoporphyrin IX, proliferation factor, oncology, флуоресцентная диагностика, аутофлуоресценция, протопорфирин IX, фактор пролиферации, онкология
Περιγραφή αρχείου: application/pdf
-
12Academic Journal
Συγγραφείς: Новиков, Иван, Груша, Ярослав, Кирющенкова, Наталия
Θεματικοί όροι: ФЛУОРЕСЦЕНТНАЯ ДИАГНОСТИКА, АУТОФЛУОРЕСЦЕНЦИЯ, ПРОТОПОРФИРИН IX, ПОКАЗАТЕЛЬ ПРОЛИФЕРАЦИИ, ОНКОЛОГИЯ
Περιγραφή αρχείου: text/html
-
13Academic Journal
Συγγραφείς: ИГНАТЕНКО В.А., ЛЫСЕНКОВА А.В.
Περιγραφή αρχείου: text/html
-
14Academic Journal
Συγγραφείς: Казачкина, Наталия, Панкратов, А., Якубовская, Р., Негримовский, В.
Θεματικοί όροι: ПРОТОПОРФИРИН IX, 5-АМИНОЛЕВУЛИНОВАЯ КИСЛОТА, АЛК, ИНДУЦИРОВАННАЯ ФЛЮОРЕСЦЕНЦИЯ, δ-AMINOLEVULINIC ACID
Περιγραφή αρχείου: text/html
-
15Academic Journal
Συγγραφείς: Венгеров, П. Д., Родионова, С. А.
Θεματικοί όροι: биология, зоология, орнитология, птицы, окраска яиц, протопорфирин, экологические группы, эволюция
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/51533
-
16Academic Journal
Συγγραφείς: Родионова, С., Венгеров, П.
Θεματικοί όροι: ОКРАСКА ЯИЦ У ПТИЦ,ПИГМЕНТАЦИЯ СКОРЛУПЫ,СПЕКТРОСКОПИЧЕСКИЙ АНАЛИЗ,БИЛИВЕРДИН И ПРОТОПОРФИРИН
Περιγραφή αρχείου: text/html
-
17Academic Journal
Συγγραφείς: Родионова, С. А., Венгеров, П. Д.
Θεματικοί όροι: биология, зоология, птицы, окраска яиц, пигментация скорлупы, спектроскопический анализ, биливердин, протопорфирин
Διαθεσιμότητα: http://dspace.bsu.edu.ru/handle/123456789/50694
-
18Academic Journal
Συγγραφείς: Перевощикова, Наталья, Мальцева, Анастасия
Θεματικοί όροι: ЖЕЛЕЗО(III)ПРОТОПОРФИРИН IX (ГЕМИН),ИМИДАЗОЛ,ГИСТИДИН,ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА (ПАВ),СОЛЮБИЛИЗАЦИЯ,КОМПЛЕКСООБРАЗОВАНИЕ
Περιγραφή αρχείου: text/html
-
19Academic Journal
Πηγή: Клиническая медицина.
Θεματικοί όροι: 03 medical and health sciences, 0302 clinical medicine, МЕТАБОЛИЧЕСКИЙ СИНДРОМ, НАРУШЕНИЕ ПОРФИРИНОВОГО ОБМЕНА, δ-АМИНОЛЕВУЛИНОВАЯ КИСЛОТА, δ-AMINOLEVULINIC ACID, ПОРФОБИЛИНОГЕН, УРОПОРФИРИН, КОПРОПОРФИРИН, ПРОТОПОРФИРИН, ИНСУЛИНОРЕЗИСТЕНТНОСТЬ, ЖЕНЩИНЫ, 3. Good health
Περιγραφή αρχείου: text/html
-
20Academic Journal
Πηγή: Проблемы здоровья и экологии.
Περιγραφή αρχείου: text/html