-
1Academic Journal
Subject Terms: фазовая стабильность сложных оксидов, протонная проводимость, сложные оксиды, индат бария, протонные проводники, анионная подвижность
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/56319
-
2
-
3Academic Journal
Authors: Kanakina, S. A., Alyabysheva, I. V., Kochetova, N. A.
Subject Terms: ОКСОАНИОННОЕ ДОПИРОВАНИЕ, COMPOSITE SOLID ELECTROLYTES, ИНДАТ БАРИЯ, КОМПОЗИЦИОННЫЕ ТВЕРДЫЕ ЭЛЕКТРОЛИТЫ, BARIUM INDATE, OXYGEN-ION CONDUCTIVITY, ПРОТОННАЯ ПРОВОДИМОСТЬ, КИСЛОРОДНО-ИОННАЯ ПРОВОДИМОСТЬ, OXYANION DOPING, PROTON CONDUCTIVITY
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/106049
-
4Academic Journal
Subject Terms: соли каликсарена, аммонийные соли каликсарена, протонная проводимость, композитные твердые электролиты, фосфорновольфрамовые кислоты, каликсарен, аммонийные соли, композитные электролиты
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/41947
-
5Conference
Authors: Matveev, E., Orlova, K., Kochetova, N.
Subject Terms: COMPOSITE ELECTROLYTE, ПЛОТНОСТЬ КЕРАМИКИ, ПРОТОННАЯ ПРОВОДИМОСТЬ, PROTONIC CONDUCTIVITY, CERAMICS DENSITY, КОМПОЗИЦИОННЫЙ ЭЛЕКТРОЛИТ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/87596
-
6Conference
Authors: Khristova, M., Alyabysheva, I.
Subject Terms: ПЕРОВСКИТ, PEROVSKITE, EUTECTIC TEMPERATURE, OXYGEN-ION CONDUCTIVITY, БРАУНМИЛЛЕРИТ, ПРОТОННАЯ ПРОВОДИМОСТЬ, КОМПОЗИЦИОННЫЙ ЭФФЕКТ, КИСЛОРОДНО-ИОННАЯ ПРОВОДИМОСТЬ, PROTON CONDUCTIVITY, COMPOSITIONAL EFFECT, ТЕМПЕРАТУРА ЭВТЕКТИКИ, BROWNMILLERITE
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/87586
-
7Conference
Subject Terms: CATIONIC DOPING, ИОННАЯ ПРОВОДИМОСТЬ, ПРОТОННАЯ ПРОВОДИМОСТЬ, IONIC CONDUCTIVITY, ОКСИФТОРИД, КАТИОННОЕ ДОПИРОВАНИЕ, PROTON CONDUCTIVITY, OXYFLUORINE
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/68379
-
8Conference
Contributors: Сохорева, Валентина Викторовна
Subject Terms: протонная проводимость, полимерные мембраны, топливные элементы, электрическая энергия, радиационно-химическая модификация, водородная энергетика
Access URL: http://earchive.tpu.ru/handle/11683/52448
-
9Conference
Authors: Вешкин, И. А., Копцев, М. О., Северин, А. В.
Contributors: Сохорева, Валентина Викторовна
Subject Terms: протонная проводимость, полимерные мембраны, электрическая энергия, водородная энергетика, радиационно-химическая модификация, топливные элементы
Relation: Изотопы: технологии, материалы и применение : материалы V Международной научной конференции молодых ученых, аспирантов и студентов, г. Томск, 19-23 ноября 2018 г. — Томск, 2018.; http://earchive.tpu.ru/handle/11683/52448
Availability: http://earchive.tpu.ru/handle/11683/52448
-
10Conference
Contributors: Шаманин, Игорь Владимирович
Subject Terms: радиационно-химическая модификация, полимерные мембраны, твердые электролиты, протонная проводимость, ионные проводники, неорганические соединения
Relation: Химия и химическая технология в XXI веке : материалы XIX Международной научно-практической конференции студентов и молодых ученых имени профессора Л. П. Кулёва, 21-24 мая 2018 г., г. Томск. — Томск, 2018.; http://earchive.tpu.ru/handle/11683/49947
Availability: http://earchive.tpu.ru/handle/11683/49947
-
11Academic Journal
Authors: Rymsha, Kh. V., Zhyhailo, M. M., Demchyna, O. I., Yevchuk, I. Yu.
Source: Chemistry, Physics and Technology of Surface; Том 10, № 1 (2019): Хімія, фізика та технологія поверхні; 38-47 ; Химия, физика и технология поверхности; Том 10, № 1 (2019): Хімія, фізика та технологія поверхні; 38-47 ; Хімія, фізика та технологія поверхні; Том 10, № 1 (2019): Хімія, фізика та технологія поверхні; 38-47 ; 2518-1238 ; 2079-1704 ; 10.15407/hftp10.01
Subject Terms: organic-inorganic membrane, sol-gel method, proton conductivity, UV-curing, acrylate, 3-metha-cryloxypropyltrimethoxysilane, органо-неорганическая мембрана, золь-гель метод, протонная проводимость, УФ-затвердевание, акрилат, 3-метакрилоксипропилтриметоксисилан, органічно-неорганічна мембрана, протонна провідність, УФ-затвердження, 3-метакрилоксипропілтриметоксисилан
File Description: application/pdf
Relation: http://cpts.com.ua/index.php/cpts/article/view/492/494; http://cpts.com.ua/index.php/cpts/article/view/492
-
12Conference
Contributors: Шаманин, Игорь Владимирович
Subject Terms: полимерные мембраны, протонная проводимость, неорганические соединения, ионные проводники, радиационно-химическая модификация, твердые электролиты
Access URL: http://earchive.tpu.ru/handle/11683/49947
-
13Academic Journal
Subject Terms: каликсаренсульфокислоты, фософрновольфрамовая кислота, протонная проводимость, каликсарен, композитные электролиты
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/29779
-
14Academic Journal
Subject Terms: каликсаренсульфокислоты, фософрновольфрамовая кислота, протонная проводимость, каликсарен, композитные электролиты
File Description: application/pdf
Access URL: https://openrepository.ru/article?id=33722
-
15Academic Journal
Authors: N. F. Uvarov, A. S. Ulihin, Yu. N. Bespalko, N. F. Eremeev, A. V. Krasnov, P. I. Skriabin, V. A. Sadykov, Н. Ф. Уваров, А. С. Улихин, Ю. Н. Беспалко, Н. Ф. Еремеев, А. В. Краснов, П. И. Скрябин, В. А. Садыков
Source: Alternative Energy and Ecology (ISJAEE); № 31-36 (2017); 24-35 ; Альтернативная энергетика и экология (ISJAEE); № 31-36 (2017); 24-35 ; 1608-8298
Subject Terms: парциальная протонная проводимость, metal-ceramic membrane materials for hydrogen separating, 4-electrode cell with ionic sounds, partial protonic conductivity, металлокерамические мембранные материалы для разделения водорода, 4-электродная ячейка с ионными зондами
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/1242/1090; de Souza, E.C.C. Properties and applications of perovskite proton conductors / E.C.C. de Souza, R. Muccillo // Journal of Material Research. – 2010. – Vol. 13. – P. 385–394.; Adhikari, S. Hydrogen membrane separation techniques / S. Adhikari, S. Fernando // Industrial & Chemistry Research. – 2006. – Vol. 45. – P. 875–881.; Ruiz-Trejo, E. Ceramic proton conducting membranes for the electrochemical production of syngas / E. Ruiz-Trejo, J.T.S. Irvine // Solid State Ionics. – 2016. – Vol. 216. – P. 36–40.; Tao, Z. A review of advanced proton-conducting materials for hydrogen separation / Z. Tao [et al.] // Progress in Material Science. – 2015. – Vol. 74. – P. 1–50.; Ockwig, N.W. Membranes for hydrogen separation / N.W. Ockwig, T.M. Nenoff // Chemical Reviews. – 2007. – Vol. 107. – P. 4078–4110.; Zhang, Q. Modeling of hydrogen permeation for Ni–ceramic proton conductor composite membrane with symmetric structure / Q. Zhang [et al.] // Journal of Membrane Science. – 2012. – Vol. 415–416. – P. 328–335.; Vente, J. / Performance of functional perovskite membranes for oxygen production / J. Vente, W. Haije, Z. Rak // Journal of Membrane Science . – 2006. – Vol. 276. – P. 178–184.; Sadykov, V. Nanocomposite catalysts for steam reforming of methane and biofuels: Design and performance // Advances in Nanocomposites–Synthesis, Char-acterization and Industrial Applications / V. Sadykov [et al.]; ed. Dr. Boreddy Reddy. – InTech, 2011. – Ch. 39. – P. 909–946.; Shelepova, E. Theoretical and experimental study of methane partial oxidation to syngas in catalytic membrane reactor with asymmetric oxygen-permeable membrane / E. Shelepova [et al.] // Catalysis Today. – 2016. – Vol. 268. – P. 103–110.; Meng, X. Ni–BaCe0.95Tb0.05O3−δ cermet membranes for hydrogen permeation / X. Meng [et al.] // Journal of Membrane Science. – 2012. – Vol. 401–402. – P. 300–305.; Lim, D.-K. Performance of proton-conducting ceramic-electrolyte fuel cell with BZCY40 electrolyte and BSCF5582 cathode / D.-K. Lim [et al.] // Ceramics International. – 2016. – Vol. 42. – P. 3776–3785.; Fjeld, H. / Proton and oxide ion conductivity in grain boundaries and grain interior of Ca-doped Er2Ti2O7 with Si-impurities / H. Fjeld [et al.] // Solid State Ionics. – 2008. – V.179. – P.1849–1853.; Escolástico, S. Study of hydrogen permeation in (La5/6Nd1/6)5.5WO12-δ membranes / S. Escolástico, C. Solís, J.M. Serra // Solid State Ionics. – 2012. – Vol. 216. – P. 31–35.; Escolástico, S. On the ionic character of H2 separation through mixed conducting Nd5.5W0.5Mo0.5O11.25−δ membrane / S. Escolástico [et al.] // International Journal of Hydrogen Energy. – 2017. – Vol. 42. – P. 11392-11399.; Escolástico, S. Nd5.5W1−xUxO11.25−δ system: Electrochemical characterization and hydrogen permeation study / S. Escolástico, J.M. Serra // Journal of Membrane Science. – 2015. – Vol. 489. – P. 112–118.; Solís, C. La5.5WO12-δ characterization of transport properties under oxidizing conditions: a conductivity re-[et al.] // Journal of Physical Chemistry C. – 2011. – Vol. 115. – P. 11124–11131.; Magrasó, A.Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects / A. Magrasó [et al.] // Journal of Material Chemistry. – 2012. – Vol. 22. – P. 1762–1764.; Magrasó, A. Effects of the La/W ratio and doping on the structure, defect structure, stability and functional properties of proton-conducting lanthanum tungstate La28−xW4+xO54+δ / A. Magrasó, R. Haugsrud // Journal of Material Chemistry A. – 2014. – Vol. 2. – P. 12630–12641.; Hancke, R. Hydration of lanthanum tungstate (La/W=5.6 and 5.3) studied by TG and simultaneous TG–DSC / R. Hancke [et al.] // Solid State Ionics. – 2013. – Vol. 231. – P. 25–29.; Xing, W. Hydrogen permeation, transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites / W. Xing [et al.] // Journal of Membrane Science. – 2012. – Vol. 415. – P. 878–885.; Syvertsen, G.E. Spark plasma sintering and hot pressing of hetero-doped LaNbO4 / G.E. Syvertsen [et al.] // Journal of American Ceramic Society. – 2012. – Vol. 95. – P. 1563–1571.; Haugsrud, R. Proton conduction in rare-earth ortho-niobates and ortho-tantalates / R. Haugsrud, T. Norby // Nature Materials. – 2006. – Vol. 5. – P. 193– 196.; Haugsrud, R. High-temperature proton conductivity in acceptor-doped LaNbO4 / R. Haugsrud, T. Norby // Solid State Ionics. – 2006. – Vol. 177. – P. 1129–1135.; Haugsrud, R. Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er) / R. Haugsrud // Solid State Ionics. – 2007. – Vol. 178. – P. 555–560.; Roitsch, S. Structural investigations on gas-separation membrane materials by transmission electron microscopy [Online resource] / S. Roitsch, J. Barthel, J. Mayer. – Available on: https://www.researchgate.net/publication/267723132. – (Дата обращения: 27.09.17).; Partin, G.S. Conductivity and hydration of fluorite-type La6-xWO12-1.5x phases (x = 0.4; 0.6; 0.8; 1) / G.S. Partin [et al.] // Russian Journal of Electrochemis-try. – 2015. – Vol. 51. – P. 381–390.; McCarthy, G.J. Crystal chemistry and compound formation in the systems rare earth sesquioxide – WO3 / G.J. McCarthy [et al.] // Journal of research of the National Bureauof Standards. – 1972. – No 364. – P. 397–411.; Trunov, V. Investigation of the double oxides formeed in the reaction of Nd2O3, Sm2O3, and Er2O3 with Tungsten (VI) oxide / V. Trunov, G. Tuushevskaya, N. Afonskii // Russian Journal of Inorganic Chemistry. – 1968. – Vol. 13. – P. 491–493.; Pavlova, S.N. Genesis, structural, and transport properties of La2Mo2-xWxO9 prepared via mechanochemical activation / S.N. Pavlova [et al.] // Ionics. International Journal of Ionics: The Science and Technology of Ion Motion. – 2017. – Vol. 23. – P.877–887.; Ryu, J.H. Microwave-assisted synthesis of nanocrystalline MWO4 (M: Ca, Ni) via water-based citrate complex precursor / J.H. Ryu [et al.] // Ceramic International. – 2005. – Vol. 31. – P. 883–888.; Чеботин, В.Н. Химическая диффузия в твердых телах / В.Н. Чеботин. – М.: Наука, 1989. – 208 с.; Hebb, M.N. Electrical Conductivity of Silver Sulfide / M.N. Hebb // Journal of Chemical Physics. – 1952. – Vol. 20. – P.185–190.; Fukai, Y. Diffusion of hydrogen in metals / Y. Fukai, H. Sugimoto // Advances in Physics. – 1985. – Vol. 34. – No 2 – P. 263–326.; Wipf, H. Solubility and diffusion of hydrogen in pure metals and alloys / H. Wipf // Phys. Scr. – 2001. – Vol. T94. – P. 43–51.; Чеботин, В.Н. Электрохимия твердых электролитов / В.Н. Чеботин, М.В. Перфильев. – М.: Химия. – 1978. – 312 с.; https://www.isjaee.com/jour/article/view/1242
-
16Academic Journal
Authors: N. A. Tarasova, I. E. Animitsa, Н. А. Тарасова, И. Е. Анимица
Source: Alternative Energy and Ecology (ISJAEE); № 31-36 (2017); 48-62 ; Альтернативная энергетика и экология (ISJAEE); № 31-36 (2017); 48-62 ; 1608-8298
Subject Terms: подвижность протонов, brownmillerite, anionic doping, ionic conductivity, proton conductivity, proton mobility, браунмиллерит, анионное допирование, ионная проводимость, протонная проводимость
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/1244/1092; Malavasi, L. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features / L. Malavasi, C.A.J. Fisher, M. S. Islam // Proton-Conducting Ceramics from Fundamentals to Applied Research. Ed. by Mathieu Marrony. − 2015. – 412 p.; Kreuer, K.D. Proton-conducting oxides / K.D. Kreuer // Ann. Rev. Mat. Res. − 2003 − Vol. 33 − P. 333−359.; Davies, R.A. Dopant and proton incorporation in perovskite-type zirconates / R.A. Davies, M.S. Islam, J.D. Gale // Solid State Ionics. − 1999. − Vol. 126. − P. 323−335.; Medvedev, D.A. Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes / D.A. Medvedev [et al.] // Progress in Materials Science. − 2016. − Vol. 75. − P.38−79.; Kochetova, N. Recent activity in the development of proton-conducting oxides for high-temperature applications / N. Kochetova [et al.] // RSC Adv. − 2016. − Vol. 6. − P. 73222–73268.; Mather, G.C. Defect and dopant properties of the SrCeO3-based proton conductor / G.C. Mather, M.S Is-lam // Chemistry of Materials. − 2005. − Vol. 17. − P. 1736−1744.; Trequattrini, F. Influence of doping on the structural transformations of the proton conducting perovskite BaCe1-xYxO3-δ / F. Trequattrini [et al.] // Solid State Phenomena. − 2011. − Vol. 172−174. − P.1296−1300.; Han, D. Site selectivity of dopants in BaZr1-yMyO3-δ (M = Sc, Y, Sm, Eu, Dy) and measurement of their water contents and conductivities / D. Han [et al.] // Solid State Ionics. − 2012. − Vol. 213. − P. 2−7.; Wang, S. Novel chemically stable Ba3Ca1,18Nb1,82-xYxO9-δ proton conductor: Improved proton conductivity through tailored cation ordering / S. Wang [et al.] // Chemistry of Materials. − 2014. − Vol. 6. − P. 2021−2029.; Choi, S.M. Determination of electronic and ionic partial conductivities of BaCeO3 with Yb and in doping / S.M. Choi [et al.] // Journal of the Electrochemical Society. − 2015. − Vol. 162. − P. F789−F795.; Weston, L. Acceptor doping in the proton conductor SrZrO3 / L. Weston [et al.] // Physical Chemistry Chemical Physics. − 2017. − Vol. 19. − P. 11485−11491.; Wang, Y. Improving the chemical stability of BaCe0.8Sm0.2O3−δ electrolyte by Cl doping for proton- conducting solid oxide fuel cell / Y. Wang [et al.] // Electrochemistry Communications. – 2013. – Vol. 28. – P. 87–90.; Zhou, H. Effect of fluorine, chlorine and bromine doping on the properties of gadolinium doped barium cerate electrolytes / H. Zhou [et al.] // International Journal of Hydrogen Energy. – 2015. – Vol. 40. – P. 8980–8988.; Su, F. Novel fluoride-doped barium cerate applied as stable electrolyte in proton conducting solid oxide fuel cells / F. Su, Ch. Xia, R. Peng // Journal of the European Ceramic Society. – 2015. – Vol. 35. – P. 3553–3558.; Animitsa, I. Electrical properties of the fluorine-doped Ba2In2O5 / I. Animitsa, N. Tarasova, Ya. Filinkova // Solid State Ionics. − 2012. − Vol. 207. − P. 29−37.; Tarasova, N. Hydration and forms of oxygen-hydrogen groups in oxyfluorides Ba2-0.5xIn2O5-xFx // N. Tarasova, Ya. Filinkova, I. Animitsa // Russian J. of Physical Chemistry A. − 2012. − Vol. 86. − P. 1208−1211.; Tarasova, N. Electric properties of oxyfluorides Ba2In2O5-0.5xFx with brownmillerite structure / N. Tarasova, Ya. Filinkova, I. Animitsa // Russian J. of Electrochemistry. − 2013. − Vol. 49. − P. 45−51.; Tarasova, N. Novel proton-conducting oxyfluorides Ba4-0.5xIn2Zr2O11-xFx with perovskite structure // N. Tarasova, I. Animitsa // Solid State Ionics. − 2012. − Vol. 264. − P. 69−75.; Belova, K. The effect of F--doping on the conductivity of proton conductor Ba4Ca2Nb2O11 / K. Belova [et al.] // Electrochimica Acta. − 2016. − Vol. 193. − P. 63−71.; Tarasova, N.A. Effect of F– Doping on the Transport Properties of Perovskite-Like Complex Oxides / N.A. Tarasova, I.E. Animitsa, K.G. Belova // Russian J. of Electrochemistry. − 2017. − Vol. 53. − P. 813−818.; Korona, D.V. Effect of humidity on conductivity of Ba4Ca2Nb2O11 phase and solid solutions based on this phase / D.V. Korona [et al.] // Russian J. of Electrochemistry. − 2009. − Vol. 45. − P. 586−592.; Fisher, C.A.J. Detect, protons and conductivity in brounmillerite-structured Ba2In2O5 / C.A.J. Fisher, M.S. Islam // Solid State Ionics. − 1999. − Vol. 118. − Р. 355−363.; Zhang, G.B. Protonic conduction in Ba2In2O5 / G.B. Zhang, D.M. Smyth // Solid State Ionics. − 1995. – Vol. 82. − P. 153−160.; Shannon, R.D. Ionic Radii / R.D. Shannon // Acta Crystallographica. − 1976. − Vol. A32. − P. 155−169.; Animitsa, I.E. Proton state in hydrated fluoro-substituted brownmillerites Ba2In2O5-0.5xFy∙nH2O / I.E. Animitsa [et al.] // Journal of Structural Chemistry. − 2016. − Vol. 57. − P. 910−916.; Tarasova, N.A. Features of the Local Structure of Hydrated Fluorine-Substituted Solid Solutions Based on Ba2In2O5 // N.A. Tarasova [et al.] // Bulletin of the Russian Academy of Sciences. Physics. − 2014. − Vol. 78. − P. 730–732.; Tarasova, N.A. Local structure and thermal properties of fluorine-doped perovskite related solid oxides / N.A. Tarasova, I.E. Animitsa, K.G. Belova // Bulletin of the Russian Academy of Sciences. Physics. − 2017. − Vol. 81. − P. 632−636.; Animitsa, I. High-temperature proton conductors with structure-disordered oxygen sublattice / I. Animitsa // Russian J. of Electrochemistry. − 2009. − Vol. 45. − P. 668−676.; https://www.isjaee.com/jour/article/view/1244
-
17Conference
Authors: Люй Цзиньчжэ
Contributors: Дуброва, Наталья Александровна
Subject Terms: мембраны, электрохимические устройства, протонная проводимость, полимеры, поливинилиденфторид
Relation: Перспективы развития фундаментальных наук : сборник научных трудов XIII Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 26-29 апреля 2016 г. . Т. 1 : Физика. — Томск, 2016.; http://earchive.tpu.ru/handle/11683/26009
Availability: http://earchive.tpu.ru/handle/11683/26009
-
18Academic Journal
Authors: Кочетова, Н. А., Алябышева, И. В., Матвеев, Е. С., Анимица, И. Е., Kochetova, Nadezhda A., Alyabysheva, Irina V., Matveev, Egor S., Animitsa, Irina E.
Subject Terms: сложные оксиды, композиционные электролиты, заимодействие с парами воды, кислородно-ионная проводимость, протонная проводимость, complex oxides, composite electrolytes, water uptake, oxygen-ion conductivity, proton conductivity
Relation: Журнал Сибирского федерального университета.Химия. Journal of Siberian Federal University. Chemistry 2023 16(3); PXYGTV
Availability: https://elib.sfu-kras.ru/handle/2311/151715
-
19Academic Journal
Authors: Телегин, С. В., Утманцева, Д. В., Сулейманов, Е. В.
Subject Terms: сложные оксиды, индат бария, протонная проводимость, протонные проводники, анионная подвижность, фазовая стабильность сложных оксидов
File Description: application/pdf
Relation: https://elib.belstu.by/handle/123456789/56319; 544.032.14
Availability: https://elib.belstu.by/handle/123456789/56319
-
20Academic Journal
Authors: Kalytka V.A.
Source: Vestnik of Samara University. Natural Science Series; Vol 23, No 3 (2017); 71-83 ; Вестник Самарского университета. Естественнонаучная серия; Vol 23, No 3 (2017); 71-83 ; 2712-8954 ; 2541-7525
Subject Terms: hydrogen bonded crystals (HBC), proton relaxation and conductivity, generalized nonlinear kinetic equation, equations of Fokker-Planck, кристаллы с водородными связями (КВС), протонная релаксация и протонная проводимость, обобщенное нелинейное кинетическое уравнение, уравнение Фоккера-Планка
File Description: application/pdf
Relation: https://journals.ssau.ru/est/article/view/5502/5353; https://journals.ssau.ru/est/article/view/5502