Showing 1 - 20 results of 38 for search '"ПРОИЗВОДСТВО ВОДОРОДА"', query time: 0.80s Refine Results
  1. 1
    Academic Journal

    Source: Инновации и «зелёные» технологии : IV Всероссийская научно-практическая конференция. :115-118

  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 12 (2023); 45-65 ; Альтернативная энергетика и экология (ISJAEE); № 12 (2023); 45-65 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2513/2039; IEA. Hydrogen -Analysis - IEA. Available from: https://www.iea.org/reports/hydrogen; December 23, 2021.; IEA. Hydrogen - Fuels & Technologies - IEA. Available from: https://www.iea.org/fuels-andtechnologies/hydrogen; December 21, 2021.; Dawood, F., Anda, M., & Shafiullah, G. M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869.; El-Shafie, M., Kambara, S., & Hayakawa, Y. (2019). Hydrogen production technologies overview. Journal of Power and Energy Engineering, 7(1), 107-154.; Ratnakar, R. R., Gupta, N., Zhang, K., van Doorne, C., Fesmire, J., Dindoruk, B., & Balakotaiah, V. (2021). Hydrogen supply chain and challenges in largescale LH2 storage and transportation. International Journal of Hydrogen Energy, 46(47), 24149-24168.; Balcombe, P., Speirs, J., Johnson, E., Martin, J., Brandon, N., & Hawkes, A. (2018). The carbon credentials of hydrogen gas networks and supply chains. Renewable and Sustainable Energy Reviews, 91, 1077-1088.; Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385-25412.; Li, J., & Cheng, W. (2020). Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification. International Journal of Hydrogen Energy, 45(51), 27979-27993.; Favas, J., Monteiro, E., & Rouboa, A. (2017). Hydrogen production using plasma gasification with steam injection. International journal of hydrogen energy, 42(16), 10997-11005.; Bauer, C., Treyer, K., Antonini, C., Bergerson, J., Gazzani, M., Gencer, E., . & Van der Spek, M. (2022). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66-75.; Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen?. Energy Science & Engineering, 9(10), 1676-1687.; Khan, M. H. A., Daiyan, R., Neal, P., Haque, N., MacGill, I., & Amal, R. (2021). A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. International Journal of Hydrogen Energy, 46(44), 22685-22706.; Amin, A. M., Croiset, E., & Epling, W. (2011). Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 36(4), 2904-2935.; Schneider, S., Bajohr, S., Graf, F., & Kolb, T. (2020). State of the art of hydrogen production via pyrolysis of natural gas. ChemBioEng Reviews, 7(5), 150-158.; Pérez, B. J. L., Jiménez, J. A. M., Bhardwaj, R., Goetheer, E., van Sint Annaland, M., & Gallucci, F. (2021). Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. international journal of hydrogen energy, 46(7), 4917-4935.; Gerloff, N. (2021). Comparative Life-Cycle- Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. Journal of Energy Storage, 43, 102759.; Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 2018;39(3):390e4. https://doi.org/10.1016/S1872-2067(17)62949-8.; Balzani, V., & Armaroli, N. (2011). The hydrogen issue. ChemSusChem, 4, 21-36.; Ball, M., & Weeda, M. (2015). The hydrogen economy–vision or reality?. International Journal of Hydrogen Energy, 40(25), 7903-7919.; Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1, 10-29.; Papadias, D. D., Peng, J. K., & Ahluwalia, R. K. (2021). Hydrogen carriers: Production, transmission, decomposition, and storage. International Journal of Hydrogen Energy, 46(47), 24169-24189.; Majumdar, A., Deutch, J. M., Prasher, R. S., & Griffin, T. P. (2021). A framework for a hydrogen economy. Joule, 5(8), 1905-1908.; Mac Dowell, N., Sunny, N., Brandon, N., Herzog, H., Ku, A. Y., Maas, W., & Shah, N. (2021). The hydrogen economy: A pragmatic path forward. Joule, 5(10), 2524-2529.; Bartels, J. R., Pate, M. B., & Olson, N. K. (2010). An economic survey of hydrogen production from conventional and alternative energy sources. International journal of hydrogen energy, 35(16), 8371-8384.; Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.; Kannah, R. Y., Kavitha, S., & Preethi, O. (2021). Parthiba Karthikeyan, G. Kumar, NV Dai-Viet and J. Rajesh Banu. Bioresour. Technol, 319, 124175.; Ozturk, M., & Dincer, I. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, 46(62), 31511-31522.; Dincer, I. (2012). Green methods for hydrogen production. International journal of hydrogen energy, 37(2), 1954-1971.; Acar, C., Beskese, A., & Temur, G. T. (2018). Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. International Journal of Hydrogen Energy, 43(39), 18059-18076.; Longden, T., Beck, F. J., Jotzo, F., Andrews, R., & Prasad, M. (2022). ‘Clean’hydrogen?–Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy, 306, 118145.; Ji, M., & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635.; Noussan, M., Raimondi, P. P., Scita, R., & Hafner, M. (2020). The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability, 13(1), 298.; Bridges, T., & Merzian, R. (2019). Hydrogen and climate: trojan horse or golden goose. Request for Input—National Hydrogen Strategy.; Droege T. What are the colors of hydrogen? Williams Companies; 2021. 23 April 2021; Available from: https://www.williams.com/2021/04/23/what-arethe-colors-ofhydrogen/ [December 22, 2021].; Dodgshun J. Hydrogen: Clearing Up the Colours. Available from: https://www.enapter.com/newsroom/hydrogenclearingup-the-colours; December 22, 2021.; Sarangi, P. K., & Nanda, S. (2020). Biohydrogen production through dark fermentation. Chemical Engineering & Technology, 43(4), 601-612.; Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920.; Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16(3), 1141.; McKenzie, B. (2020). Shaping Tomorrow’s Global Hydrogen Market. Vie De-Risked Investments.; Strategy. The dawn of green hydrogen-Maintaining the GCC's edge in a decarbonized world. Available from: https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-ofgreenhydrogen.; El-Emam, R. S., Ozcan, H., & Zamfirescu, C. (2020). Updates on promising thermochemical cycles for clean hydrogen production using nuclear energy. Journal of Cleaner Production, 262, 121424.; Holm, T., Borsboom-Hanson, T., Herrera, O. E., & Mérida, W. (2021). Hydrogen costs from water electrolysis at high temperature and pressure. Energy Conversion and Management, 237, 114106.; Minke, C., Suermann, M., Bensmann, B., & Hanke-Rauschenbach, R. (2021). Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? International journal of hydrogen energy, 46(46), 23581-23590.; Zhao, G., Kraglund, M. R., Frandsen, H. L., Wulff, A. C., Jensen, S. H., Chen, M., & Graves, C. R. (2020). Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 45(43), 23765-23781.; Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703.; Zhang, J., Ling, B., He, Y., Zhu, Y., & Wang, Z. (2022). Life cycle assessment of three types of hydrogen production methods using solar energy. International Journal of Hydrogen Energy, 47(30), 14158-14168.; Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., & Al-Jiboory, A. K. (2023). Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage, 72, 108404.; Makhsoos, A., Kandidayeni, M., Boulon, L., & Pollet, B. G. (2023). A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production-a case study in Trois-Rivières. Energy, 282, 128911.; Hassan, Q., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy.; Zhou, Y., Li, R., Lv, Z., Liu, J., Zhou, H., & Xu, C. (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering.; Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.; Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 38(12), 4901-4934.; Nechache, A., & Hody, S. (2021). Alternative and innovative solid oxide electrolysis cell materials: A short review. Renewable and Sustainable Energy Reviews, 149, 111322.; Jeon, S. S., Lim, J., Kang, P. W., Lee, J. W., Kang, G., & Lee, H. (2021). Design principles of NiFelayered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Applied Materials & Interfaces, 13(31), 37179-37186.; Sun, M., Jiang, Y., Tian, M., Yan, H., Liu, R., & Yang, L. (2019). Deposition of platinum on borondoped TiO 2/Ti nanotube arrays as an efficient and stable photocatalyst for hydrogen generation from water splitting. RSC advances, 9(20), 11443-11450.; Clifford, C. (2022). Hydrogen power is gaining momentum, but critics say it’s neither efficient nor green enough.; Ajanovic, A., Sayer, M., & Haas, R. (2022). The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47(57), 24136-24154.; Lee, D. Y., Elgowainy, A., & Dai, Q. (2018). Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Applied Energy, 217, 467-479.; Kamonsuangkasem, K., Therdthianwong, S., & Therdthianwong, A. (2013). Hydrogen production from yellow glycerol via catalytic oxidative steam reforming. Fuel processing technology, 106, 695-703.; Moogi, S., Jae, J., Kannapu, H. P. R., Ahmed, A., Park, E. D., & Park, Y. K. (2020). Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition. Bioresource Technology, 315, 123835.; Wu, Q., Huang, F., Zhao, M., Xu, J., Zhou, J., & Wang, Y. (2016). Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy, 24, 63-71.; Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273.; Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: DefiDefinitions and carbon intensity. Energy Conversion and Management, 291, 117294.; Vega, L. F., & Kentish, S. E. (2022). The Hydrogen economy preface. Industrial & Engineering Chemistry Research, 61(18), 6065-6066.; Gür, T. M. (2021). Perspective—Electrochemical Gasification: Revisiting an Old Reaction in New Perspective and Turning "Black" Hydrogen to "Blue". Journal of The Electrochemical Society, 168(11), 114516.; Arcos, J. M. M., & Santos, D. M. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25-46.; Venables, D. S., & Brown, M. E. (1996). Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochimica acta, 285(2), 361-382.; Yamaguchi, D., Sanderson, P. J., Lim, S., & Aye, L. (2009). Supercritical water gasification of Victorian brown coal: Experimental characterisation. international journal of hydrogen energy, 34(8), 3342-3350.; Guan, Q., Ding, X. W., Jiang, R., Ouyang, P. L., Gui, J., Feng, L., . & Song, L. H. (2019). Effects of hydrogen-rich water on the nutrient composition and antioxidative characteristics of sprouted black barley. Food chemistry, 299, 125095.; Ewe, The Colours of Hydrogen. Available online: https://www.ewe.com/en/shaping-thefuture/hydrogen/the-colours-ofhydrogen (accessed on 10 June 2022).; Hermesmann, M., & Müller, T. E. (2022). Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science, 90, 100996.; Diab, J., Fulcheri, L., Hessel, V., Rohani, V., & Frenklach, M. (2022). Why turquoise hydrogen will Be a game changer for the energy transition. International Journal of Hydrogen Energy, 47(61), 25831-25848.; Korányi, T. I., Németh, M., Beck, A., & Horváth, A. (2022). Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies, 15(17), 6342.; Ingale, G. U., Kwon, H. M., Jeong, S., Park, D., Kim, W., Bang, B., & Lee, U. (2022). Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming. Energies, 15(22), 8679.; Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123, 103317.; Ping, Z., Laijun, W., Songzhe, C., & Jingming, X. (2018). Progress of nuclear hydrogen production through the iodine–sulfur process in China. Renewable and Sustainable Energy Reviews, 81, 1802-1812.; Zhiznin, S. Z., Timokhov, V. M., & Gusev, A. L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45(56), 31353-31366.; Scamman, D., & Newborough, M. (2016). Using surplus nuclear power for hydrogen mobility and power-to-gas in France. International journal of hydrogen energy, 41(24), 10080-10089.; Milewski, J., Kupecki, J., Szczęśniak, A., & Uzunow, N. (2021). Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. International Journal of Hydrogen Energy, 46(72), 35765-35776.; Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., & Hamburg, S. P. (2018). Assessment of methane emissions from the US oil and gas supply chain. Science, 361(6398), 186-188.; Antzaras, A. N., & Lemonidou, A. A. (2022). Recent advances on materials and processes for intensified production of blue hydrogen. Renewable and Sustainable Energy Reviews, 155, 111917.; Oni, A. O., Anaya, K., Giwa, T., Di Lullo, G., & Kumar, A. (2022). Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management, 254, 115245.; Saha, P., Akash, F. A., Shovon, S. M., Monir, M. U., Ahmed, M. T., Khan, M. F. H., . & Akter, R. (2023). Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy. International Journal of Green Energy, 1-15.; Villavicencio, M., Brauer, J., & Trüby, J. (2022). Green hydrogen–How grey can it be?. Robert Schuman Centre for Advanced Studies Research Paper, (2022/44).; Moreno-Brieva, F., Guimón, J., & Salazar-Elena, J. C. (2023). From grey to green and from west to east: The geography and innovation trajectories of hydrogen fuel technologies. Energy Research & Social Science, 101, 103146.; IEA. Hydrogen production costs using natural gas in selected regions. Statistics - IEA; December 20, 2021. Available from: https://www.iea.org/data-andstatistics/charts/hydrogen-production-costs-usingnatural-gas-inselected-regions-2018-2.; Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L. (2018). Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. International Journal of Hydrogen Energy, 43(20), 9514-9528.; Gambhir, A., Hawkes, A., Nelson, J., Schmidt, O., & Staffell, I. (2017). Future cost and performance of water electrolysis. Int J Hydrogen Energy, 42, 30470-30492.; Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180.; Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International journal of hydrogen energy, 44(29), 15072-15086.; Hassan, I. A., Ramadan, H. S., Saleh, M. A., & Hissel, D. (2021). Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable and Sustainable Energy Reviews, 149, 111311.; Lubitz, W., & Tumas, W. (2007). Hydrogen: an overview. Chemical reviews, 107(10), 3900-3903.; Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International journal of hydrogen energy, 39(20), 10731-10747.; Singla, M. K., Nijhawan, P., & Oberoi, A. S. (2021). Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research, 28, 15607-15626.; Singla, M. K., Gupta, J., Nijhawan, P., Oberoi, A. S., Alsharif, M. H., & Jahid, A. (2023). Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review. Energies, 16(15), 5761.; Singla, M. K., Gupta, J., Singh, B., Nijhawan, P., Abdelaziz, A. Y., & El-Shahat, A. (2023). Parameter Estimation of Fuel Cells Using a Hybrid Optimization Algorithm. Sustainability, 15(8), 6676.; Mahato, D. P., Sandhu, J. K., Singh, N. P., & Kaushal, V. On scheduling transaction in grid computing using cuckoo search-ant colony optimization considering load. Cluster Computing, 2020, 23, 1483-1504.; Rani, S., Babbar, H., Kaur, P., Alshehri, M. D., & Shah, S. H. A. An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue. IEEE Transactions on Intelligent Transportation Systems, 2022.; https://www.isjaee.com/jour/article/view/2513

  5. 5
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 8 (2023); 50-63 ; Альтернативная энергетика и экология (ISJAEE); № 8 (2023); 50-63 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2418/1965; Карасевич В. А. Основы водородной энергетики. – М.: Изд. центр РГУ нефти и газа (НИУ) имени И.М. Губкина, 2023. – 97 с.; IEA. Global Hydrogen Review. [Электронный ресурс]. – Режим доступа: https://www.iea.org/reports/global-hydrogen-review-2022.; Интерфакс. Минприроды разъяснило последствия признания водорода полезным ископаемым. – 2023. [Электронный ресурс]. – Режим доступа: https://www.interfax.ru/russia/913132.; Осман А. «Бурят наудачу»: почему стартапы бросились искать запасы природного водорода // Форбс. – 2023. [Электронный ресурс]. – Режим доступа: https://www.forbes.ru/tekhnologii/491810-buratnaudacu-pocemu-startapy-brosilis-iskat-zapasyprirodnogo-vodoroda.; Global hydrogen demand by sector in the Sustainable Development Scenario, 2019–2070 Review. [Электронный ресурс]. – Режим доступа: https://www.iea.org/data-and-statistics/charts/globalhydrogen-demand-by-sector-in-the-sustainabledevelopment-scenario-2019-2070.; Quantification and analysis of CO2 footprint from industrial facilities in Saudi Arabia / A. Hamieh, F. Rowaihy, M. Al-Juaied, A. N. Abo-Khatwa, A. M. Afifi, H. Hoteit // Energy Conversion and Management: X. – 2022. – Volume 16. [Электронный ресурс]. – Режим доступа: https://www.sciencedirect.com/science/article/pii/S2590174522001222.; Volcovici V. Biden's green hydrogen plan hits climate obstacle: Water shortage // Reuters. – 2023. – 3 July. [Электронный ресурс]. – Режим доступа: https://www.reuters.com/sustainability/climateenergy/bidens-green-hydrogen-plan-hits-climateobstacle-water-shortage-2023-07-03/.; ГОСТ Р 58144–2018. Вода дистиллированная. Технические условия. [Электронный ресурс]. – Режим доступа: https://docs.cntd.ru/document/1200159410.; Российские компетенции водородной промышленности: Сборник. – М.: Минпромторг, 2022. – 170 с.; Elistratov V., Denisov R. Development of isolated energy systems based on renewable energy sources and hydrogen storage // International Journal of Hydrogen Energy. – 2023. – Volume 48. – Issue 70. – P. 27059-27067.; ГОСТ Р ( проект, первая редакция). Трубы стальные бесшовные для транспортирования газообразного водорода. Технические условия. [Электронный ресурс]. – Режим доступа: https://www.normacs.info/projects/10611.; TEBIZ GROUP. Маркетинговое исследование «Анализ рынка водорода в России – 2022. Показатели и прогнозы». – 2023. [Электронный ресурс]. – Режим доступа: https://marketing.rbc.ru/research/35272/.; ГОСТ Р (проект, первая редакция). Баллоны стальные бесшовные на рабочее давление не более 40,0 МПа (407,9 кгс/см2) вместимостью не более 1000 л для транспортировки, хранения и использования газообразного водорода. Общие технические условия. [Электронный ресурс]. – Режим доступа: https://www.normacs.info/discussions/8715.; Интернет–сайт АО «НИИГРАФИТ». Баллоны высокого давления для хранения и транспортирования водорода. [Электронный ресурс]. – Режим доступа: https://niigrafit.ru/production/ballony-vysokogodavleniya-dlya-hraneniya-i-transportirovaniyavodoroda/.; Металлогидридные материалы и устройства для водородного аккумулирования электроэнергии / Б. П. Тарасов, П. В. Фурсиков, А. А. Володин, А. А. Арбузов // Всероссийская научно-практическая конференция «Водород. Технологии. Будущее». – Томск, 2020. [Электронный ресурс]. – Режим доступа: https://portal.tpu.ru/files/conferences/htf/tarasov.pdf.; Макарян И. А., Седов И. В., Максимов А. Л. Хранение водорода с использованием жидких органических носителей // Журнал прикладной химии. – 2020. – Вып. 12. – С. 1716–1733.; Технологии хранения водорода. Водородные накопители энергии / А. А. Хохонов, Ф. А. Шайхатдинов, В. А. Бобровский, Д. А. Агарков, С. И. Бредихин, А. А. Чичиров, Е. О. Рыбина // Успехи в химии и химической технологии. – 2020. – №12 (235). – С. 47–52.; Марченко О . В ., Соломин С . В . Анализ эффективности аккумулирования электрической энергии и водорода в энергосистемах с возобновляемыми источниками энергии // Вестник Иркутского государственного технического университета. – 2018. – №3 (134). – С. 183–193.; Интернет–сайт компании Doosan Fuel Cell. [Электронный ресурс]. – Режим доступа: https://www.doosanfuelcell.com/en/prod/prod-0102/.; Mixtures of heavy fuel oil and green hydrogen in combustion equipment: Energy analysis, emission estimates, and economic prospects / F. S. Carvalho, P. T. Lacava, C. H. Rufino, D. T. Pedroso, E. B. Machin, F. H. M . A raújo, D . G omez A costa, J . A . C arvalho J r. / / Energy Conversion and Management. – 2023. – 277. – 116629.; Technological aspects of Russian hydrogen energy development/ Karasevich, V.A., Elistratov, V.V., Lopatin, A.S., Ternikov, O.V., Putilova, I.V. International Journal of Hydrogen., 2024, 57, страницы 1332–1338.; https://www.isjaee.com/jour/article/view/2418

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Vestnik Universiteta; № 6 (2025); 96-103 ; Вестник университета; № 6 (2025); 96-103 ; 2686-8415 ; 1816-4277

    File Description: application/pdf

    Relation: https://vestnik.guu.ru/jour/article/view/6272/3388; Вечкинзова Е.А., Стеблякова Л.П., Сумарокова Е.В. Обзор мировых и российских тенденций развития водородной энергетики. Управление. 2022;4(10):26–37. https://doi.org/10.26425/2309-3633-2022-10-4-26-37; Линник Ю.Н., Линник В.Ю. Энергосбережение и энергоэффективность. Москва: Русайнс; 2022. 334 с.; Cерегина А.А. Стратегическое целевое управление в энергетике. Управление. 2024;4(12):5–12. https://doi.org/10.26425/2309-3633-2024-12-4-5-12; Линник В.Ю., Байкова О.В., Фаляхова Е.Д. Анализ состояния рынка водородного сырья в Российской Федерации и мире. Управление. 2024;1(12):81–94. https://doi.org/10.26425/2309-3633-2024-12-1-81-94; Максимов А.Л., Ишков А.Г., Пименов А.А., Романов К.В., Михайлов А.М., Колошкин Е.А. Физико-химические аспекты и углеродный след получения водорода из воды и углеводородов. Записки Горного института. 2024;265:87–94.; Трубило В.С. Производство водорода на атомных электрических станциях. В кн.: Актуальные проблемы энергетики: материалы 79-й научно-технической конференции студентов и аспирантов, апрель 2023 г. Минск: БНТУ; 2023. С. 96–99.; Акаев А.А., Рудской А.И., Кораблев В.В., Сарыгулов А.И. Технологические и экономические барьеры роста водородной энергетики. Вестник РАН. 2022;12:1133–1144.; Романов А.С. Водородная энергетика: сравнительный анализ способов получения водорода. Научные записки молодых исследователей. 2023;3(11):73–80.; Максимова М.А. Водородная энергетика в России: современное положение и перспективы развития. Молодой ученый. 2023;11(458):97–100.; https://vestnik.guu.ru/jour/article/view/6272

  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Contributors: Financial support by UNSW Internal Research Grant program is gratefully acknowledged as well as the Office of Naval Research (Award No: ONRG - NICOP - N62909-16-1-2155). We appreciate the use of instruments in the Mark Wainwright Analytical Centre at UNSW., Исследование проведено при финансовой поддержке в рамках программы грантов Университета Нового Южного Уэльса (UNSW), а также при содействии Управления военно-морских исследований (грант №. ONRG - NICOP - N62909-16-1-2155). Авторы выражают благодарность Аналитическому центру им. Марка Уэйнрайта при Университете Нового Южного Уэльса, Австралия.

    Source: Alternative Energy and Ecology (ISJAEE); № 28-33 (2019); 36-48 ; Альтернативная энергетика и экология (ISJAEE); № 28-33 (2019); 36-48 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1816/1553; Zhan W.W., Zhu Q.L., Xu Q. Dehydrogenation of ammoniaborane by metal nanoparticles catalysts. ACS Catal., 2016;6:6892–905.; Zhang Y., Shimoda K., Miyaoka H., Ichikawa T., Kojima Y.Thermal decomposition of alkaline-earth metal hydride andammonia borane composites. Int. J. Hydrogen Energy, 2010;35:12405–9.; Ahluwalia RK, Peng JK, Hua TQ. Hydrogen release fromammonia borane dissolved in an ionic liquid. Int. J. Hydrogen Energy, 2011;35:15689–97.; Al-Kukhun A., Hwang H.T., Varma A. Mechanistic studies of ammonia borane dehydrogenation. Int. J. Hydrogen Energy, 2013;38:169–79.; Kelly H.C., Marriott V.B. Reexamination of the mechanism ofacid-catalyzed amine-borane hydrolysis. The hydrolysis of NH3,BH3. Inorg.Chem., 1979;18:2875–8.; Chandra M., Xu Q. Dissociation and hydrolysis of ammoniaboranewith solid acids and carbon dioxide: an efficienthydrogen generation system. J. Power Sources, 2006;159:855–60.; Jiang H.L., Xu Q. Catalytic hydrolysis of ammonia borane forchemical hydrogen storage. Catal. Today, 2011;170:56–63.; Lu Z.H., Yao Q., Zhang Z., Yang Y., Chen X. Nanocatalysts forhydrogen generation from ammonia borane and hydrazineborane. J. Nanomater., 2014;2014:729029.; Umegaki T., Xu Q., Kojima Y. Porous materials for hydrolyticdehydrogenation of ammonia borane. Materials, 2015;8:4512–34.; Lu Z.H., Yao Q., Zhang Z., Yang Y., Chen X. Nanocatalysts for hydrogen generation from ammonia borane and hydrazineborane. J. Nanomater., 2014. 2014:729029(1–11).; Metin O., Mazumder V., Ozkar S., Sun S. Monodisperse nickelnanoparticles and their catalysis in hydrolyticdehydrogenation of ammonia borane. J. Am. Chem.Soc., 2010;132:1468–9.; Durap F., Caliskan S., Özkar S., Karakas K., Zahmakiran M. Dihydrogen phosphate stabilized ruthenium(0)nanoparticles: efficient nanocatalyst for the hydrolysis ofammonia-borane at room temperature. Materials, 2015;8:4226–38.; Metin Ö., Duman S., Dinç M., Özkar S. Oleylamine-stabilizedpalladium(0) nanoclusters as highly active heterogeneouscatalyst for the dehydrogenation of ammonia borane. J. Phys. Chem. C, 2011;115:10736–43.; Cao N., Su J., Luo W., Cheng G. Graphene supported Ru@Cocore-shell nanoparticles as efficient catalysts forhydrogen generation from hydrolysis of ammonia boraneand methylamine borane. Int. J. Hydrogen Energy, 2014;43:47–51.; Aijaz A, Karkamkar A, Choi YJ, Tsumori N, Ronnebro E, Autrey T, et al. Immobilizing highly catalytically active Ptnanoparticles inside the pores of metalorganic framework:a double solvents approach. J. Am. Chem.Soc., 2012;134:13926–9.; Rakap M., Abay B., Tunç N. Hydrolysis of ammonia borane andhydrazine borane by poly(N-vinyl-2-pyrrolidone)-stabilizedCoPd nanoparticles for chemical hydrogen storage. Turk J. Chem., 2017;41:221–32.; Dhanda R, Kidwai M. Graphene supported RuNi alloynanoparticles as highly efficient and durable catalyst forhydrolytic dehydrogenation-hydrogenation reactions. Chem.Select., 2017;2:335–41.; Kalidindi S.B., Sanyal U., Jagirdar B.R. Nanostructured Cu andCu@Cu2O core shell catalysts for hydrogen generation fromammonia-borane. Phys. Chem.Chem. Phys., 2008;10:5870–4.; Figen A.K. Dehydrogenation characteristics of ammoniaborane via boron-based catalysts (Co–B, Ni–B, Cu–B) under different hydrolysis conditions. Int. J. Hydrogen Energy, 2013;38:9186–97.; Eom K.S., Kim M.J., Kim R.H., Nam D.H., Kwon H.S. Characterization of hydrogen generation for fuel cells viaborane hydrolysis using an electrolessdeposited Co–P/Ni foam catalyst. J. Power Sources, 2010;195:2830–4.; Fernandes R., Patel N., Edla R., Bazzanella N., Kothari D.C., Miotello A. Ruthenium nanoparticles supported over carbonthin film catalyst synthesized by pulsed laser deposition forhydrogen production from ammonia borane. Appl. Catal. AGen., 2015;495:23–9.; Wang C., Tuninetti J., Wang Z., Zhang C., Ciganda R., Salmon L., et al. Hydrolysis of ammoniaborane over Ni/ZIF-8nanocatalyst: high efficiency, mechanism, and controlledhydrogen release. J. Am. Chem. Soc., 2017;139:11610–5.; Delmas J., Laversenne L., Rougeaux I., Capron P., Garron A., Bennici S., et al. Improved hydrogen storage capacity throughhydrolysis of solid NaBH4 catalyzed with cobalt boride. Int. J. Hydrogen Energy, 2011;36:2145–53.; Brack P., Dann S.E., Wijayantha K.G.U. Heterogeneous andhomogenous catalysts for hydrogen generation by hydrolysisof aqueous sodium borohydride (NaBH4) solutions. Energy Sci. Eng., 2015;3:174–88.; Manna J., Roy B., Vashistha M., Sharma P. Effect of Co2+/BH4–ratio in the synthesis of Co–B catalysts on sodium borohydride hydrolysis. Int. J. Hydrogen Energy, 2014;39:406–13.; Prosini P.P., Gislon P. A hydrogen refill for cellular phone. J. Power Sources, 2006;161:290–3.; Damjanovic L., Majchrzak M., Bennici S., Auroux A. Determination of the heat evolved during sodium borohydride hydrolysis catalyzed by Co3O4. Int. J. Hydrogen Energy, 2011;36:1991–7.; Lai Q., Rawal A., Quadir Z., Cazorla C., Demirci U.B., Aguey-Zinsou K.F. Nanosizing ammonia borane with nickel: a pathtoward the direct hydrogen release and uptake of B-N-H systems. Adv. Sust. Syst., 2017;1:1700122.; Christian M.L., Aguey-Zinsou F.K. Core-shell strategy leadingto high reversible hydrogen storage capacity for NaBH4. ACSNano, 2012;6:7739–51.; Christian M.L., Aguey-Zinsou F.K. Synthesis of core-shell NaBH4@M (M = Co, Cu, Fe, Ni, Sn) nanoparticles leading tovarious morphologies and hydrogen storage properties. Chem.Commun., 2013;49:6794–6.; Zhou L., Zhang T., Tao Z., Chen J. Ni nanoparticles supportedon carbon as efficient catalysts for the hydrolysis ofammonia borane. Nano Res., 2014;7:774–81.; Peng C.Y., Kang L., Cao S., Chen Y., Lin Z.S., Fu W.F. Nanostructured Ni2P as a robust catalyst for the hydrolyticdehydrogenation of ammonia-borane. Angew. Chem. Int. Ed., 2015;54:15725–9.; Mahyari M., Shaabani A. Nickel nanoparticles immobilized onthree dimensional nitrogen-doped graphene as a superbcatalyst for the generation of hydrogen from the hydrolysisof ammonia borane. J. Mater. Chem. A, 2014;2:16652–9.; Umegaki T., Xu Q., Kojima Y. Effect of Larginine on thecatalytic activity and stability of nickel nanoparticles forhydrolytic dehydrogenation of ammonia borane. J. Power Sources, 2012;216:363–7.; Shan X., Du J., Cheng F., Liang J., Tao Z., Chen J. Carbon-supported Ni3B nanoparticles as catalysts for hydrogengeneration from hydrolysis of ammonia borane. Int. J. Hydrogen Energy, 2014;39:6987–94.; Du J., Cheng F., Si M., Liang J., Tao Z., Chen J. Nanoporous Ni-basedcatalysts for hydrogen generation from hydrolysis ofammonia borane. Int. J. Hydrogen Energy, 2013;38:5768–74.; Graff A., Barrez Z., Baranek P., Bachet M., Benezeth P. Complexation of nickel ions by boric acid or (poly)borates. J. Solut. Chem., 2017;46:25–43.; Kim J.H., Kim K.T., Kang Y.M., Kim H.S., Song M.S., Lee Y.J., et al. Study on degradation of filamentary Ni catalyst onhydrolysis of sodium borohydride. J. Alloy Comp., 2004;379:222–7.; Arzac G.M., Rojas T.C., Fernandez A. Boron compounds asstabilizers of a complex microstructure in a Co-B-basedcatalyst for NaBH4 hydrolysis. Chem. Cat. Chem., 2011;3:1305–13.; Janda R., Heller G. IR- and Ramanspektren isotop marketer tetra- und pentaborate. Spectrochim Acta., 1980;36A:99–1001.; Andrews L., Burkholder T.R. Infrared spectra of molecular B(OH)3 and HOBO in solid argon. J. Chem. Phys., 1992;97:7203–10.; Suzuki M., Ogaki T. Crystallization and transformationmechanisms of a, b- and g-polymorphs of ultra-pure oleicacid. J. Am. Oil. Chem. Soc., 1985;62:1600–4.; NIST X-ray photoelectron spectroscopy database. 2012. http://srdata.nist.gov/xps/. [по данным на 15 января 2018].; https://www.isjaee.com/jour/article/view/1816

  14. 14
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 01-03 (2019); 16-24 ; Альтернативная энергетика и экология (ISJAEE); № 01-03 (2019); 16-24 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1568/1357; Thomas C.E., James B.D., Lomax Jr F.D. Market penetration scenarios for fuel cell vehicles. Int. J. Hydrogen Energy, 1998;23:949–66.; Veziroglu T.N. Quarter century of hydrogen movement 1974–2000. Int. J. Hydrogen Energy, 2000;25:1143–50.; Sigfusson T.I. Pathways to hydrogen as an energy carrier. Phil. Trans. Royal Soc. London Ser. A, 2007;365(1853):1025–42.; Morgan D., Sissine F. Congressional research service, report for congress. Washington: The Committee for the National Institute for the environment; 1995. Tech. Rep. D.C. 20006–21401.; Neftel A., Moor E., Oeschger H., Stauffer B. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 1985;315(6014):45–7.; Friedli H., Lötscher H., Oeschger H., Siegenthaler U., Stauffer B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 1986;324(6094):237–8.; Russ M. Cost-effective strategies for an optimised allocation of carbon dioxide emission reduction measures. Unwelttechnik; Aachen: Verlag-Shaker; 1994.; Bockris J.O., Veziroglu T.N., Smith D. Solar hydrogen energy. London: The Guernsay Press Co. Ltd; 1991.; Turner J.A. The sustainable hydrogen economy. In: Vayssieres L., editor. SPIE conference on solar hydrogen and nanotechnology. San Diego, CA, USA: SPIE; 2006. 6340–7105.; Bilgen E. Solar hydrogen from photovoltaicelectrolyzer systems. Energy Convers Manage, 2001;42(9):1047–57.; Nowotny J. Oxide semiconductors for solar energy conversion. Titanium dioxide. Boca Raton: CRC; 2011.; Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972;238:37–8.; Shimbun Yomiuri. Satellite system would generate clean fuel. The Daily Yomiuri; 2001.; Bockris J.O. Private communication to J. Nowotny; 2002.; Peharz G., Dimroth F., Wittstadt U. Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrogen Energy, 2007;32(15):3248–52.; Doty F.D. A realistic look at hydrogen price projections. Published online; www.dotynmr.com/PDF/Doty_H2Price.pdf; 2004.; Nowotny M.K., Sheppard L.R., Bak T., Nowotny J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C, 2008;112:5275–300.; Momirlan M., Veziroglu T.N. Current status of hydrogen energy. Renewable Sustainable Energy Rev., 2002;6(1,2):141–79.; https://www.isjaee.com/jour/article/view/1568

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20