-
1Academic Journal
Source: Vestnik of Brest State Technical University; No. 1(136) (2025): Vestnik of Brest State Technical University; 76-82
Вестник Брестского государственного технического университета; № 1(136) (2025): Вестник Брестского государственного технического университета; 76-82Subject Terms: метод регулирования, dimensional chains, компенсатор, control method, точность сборки, схема компенсации, assembly accuracy, размерные цепи, geometric progression, геометрическая прогрессия, compensation scheme, compensator
File Description: application/pdf
-
2Academic Journal
Source: Наука и здравоохранение. :109-117
Subject Terms: vit D, прогнозирование, витамин Д, дети, созылмалы бүйрек ауруы, 3. Good health, прогрессирование, children, хроническая болезнь почек, прогрессия, progression, prognosis, Д дәрумені, chronic kidney disease, балалар, болжау
-
3Academic Journal
Authors: Iskakova, M.T., Diyarova, L.D., Usaynova, G.M.
Subject Terms: arithmetic progression, school mathematics, решение задач нестандартными способами, teaching mathematics, математиканы оқыту, 4. Education, школьная математика, нестандартные задачи, mathematics teaching methodology, алгебра, algebra, стандартты емес есептер, самостоятельная работа, арифметическая прогрессия, өздік жұмыс, есептерді стандартты емес тәсілдермен шешу, solving problems in non-standard ways, мектеп математикасы, independent work, математиканы оқыту әдістемесі, арифметикалық прогрессия, обучение математике, non-standard reports, методика преподавания математики
-
4Academic Journal
Authors: Сулейманян Валерия Валерьевна, ФГБОУ ВО «Волгоградский государственный социально-педагогический университет», Valeriia V. Suleimanian,
FSBEI of HE "Volgograd State Pedagogical University", Лобанова Наталья Владимировна, Natalia V. Lobanova Source: Digitalization in the education system: best practices and implementation practices; 145-150 ; Цифровизация в системе образования: передовой опыт и практика внедрения; 145-150
Subject Terms: математика, эффективность обучения, интеллект-карта, прогрессия, арифметическая прогрессия, геометрическая прогрессия
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-18-9; https://phsreda.com/e-articles/10598/Action10598-110798.pdf; Гамакина В.А. Обобщение теоретического материала на уроках математики с использованием интеллект-карты на примере темы «арифметическая и геометрическая прогрессии / В.А Гамакина // Образование, воспитание и обучение в соответствии с ФГОС: актуальные вопросы, достижения и инновации: сборник статей II Международной научно-практической конференции. – Пенза, 2022. – EDN PWCUPX; Бьюзен Т. Интеллект-карты. Практическое применение / Т. Бьюзен. – Попурри, 2010. – 58 с.; Колягин Ю.М. Методика преподавания математики в средней школе. Частные методики: учебное пособие для студентов физ.-мат. фак. пед. ин-тов / Ю.М. Колягин. – М.: Просвещение, 1977. – 480 с.; Макарычев Ю.Н. 9 класс: учебник для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2014.; Математика: дидактические материалы для 9 класса общеобразовательных учреждений. – М., Просвещение, 2015.; Мордкович А.Г. Алгебра. 9 кл.: учебник для общеобразовательных учреждений / А.Г. Мордкович. – М.: Мнемозина, 2010. – 192 с.; https://phsreda.com/article/110798/discussion_platform
-
5Academic Journal
Authors: Ruksha T.G., Kurbat M.N., Palkina N.V., Kutsenko V.A.
Source: Advances in Molecular Oncology; Vol 11, No 4 (2024); 41-53 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 41-53 ; 2413-3787 ; 2313-805X
Subject Terms: methionine, homocysteine, carcinogenesis, tumor progression, chemotherapy, метионин, гомоцистеин, канцерогенез, опухолевая прогрессия, химиотерапия
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/728/370; https://umo.abvpress.ru/jour/article/view/728
-
6Academic Journal
Authors: Vasileva M.V., Khromova N.V., Boichuk S.V., Kopnin P.B.
Contributors: This research was funded by the Russian Scientific Foundation (grant No. 23-15-00433, https://rscf.ru/en/project/23-15-00433), Исследование выполнено за счет гранта Российского научного фонда (грант № 23-15-00433, https://rscf.ru/ project/23-15-00433)
Source: Advances in Molecular Oncology; Vol 11, No 2 (2024); 97-105 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 97-105 ; 2413-3787 ; 2313-805X
Subject Terms: lung cancer, colorectal cancer, Notch signaling pathway, tumor progression, metastasis, cancer stem cells, рак легкого, колоректальный рак, сигнальный путь Notch, опухолевая прогрессия, метастазирование, опухолевые стволовые клетки
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/680/356; https://umo.abvpress.ru/jour/article/view/680
-
7Academic Journal
Authors: Yu. I. Karkavin, L. S. Adamenko, K. S. Yurchenko, A. V. Glushchenko, Ю. И. Каркавин, Л. С. Адаменко, К. С. Юрченко, А. В. Глущенко
Contributors: The work was carried out within the framework of the state assignment of the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences No. 122110700001‐5 and was supported Russian Science Foundation grant № 24‐,24‐00367., Работа выполнена в рамках государственного задания Института химической биологии и фундаментальной медицины СО РАН № 122110700001‐5 и при поддержке гранта РНФ № 24‐24‐00367.
Source: South of Russia: ecology, development; Том 19, № 3 (2024); 44-54 ; Юг России: экология, развитие; Том 19, № 3 (2024); 44-54 ; 2413-0958 ; 1992-1098
Subject Terms: опухолевая прогрессия, virotherapy, Lewis lung carcinoma, oncolytic viruses, tumor progression, виротерапия, карцинома легких Льюиса, онколитические вирусы
File Description: application/pdf
Relation: https://ecodag.elpub.ru/ugro/article/view/3220/1435; Brunner Th. The rationale of combined radiotherapy and chemotherapy ‐ Joint action of Castor and Pollux // Best Practice and Research Clinical Gastroenterology. 2016. V. 30. N 4. P. 515–528. https://doi.org/10.1016/j.bpg.2016.07.002; Tang Ch., Li L., Mo T., Qian Zh., Fan D., Sun X., Yao M., Pan L., Huang Y., Zhong L. Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical // Clinical and Translational Oncology. 2022. V. 24. N 9. P. 1682–1701. https://doi.org/10.1007/s12094‐022‐02830‐x; Wu Y.‐Y., Sun T.‐K., Chen M.‐Sh., Munir M., Liu H.‐J. Oncolytic viruses‐modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response // Frontiers Cellular Infectional Microbiology. 2023. V. 13. N 1142172. https://doi.org/10.3389/fcimb.2023.1142172; Yurchenko K.S., Glushchenko A.V., Gulyaeva M.A., Bi Y., Chen J., Shi W., Adamenko L.S., Shestopalov A.M. Intratumoral virotherapy with wild‐type Newcastle disease virus in carcinoma Krebs‐2 cancer model // Viruses. 2021. V. 13. N 4. P. 1–16. https://doi.org/10.3390/v13040552; Kabilov M.R., Alikina T.Y., Yurchenko K.S., Glushchenko A.V., Gunbin K.V., Shestopalov A.M., Gubanova N.V. Complete genome sequences of two Newcastle disease virus strains isolated from a wild duck and a pigeon in Russia // Genome Announcement. 2016. V. 4. N 6. Article id: e01348‐16. P. 1–2. https://doi.org/10.1128/genomeA.01348‐16; Baris M.M., Serinan E., Calisir M., Simsek K., Aktas S., Yilmaz O., Kilic Ozdemir S., Secil M. Xenograft Tumor Volume Measurement in Nude Mice: Estimation of 3D Ultrasound Volume Measurements Based on Manual Caliper Measurements // Journal of Basic and Clinical Health Sciences.2020. V. 4. N 2. P. 90–95. https://doi.org/10.30621/jbachs.2020.902; Автандилов Г.Г. Медицинская морфометрия. Руководство. Москва: Медицина, 1990. 384 с.; McGinnes L., Pantua H., Reitter J., Morrison T. Newcastle disease virus: propagation, quantification, and storage // Current Protocols in Microbiology. 2006. Ch. 15(15). F.2.1‐ 15F.2.18. https://doi.org/10.1002/9780471729259.mc15f02s01; Lei C., Yang J., Hu J., Sun X. On the Calculation of TCID50 for Quantitation of Virus Infectivity // Virologica Sinica. 2021. V. 36. N 1. P. 141–144. https://doi.org/10.1007/s12250‐020‐00230‐5; Kumar P., Nagarajan A., Uchil P.D. Analysis of Cell Viability by the MTT Assay // Cold Spring Harbor Protocols. 2018. V. 1. N 6. pdb.prot095505. https://doi.org/10.1101/pdb.prot095505; Lazar I., Clement E., Attane C., Muller C., Nieto L. A new role for extracellular vesicles: How small vesicles can feed tumors' big appetite // Journal of Lipid Research. 2018. V. 59. N 10. P. 1793–1804. https://doi.org/10.1194/jlr.R083725; Dirat B., Bochet L., Dabek M., Daviaud D., Dauvillier S., Majed B., Wang Y.Y., Meulle A., Salles B., Le Gonidec S. Cancer‐ associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion // Cancer Research. 2011. V. 71. N 7. P. 2455–2465. https://doi.org/10.1158/0008‐5472.CAN‐10‐3323; Vaupel H., Schmidberger A., Mayer A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression // International Journal of Radiation Biology. 2019. V. 95. N 7. P. 912–919. https://doi.org/10.1080/09553002.2019.1589653; Hoxhaj G., Manning B.D. The PI3K‐AKT network at the interface of oncogenic signalling and cancer metabolism // Nature Reviews Cancer. 2020. V. 20. N 2. P. 74–88. https://doi.org/10.1038/s41568‐019‐0216‐7; Nieman K.M., Romero I.L., Van Houten B., Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis // Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 2013. V. 1831. N 10. P. 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010; https://ecodag.elpub.ru/ugro/article/view/3220
-
8Academic Journal
Authors: V. V. Protoshchak, M. V. Paronnikov, E. G. Karpushchenko, A. V. Sleptsov, P. A. Babkin, N. P. Kushnirenko, R. V. Novikov, В. В. Протощак, М. В. Паронников, Е. Г. Карпущенко, А. В. Слепцов, П. А. Бабкин, Н. П. Кушниренко, Р. В. Новиков
Source: Cancer Urology; Том 20, № 1 (2024); 103-108 ; Онкоурология; Том 20, № 1 (2024); 103-108 ; 1996-1812 ; 1726-9776
Subject Terms: чрескожная резекция, tumor of the renal pelvis, bladder cancer, recurrence, progression, transcutaneous resection, опухоль лоханки, рак мочевого пузыря, рецидив, прогрессия
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1699/1517; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1699/1374; Sung H., Ferlay J., Siegel R.L. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; National Cancer Institute. SEER Stat Fact Sheets: Bladder Cancer, 2015 Available at: http://seer.cancer.gov/statfacts/html/urinb.html [cited March 6, 2015].; Cosentino M., Palou J., Gaya J.M. et al. Upper urinary tract urothelial cell carcinoma: location as a predictive factor for concomitant bladder carcinoma. World J Urol 2013;31(1):141–5. DOI:10.1007/s00345-012-0877-2; Margulis V., Shariat S.F., Matin S.F. et al. Outcomes of radical nephroureterectomy: a series from the Upper Tract Urothelial Carcinoma Collaboration. Cancer 2009;115(6):1224–33. DOI:10.1002/cncr.24135; Roupret M., Siesen T., Birtle A. et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2023 Update. Eur Urol 2023;84(1):49–64. DOI:10.1016/j.eururo.2023.03.013; Rosenthal D.L., Wojcik E.M., Kurtycz D.F.I. The Paris System for reporting urinary cytology. Springer, 2016.; Мартов А.Г., Ергаков Д.В., Андронов А.С. Уротелиальный рак верхних мочевыводящих путей: возможно ли удаление опухоли единым блоком? Онкоурология 2022;18(3):123–7. DOI:10.17650/1726-9776-2022-18-3-123-127; Motamedinia P., Keheila M., Leavitt D.A. et al. The expanded use of percutaneous resection for upper tract urothelial carcinoma: a 30-year comprehensive experience. J Endourol 2016;30(3):262–7. DOI:10.1089/end.2015.0248; Lucas S.M., Svatek R.S., Olgin G. et al. Conservative management in selected patients with upper tract urothelial carcinoma compares favourably with early radical surgery. BJU Int 2008;102(2):172–6. DOI:10.1111/j.1464-410X.2008.07535.x; Belugina R., Kirsanov D., Protoshchak V. et al. Developing non-invasive bladder cancer screening methodology through potentiometric multisensor urine analysis. Talanta 2021;234:122696. DOI:10.1016/j.talanta.2021.122696; Habuchi T., Takahashi R., Yamada H. et al. Metachronous multifocal development of urothelial cancers by intraluminal seeding. Lancet 1993;342(8879):1087–8. DOI:10.1016/0140-6736(93)92066-3; Mistretta F.A., Carrion D.M., Nazzani S. et al. Bladder recurrence of primary upper tract urinary carcinoma following nephroureterectomy, and risk of upper urinary tract recurrence after ureteral stent positioning in patients with primary bladder cancer. Minerva Urol Nefrol 2019;71(3):191–200. DOI:10.23736/S0393-2249.19.03311-3; Jones T.D., Wang M., Eble J.N. et al. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin Cancer Res 2005;11(18):6512–9. DOI:10.1158/1078-0432.CCR-05-0891; https://oncourology.abvpress.ru/oncur/article/view/1699
-
9Academic Journal
Authors: I. K. Fedorova, E. S. Kolegova, E. A. Prostakishina, T. D. Dampilova, M. R. Patysheva, P. S. Yamshchikov, E. V. Denisov, E. L. Choynzonov, D. E. Kulbakin, И. К. Федорова, Е. С. Колегова, Е. А. Простакишина, Т. Д. Дампилова, М. Р. Патышева, П. С. Ямщиков, Е. В. Денисов, Е. Л. Чойнзонов, Д. Е. Кульбакин
Contributors: The work was carried out with the financial support of the Russian Science Foundation (grant No. 23-75-01157), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 23-75-01157)
Source: Head and Neck Tumors (HNT); Том 13, № 4 (2023); 92-100 ; Опухоли головы и шеи; Том 13, № 4 (2023); 92-100 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-4
Subject Terms: «Атлас ракового генома», ST6GAL2, CD248, прогрессия опухоли
File Description: application/pdf
Relation: https://ogsh.abvpress.ru/jour/article/view/941/610; Wu K., Jiang Y., Zhou W. et al. Long noncoding RNA RC3H2 facilitates cell proliferation and invasion by targeting microRNA-101-3p/EZH2 axis in OSCC. Mol Ther Nucleic Acids 2020;20: 97–110. DOI:10.1016/j.omtn.2020.02.006; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6): 394–424. DOI:10.3322/caac.21492; Zanoni D.K., Montero P.H., Migliacci J.C. et al. Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol 2019;90:115–21. DOI:10.1016/j.oraloncology.2019.02.001; Weckx A., Riekert M., Grandoch A. et al. Time to recurrence and patient survival in recurrent oral squamous cell carcinoma. Oral Oncol 2019;94:8–13. DOI:10.1016/j.oraloncology.2019.05.002; Safi A.F., Kauke M., Grandoch A. et al. Analysis of clinicopathological risk factors for locoregional recurrence of oral squamous cell carcinoma – retrospective analysis of 517 patients. J Craniomaxillofac Surg 2017;45(10):1749–53. DOI:10.1016/j.jcms.2017.07.012; Bugshan A., Farooq I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res 2020;9:229. DOI:10.12688/f1000research.22941.1; Kleverov M., Zenkova D., Kamenev V. et al. Phantasus: web-application for visual and interactive gene expression analysis. BioRxiv 2022;12. DOI:10.1101/2022.12.10.519861; Arriaga J.M., Bravo A.I., Mordoh J., Bianchini M. Metallothionein 1G promotes the differentiation of HT-29 human colorectal cancer cells. Oncol Rep 2017;37(5):2633–51. DOI:10.3892/or.2017.5547; Zhang M., Chai Y.D., Brumbaugh J. et al. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes. BMC Cancer 2014;14:223. DOI:10.1186/1471-2407-14-223; Kontsekova S., Polcicova K., Takacova M., Pastorekova S. Endosialin: molecular and functional links to tumor angiogenesis. Neoplasma 2016;63(2):183–92. DOI:10.4149/202_15090N474; Rettig W.J., Garin-Chesa P., Healey J.H. et al. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 1992;89(22):10832–6. DOI:10.1073/pnas.89.22.10832; St Croix B., Rago C., Velculescu V. et al. Genes expressed in human tumor endothelium. Science 2000;289(5482):1197–202. DOI:10.1126/science.289.5482.1197; Zhao X.T., Zhu Y., Zhou J.F. et al. Development of a novel 7 immune-related genes prognostic model for oral cancer: A study based on TCGA database. Oral Oncol 2021;112:105088. DOI:10.1016/j.oraloncology.2020.105088; Hedlund M., Ng E., Varki A., Varki NM. Alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 2008;68(2):388–94. DOI:10.1158/0008-5472.CAN-07-1340; Nakano M., Saldanha R., Göbel A. et al. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells. Mol Cell Proteomics 2011;10(11):M111.009001. DOI:10.1074/mcp.M111.009001; Liang L., Xu J., Wang M. et al. LncRNA HCP5 promotes follicular thyroid carcinoma progression via miRNAs sponge. Cell Death Dis 2018;9(3):372. DOI:10.1038/s41419-018-0382-7; Agrawal P., Fontanals-Cirera B., Sokolova E. et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell 2017;31(6):804–19.e7. DOI:10.1016/j.ccell.2017.05.007; Wu T., Jiao Z., Li Y. et al. HPRT1 Promotes chemoresistance in oral squamous cell carcinoma via activating MMP1/PI3K/Akt signaling pathway. Cancers (Basel) 2022;14(4):855. DOI:10.3390/cancers14040855; Ye H., Zheng Z., Song Y. et al. Metabolism-related bioinformatics analysis reveals that HPRT1 Facilitates the progression of oral squamous cell carcinoma in vitro. J Oncol 2022;2022:7453185. DOI:10.1155/2022/7453185; Guo Q., Zhang Q., Lu L., Xu Y. Long noncoding RNA RUSC1-AS1 promotes tumorigenesis in cervical cancer by acting as a competing endogenous RNA of microRNA-744 and conse-quently increasing Bcl-2 expression. Cell Cycle 2020;19(10):1222–35. DOI:10.1080/15384101.2020.1749468; Zou D., Lou J., Ke J. et al. Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulating SLC22A5 expression. Eur J Cancer 2018;93:1–9. DOI:10.1016/j.ejca.2018.01.065; Yang Y., Wu J., Yu X. et al. SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer. Pathol Res Pract 2022;229:153706. DOI:10.1016/j.prp.2021.153706; Zhang H.X., Liu O.S., Deng C. et al. Genome-wide gene expression profiling of tongue squamous cell carcinoma by RNA-seq. Clin Oral Investig 2018;22(1):209–16. DOI:10.1007/s00784-017-2101-7; Almhöjd U., Cevik-Aras H., Karlsson N. et al. Stimulated saliva composition in patients with cancer of the head and neck region. BMC Oral Health 2021;21(1):509. DOI:10.1186/s12903-021-01872-x; Ghantous Y., Bahouth Z., Abu El-Naaj I. Clinical and genetic signatures of local recurrence in oral squamous cell carcinoma. Arch Oral Biol 2018;95:141–8. DOI:10.1016/j.archoralbio.2018.07.018; Jadhav K.B., Gupta N. Clinicopathological prognostic implicators of oral squamous cell carcinoma: need to understand and revise. N Am J Med Sci 2013;5(12):671–9. URL: https://www.researchgate.net/publication/259632012_Clinicopathological_Prognostic_Implicators_of_Oral_Squamous_Cell_Carcinoma_Need_to_Understand_and_Revise; Milflores-Flores L., Millán-Pérez L., Santos-López G. et al. Characterization of P1 promoter activity of the beta-galactoside alpha2,6-sialyltransferase I gene (siat 1) in cervical and hepatic cancer cell lines. J Biosci 2012;37(2):259–67. DOI:10.1007/s12038-012-9194-6; McGreal E.P., Ikewaki N., Akatsu H. et al. Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol 2002;168(10):5222–32. DOI:10.4049/jimmunol.168.10.5222; https://ogsh.abvpress.ru/jour/article/view/941
-
10Academic Journal
Authors: V. О. Bitsadze, Е. V. Slukhanchuk, А. G. Solopova, J. Kh. Khizroeva, F. E. Yakubova, Е. А. Orudzhova, N. D. Degtyareva, Е. S. Egorova, N. А. Makatsariya, N. V. Samburova, V. N. Serov, L. А. Ashrafyan, Z. D. Aslanova, А. V. Lazarchuk, Е. S. Kudryavtseva, А. Е. Solopova, D. L. Kapanadze, J.-C. Gris, I. Elalamy, С. Ay, А. D. Makatsariya, В. О. Бицадзе, Е. В. Слуханчук, А. Г. Солопова, Д. Х. Хизроева, Ф. Э. Якубова, Э. А. Оруджова, Н. Д. Дегтярева, Е. С. Егорова, Н. А. Макацария, Н. В. Самбурова, В. Н. Серов, Л. А. Ашрафян, З. Д. Асланова, А. В. Лазарчук, Е. С. Кудрявцева, А. Е. Солопова, Д. Л. Капанадзе, Ж.-К. Гри, И. Элалами, Д. Ай, А. Д. Макацария
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 96-111 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 96-111 ; 2500-3194 ; 2313-7347
Subject Terms: метастазирование, TME, tumor progression, tumor growth, cancer, metastasis, МОО, прогрессия опухоли, рост опухоли, рак
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1955/1182; https://www.gynecology.su/jour/article/view/1955/1188; LeBleu V. Imaging the tumor microenvironment. Cancer J. 2015;21(3):174–8. https://doi.org/10.1097/PPO.0000000000000118.; Del Prete A., Schioppa T., Tiberio L. et al. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol. 2017;35:40–7. https://doi.org/10.1016/j.coph.2017.05.004.; Desai A., Small E.J. Treatment of advanced renal cell carcinoma patients with cabozantinib, an oral multityrosine kinase inhibitor of MET, AXL and VEGF receptors. Future Oncol. 2019;15(20):2337–48. https://doi.org/10.2217/fon-2019-0021.; Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.; Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.; Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309– 22. https://doi.org/10.1016/j.ccr.2012.02.022.; Hinshaw D.C., Shevde L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66. https://doi.org/10.1158/0008-5472.CAN-18-3962.; Pottier C., Wheatherspoon A., Roncarati P. et al. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther. 2015;15(8):943–54. https://doi.org/10.1586/14737140.2015.1059279.; Angell H., Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013;25(2):261–7. https://doi.org/10.1016/j.coi.2013.03.004.; Wang T., Niu G., Kortylewski M. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54. https://doi.org/10.1038/nm976.; Maimela N.R., Liu S., Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 2019;17:1–13. https://doi.org/10.1016/j.csbj.2018.11.004.; Lv L., Pan K., Li X.-d. et al. The accumulation and prognosis value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma. PloS One. 2011;6(3):e18219. https://doi.org/10.1371/journal.pone.0018219.; Plitas G., Rudensky A.Y. Regulatory T cells in cancer. Annu Rev Cancer Biol. 2020;4(1):459–77. https://doi.org/10.1146/annurevcancerbio-030419-033428.; Curiel T.J., Coukos G., Zou L. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. https://doi.org/10.1038/nm1093.; Fozza C., Longinotti M. T-cell traffic jam in Hodgkin's lymphoma: pathogenetic and therapeutic implications. Adv Hematol. 2011;2011:501659. https://doi.org/10.1155/2011/501659.; Koreishi A.F., Saenz A.J., Persky D.O. et al. The role of cytotoxic and regulatory T-cells in relapsed/refractory Hodgkin lymphoma. Appl Immunohistochem Mol Morphol. 2010;18(3):206–11. https://doi.org/10.1097/PAI.0b013e3181c7138b.; Gomes A.Q., Martins D.S., Silva-Santos B. Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res. 2010;70(24):10024–7. https://doi.org/10.1158/0008-5472.CAN-10-3236.; Tanaka M., Iwakiri Y. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol. 2016;2(6):733–49. https://doi.org/10.1016/j.jcmgh.2016.09.002.; Milne K., Köbel M., Kalloger S.E. et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PloS One. 2009;4(7):e6412. https://doi.org/10.1371/journal.pone.0006412.; Andreu P., Johansson M., Affara N.I. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17(2):121–34. https://doi.org/10.1016/j.ccr.2009.12.019.; Mauri C., Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41. https://doi.org/10.1146/annurevimmunol-020711-074934.; Horikawa M., Minard-Colin V., Matsushita T., Tedder T. F. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest. 2011;121(11):4268–80. https://doi.org/10.1172/JCI59266.; Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294–307. https://doi.org/10.1038/s41577-019-0257-x.; Marcus A., Gowen B. G., Thompson T.W. et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91–128. https://doi.org/10.1016/B978-0-12-800267-4.00003-1.; Qian B.-Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.; Condeelis J., Pollard J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. https://doi.org/10.1016/j.cell.2006.01.007.; Wang S.-C., Hong J.-H., Hsueh C., Chiang C.-S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest. 2012;92(1):151–62. https://doi.org/10.1038/labinvest.2011.128.; Franklin R.A., Liao W., Sarkar A. et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510.; Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. https://doi.org/10.1038/nri3175.; Meredith M.M., Liu K., Darrasse-Jeze G. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med. 2012;209(6):1153–65. https://doi.org/10.1084/jem.20112675.; Nozawa H., Chiu C., Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493–8. https://doi.org/10.1073/pnas.0601807103.; Youn J.-I., Gabrilovich D.I. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969–75. https://doi.org/10.1002/eji.201040895.; Erler J.T., Bennewith K.L., Cox T.R. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012.; Granot Z., Henke E., Comen E.A. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012.; Walker C., Mojares E., del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018;19(10):3028. https://doi.org/10.3390/ijms19103028.; Nieman K.M., Kenny H.A., Penicka C.V. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. https://doi.org/10.1038/nm.2492.; Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17(11):1371–80. https://doi.org/10.1038/nm.2545.; Swartz M.A., Lund A.W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9. https://doi.org/10.1038/nrc3186.; Erez N., Truitt M., Olson P. et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell. 2010;17(2):135–47. https://doi.org/10.1016/j.ccr.2009.12.041.; Xing F., Saidou J., Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15(1):166–79. https://doi.org/10.2741/3613.; Korneev K.V., Atretkhany K.-S. N., Drutskaya M. S. et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. 2017;89:127–35. https://doi.org/10.1016/j.cyto.2016.01.021.; Shiga K., Hara M., Nagasaki T. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7(4):2443– 58. https://doi.org/10.3390/cancers7040902.; Li B., Wang J. H.-C. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20(4):108–20. https://doi.org/10.1016/j.jtv.2009.11.004.; Kraman M., Bambrough P.J., Arnold J.N. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science. 2010;330(6005):827–30. https://doi.org/10.1126/science.1195300.; Armulik A., Genové G., Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001.; Cooke V.G., LeBleu V.S., Keskin D.N et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024.; Turley S.J., Cremasco V., Astarita J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82. https://doi.org/10.1038/nri3902.; McAndrews K.M., McGrail D.J., Ravikumar N., Dawson M.R. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep. 2015;5(1):16941. https://doi.org/10.1038/srep16941.; Lam P.Y. Biological effects of cancer-secreted factors on human mesenchymal stem cells. Stem Cell Res Ther. 2013;4(6):138. https://doi.org/10.1186/scrt349.; Hu Y., Li D., Wu A. et al. TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett. 2017;393:60–7. https://doi.org/10.1016/j.canlet.2017.02.009.; Farnie G., Sotgia F., Lisanti M.P. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6(31):30472–86. https://doi.org/10.18632/oncotarget.5401.; Feig C., Jones J.O., Kraman M. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with antiPD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7. https://doi.org/10.1073/pnas.1320318110.; Henke E., Nandigama R., Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. https://doi.org/10.3389/fmolb.2019.00160.; Vaupel P., Mayer A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol. 2014;812:19–24. https://doi.org/10.1007/978-1-4939-0620-8_3.; Elinav E., Garrett W.S., Trinchieri G., Wargo J. The cancer microbiome. Nat Rev Cancer. 2019;19(7):371–6. https://doi.org/10.1038/s41568-019-0155-3.; Hofer H.R., Tuan R.S. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131. https://doi.org/10.1186/s13287-016-0394-0.; Altman J.B., Benavides A.D., Das R., Bassiri H. Antitumor responses of invariant natural killer T cells. J Immunol Res. 2015;2015:652875. https://doi.org/10.1155/2015/652875.; Keely P.J. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia. 2011;16(3):205–19. https://doi.org/10.1007/s10911-011-9226-0.; Guan J., Chen J. Mesenchymal stem cells in the tumor microenvironment. Biomed Rep. 2013;1(4):517–21. https://doi.org/10.3892/br.2013.103.; Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood2010-06-290171.; Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259–66. https://doi.org/10.1158/0008-5472.CAN-05-2502.; Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–40. https://doi.org/10.1593/neo.07871.; Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484.; Romson J.L., Hook B., Rigot V. et al. The effect of ibuprofen on accumulation of indium-111-labeled platelets and leukocytes in experimental myocardial infarction. Circulation. 1982;66(5):1002–11. https://doi.org/10.1161/01.cir.66.5.1002.; Goh C.Y., Patmore S., Smolenski A. et al. The role of von Willebrand factor in breast cancer metastasis. Transl Oncol. 2021;14(4):101033. https://doi.org/10.1016/j.tranon.2021.101033.; Price L.C., Wort S.J. Earlier diagnosis and international registries may improve outcomes in pulmonary tumour thrombotic microangiopathy. Eur Respir J. 2016;47(2):690–1. https://doi.org/10.1183/13993003.01736-2015.; Farge D., Bounameaux H., Brenner B. et al. International clinical practice guidelines including guidance for direct oral anticoagulants in the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2016;17(10):e452–e466. https://doi.org/10.1016/S1470-2045(16)30369-2.; Tinholt M., Viken M.K., Dahm A.E. et al. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study. BMC Cancer. 2014;14:845. https://doi.org/10.1186/1471-2407-14-845.; Pihusch R., Danzl G., Scholz M. et al. Impact of thrombophilic gene mutations on thrombosis risk in patients with gastrointestinal carcinoma. Cancer. 2002;94(12):3120–6. https://doi.org/10.1002/cncr.10590.; Tavares V., Pinto R., Assis J. et al. Dataset of GWAS-identified variants underlying venous thromboembolism susceptibility and linkage to cancer aggressiveness. Data Brief. 2020;30:105399. https://doi.org/10.1016/j.dib.2020.105399.; Vossen C.Y., Hoffmeister M., Chang-Claude J.C. et al. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol. 2011;29(13):1722–7. https://doi.org/10.1200/JCO.2010.31.8873.; de Haas E.C., Zwart N., Meijer C. et al. Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer. 2010;116(24):5628–36. https://doi.org/10.1002/cncr.25300.; Duffy M.J., McGowan P.M., Harbeck N. et al. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428. https://doi.org/10.1186/s13058-014-0428-4.; Tavares V., Pinto R., Assis J. et al. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188331. https://doi.org/10.1016/j.bbcan.2019.188331.; Vila P., Hernandez M., Lopez-Fernandez M., Batlle J. Prevalence, follow-up and clinical significance of the anticardiolipin antibodies in normal subjects. Thromb Haemost. 1994;72(8):209–13.; Vassalo J., Spector N., de Meis E. et al. Antiphospholipid antibodies in critically ill patients with cancer: a prospective cohort study. J Crit Care. 2014;29(4):533–8. https://doi.org/10.1016/j.jcrc.2014.02.005.; Abdel-Wahab N., Tayar J.H., Fa'ak F. et al. Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv. 2020;4(8):1746–55. https://doi.org/10.1182/bloodadvances.2020001557.; Cervera R., Rodríguez-Pintó I., Colafrancesco S. et al. 14th international congress on antiphospholipid antibodies task force report on catastrophic antiphospholipid syndrome. Autoimmun Rev. 2014;13(7):699–707. https://doi.org/10.1016/j.autrev.2014.03.002.; https://www.gynecology.su/jour/article/view/1955
-
11Academic Journal
Authors: J. Kh. Khizroeva, Z. D. Aslanova, A. G. Solopova, V. O. Bitsadze, А. V. Vorobev, А. Yu. Tatarintseva, J.-С. Gris, I. Elalamy, N. А. Makatsariya, D. V. Blinov, Д. Х. Хизроева, З. Д. Асланова, А. Г. Солопова, В. О. Бицадзе, А. В. Воробьев, А. Ю. Татаринцева, Ж.-К. Гри, И. Элалами, Н. А. Макацария, Д. В. Блинов
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 55-67 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 55-67 ; 2500-3194 ; 2313-7347
Subject Terms: прогрессия и метастазирование опухоли, NETs, inflammation and cancer, NETs and thrombosis, tumor progression and metastasis, воспаление и рак, NETs и тромбозы
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1960/1181; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Snoderly H.T., Boone B.A., Bennewitz M.F. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019;21(1):145. https://doi.org/10.1186/s13058-019-1237-6.; Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91. https://doi.org/10.1083/jcb.201006052.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.; Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45. https://doi.org/10.1016/S0140-6736(00)04046-0.; Bonavita E., Galdiero M.R., Jaillon S., Mantovani A. Phagocytes as сorrupted зolicemen in сancer-кelated шnflammation. Adv Cancer Res. 2015;128:141–71. https://doi.org/10.1016/bs.acr.2015.04.013.; Coffelt S., Wellenstein M., de Visser K. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16(7):431–46. https://doi.org/10.1038/nrc.2016.52.; Colotta F., Re F., Polentarutti N. et al. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80(8):2012–20.; Carnevale S., Ghasemi S., Rigatelli A., Jaillon S. The complexity of neutrophils in health and disease: focus on cancer. Semin Immunol. 2020;48:101409. https://doi.org/10.1016/j.smim.2020.101409.; De Meo M.L., Spicer J.D. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin Immunol. 2021;57:101595. https://doi.org/10.1016/j.smim.2022.101595.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Маркеры внеклеточных ловушек нейтрофилов у женщин со злокачественными новообразованиями репродуктивной системы, получавших хирургическое лечение и адъювантную химиотерапию. Акушерство, Гинекология и Репродукция. 2023;17(4):420–32. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.432.; Cristinziano L., Modestino L., Antonelli A. et al. Neutrophil extracellular traps in cancer. Semin Cancer Biol. 2022;79:91–104. https://doi.org/10.1016/j.semcancer.2021.07.011.; Sosa M.S., Bragado P., Aguirre-Ghiso J.A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22. https://doi.org/10.1038/nrc3793.; Albrengues J., Shields M.A., Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227.; Poto R., Cristinziano L, Modestino L. et al. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines. 2022;10(2):431. https://doi.org/10.3390/biomedicines10020431.; Szczerba M.B., Castro-Giner F., Vetter M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–7. https://doi.org/10.1038/s41586-019-0915-y.; Shaul M.E., Fridlender Z.G. Tumour-associated neutrophils in patients with cancer. Nat Rev Clinical Oncol. 2019;16(10):601–20. https://doi.org/10.1038/s41571-019-0222-4.; Li P., Lu M., Shi J. et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat Immunol. 2020;21(11):1444–55. https://doi.org/10.1038/s41590-020-0783-5.; Tohme S., Yazdani H.O., Al-Khafaji A.B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80. https://doi.org/10.1158/0008-5472.CAN-15-1591.; Mauracher L.M., Posch F., Martinod K. et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508–18. https://doi.org/10.1111/jth.13951.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Иммунотромбоз, прогрессия опухоли и метастазирование. Роль интерлейкина-8 и внеклеточных ловушек нейтрофилов. Вопросы гинекологии, акушерства и перинатологии. 2023;22(4):48–56. https://doi.org/10.20953/1726-1678-2023-4-48-56.; North R.J., Neubauer R.H., Huang J.J. et al. Interleukin 1-induced, T cellmediated regression of immunogenic murine tumors. Requirement for an adequate level of already acquired host concomitant immunity. J Exp Med. 1988;168(6):2031–43. https://doi.org/10.1084/jem.168.6.2031.; Rébé C., Ghiringhelli F. Interleukin-1β and cancer. Cancers (Basel). 2020;12(7):1791. https://doi.org/10.3390/cancers12071791.; Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy. 2021;122(7):474–88. https://doi.org/10.4149/BLL_2021_078.; Forget P., Khalifa C., Defour J.P. et al. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res Notes. 2017;10(1):12. https://doi.org/10.1186/s13104-016-2335-5.; https://www.gynecology.su/jour/article/view/1960
-
12Academic Journal
Authors: Z. D. Aslanova, J. Kh. Khizroeva, A. G. Solopova, V. O. Bitsadze, A. V. Vorobev, J.-C. Gris, I. Elalamy, N. A. Makatsariya, D. Yu. Zabolotnaya, З. Д. Асланова, Д. Х. Хизроева, А. Г. Солопова, В. О. Бицадзе, А. В. Воробьев, Ж.-К. Гри, И. Элалами, Н. А. Макацария, Д. Ю. Заболотная
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 8-22 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 8-22 ; 2500-3194 ; 2313-7347
Subject Terms: прогрессия опухоли, aPLs, cancer, cancer-associated thrombosis, anti-cardiolipin antibodies, aCLs, anti-β 2 -glycoprotein 1 antibodies, anti-β 2 -GР1, tumor progression, АФА, рак, рак-ассоциированный тромбоз, антитела к кардиолипину, антитела к β 2 -гликопротеину 1
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1890/1176; https://www.gynecology.su/jour/article/view/1890/1175; Gris J.C., Mousty É., Bouvier S. et al. Increased incidence of cancer in the follow-up of obstetric antiphospholipid syndrome within the NOH-APS cohort. Haematologica. 2020;105(2):490–7. https://doi.org/10.3324/haematol.2018.213991.; Cabrera-Marante O., Rodríguez de Frías E., Serrano M. et al. The weight of IgA anti-β2glycoprotein I in the antiphospholipid syndrome pathogenesis: closing the gap of seronegative antiphospholipid syndrome. Int J Mol Sci. 2020;21(23):8972. https://doi.org/10.3390/ijms21238972.; Yoon K.H., Wong A., Shakespeare T., Sivalingam P. High prevalence of antiphospholipid antibodies in Asian cancer patients with thrombosis. Lupus. 2003;12(2):112–6. https://doi.org/10.1191/0961203303lu328oa.; Kansuttiviwat C., Niprapan P., Tantiworawit A. et al. Impact of antiphospholipid antibodies on thrombotic events in ambulatory cancer patients. PLoS One. 2023;18(1):e0279450. https://doi.org/10.1371/journal.pone.0279450.; Vassalo J., Spector N., de Meis E. et al. Antiphospholipid antibodies in critically ill patients with cancer: a prospective cohort study. J Crit Care. 2014;29(4):533–8. https://doi.org/10.1016/j.jcrc.2014.02.005.; Gómez-Puerta J.A., Cervera R., Espinosa G. et al. Antiphospholipid antibodies associated with malignancies: clinical and pathological characteristics of 120 patients. Semin Arthritis Rheum. 2006;35(5):322– 32. https://doi.org/10.1016/j.semarthrit.2005.07.003.; Sawamura M., Yamaguchi S., Murakami H. et al. Multiple autoantibody production in a patient with splenic lymphoma. Ann Hematol. 1994;68(5):251–4. https://doi.org/10.1007/BF01737426.; Tincani A., Taraborelli M., Cattaneo R. Antiphospholipid antibodies and malignancies. Autoimmun Rev. 2010;9(4):200–2. https://doi.org/10.1016/j.autrev.2009.04.001.; Benvenuto M., Mattera R., Masuelli L. et al. The crossroads between cancer immunity and autoimmunity: antibodies to self antigens. Front Biosci (Landmark Ed). 2017;22(8):1289–329. https://doi.org/10.2741/4545.; Cuadrado M.J., Buendía P., Velasco F. et al. Vascular endothelial growth factor expression in monocytes from patients with primary antiphospholipid syndrome. J Thromb Haemost. 2006;4(11):2461–9. https://doi.org/10.1111/j.1538-7836.2006.02193.x.; Wu Y.Y., Nguyen A.V., Wu X.X. et al. Antiphospholipid antibodies promote tissue factor-dependent angiogenic switch and tumor progression. Am J Pathol. 2014;184(12):3359–75. https://doi.org/10.1016/j.ajpath.2014.07.027.; Viall C.A., Chen Q., Liu B.et al. Antiphospholipid antibodies internalised by human syncytiotrophoblast cause aberrant cell death and the release of necrotic trophoblast debris. J Autoimmun. 2013;47:45–57. https://doi.org/10.1016/j.jaut.2013.08.005.; Nocella C., Bartimoccia S., Cammisotto V. et al.; SMiLe Group. Oxidative stress in the pathogenesis of antiphospholipid syndrome: implications for the atherothrombotic process. Antioxidants (Basel). 2021;10(11):1790. https://doi.org/10.3390/antiox10111790.; Štok U., Čučnik S., Sodin-Šemrl S., Žigon P. Extracellular vesicles and antiphospholipid syndrome: state-of-the-art and future challenges. Int J Mol Sci. 2021;22(9):4689. https://doi.org/10.3390/ijms22094689.; Kogure A., Yoshioka Y., Ochiya T. Extracellular vesicles in cancer metastasis: potential as therapeutic targets and materials. Int J Mol Sci. 2020;21(12):4463. https://doi.org/10.3390/ijms21124463.; Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. https://doi.org/10.1016/j.cell.2023.03.010.; Kasthuri R.S., Taubman M.B., Mackman N. Role of tissue factor in cancer. J Clin Oncol. 2009;27(29):4834–8. https://doi.org/10.1200/ JCO.2009.22.6324.; Khorana A.A., Mackman N., Falanga, A. et al. Cancer-associated venous thromboembolism. Nat Rev Dis Primers. 2022;8(1):11. https://doi.org/10.1038/s41572-022-00336-y.; Abu Zaanona M.I., Mantha S. Cancer-associated thrombosis. 2023 Jul 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023 Jan. 20. Mukai M., Oka T. Mechanism and management of cancer-associated thrombosis. J Cardiol. 2018;72(2):89–93. https://doi.org/10.1016/j.jjcc.2018.02.011.; Dambrauskienė R., Gerbutavičius R., Rudžianskienė M. et al. Antiphospholipid antibodies and the risk of thrombosis in myeloproliferative neoplasms. Open Life Sciences. 2023;18(1):20220545. https://doi.org/10.1515/biol-2022-0545; Trousseau A. Phlegmasia alba dolens Clinique Medical de L’Hotel-Dieu deParis, Vol. 3. The New Sydenham Society, London, 1865. 94 p.; Metharom P., Falasca M., Berndt M.C. The history of Armand Trousseau and cancer-associated thrombosis. Cancers (Basel). 2019;11(2):158. https://doi.org/10.3390/cancers11020158.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Взаимодействие внеклеточных ловушек нейтрофилов и антифосфолипидных антител у онкологических больных. Вопросы гинекологии, акушерства и перинатологии. 2023;22(3):54–62. https://doi.org/10.20953/1726-1678-2023-3-54-62.; Zuckerman E., Toubi E., Golan T.D. et al. Increased thromboembolic incidence in anti-cardiolipin-positive patients with malignancy. Br J Cancer. 1995;72(2):447–51. https://doi.org/10.1038/bjc.1995.353.; https://www.gynecology.su/jour/article/view/1890
-
13Academic Journal
Source: Гематология. Трансфузиология. Восточная Европа. :48-55
Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, хронический лимфоцитарный лейкоз, прогноз, factors, chronic lymphocytic leukemia, прогрессия, prognosis, progression, факторы, 3. Good health
-
14Academic Journal
Authors: A.S. Monastyreva, Yu. N. Maltsev
Source: Izvestiya of Altai State University; No 1(111) (2020): Izvestiya of Altai State University; 111-114
Известия Алтайского государственного университета; № 1(111) (2020): Известия Алтайского государственного университета; 111-114Subject Terms: arithmetic progression, треугольник, triangle, 0103 physical sciences, circumradius, полупериметр, inradius, радиус вписанной окружности, semiperimeter, 16. Peace & justice, 01 natural sciences, радиус описанной окружности, арифметическая прогрессия
File Description: application/pdf
Access URL: http://izvestiya.asu.ru/article/download/%282020%291-18/6176
http://izvestiya.asu.ru/article/view/(2020)1-18
https://cyberleninka.ru/article/n/on-triangles-with-sides-that-form-an-arithmetic-progression
https://cyberleninka.ru/article/n/on-triangles-with-sides-that-form-an-arithmetic-progression/pdf
http://izvestiya.asu.ru/article/view/%282020%291-18
http://izvestiya.asu.ru/article/download/%282020%291-18/6176 -
15Academic Journal
Authors: Bokova U.A., Tretyakova M.S., Schegoleva A.A., Denisov E.V.
Contributors: This study was supported by the Russian Science Foundation (project No. 20-75-10060)., Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 20-75-10060).
Source: Advances in Molecular Oncology; Vol 10, No 2 (2023); 8-16 ; Успехи молекулярной онкологии; Vol 10, No 2 (2023); 8-16 ; 2413-3787 ; 2313-805X
Subject Terms: in vivo model, patient avatar, carcinogenesis, tumor progression, модель in vivo, аватар пациента, канцерогенез, опухолевая прогрессия
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/537/296; https://umo.abvpress.ru/jour/article/view/537
-
16Academic Journal
Authors: E. Yu. Zubareva, M. A. Senchukova, T. A. Karmakova, N. V. Zaitsev, Е. Ю. Зубарева, М. А. Сеньчукова, Т. А. Кармакова, Н. В. Зайцев
Contributors: The study was supported by the Russian Science Foundation grant No. 23-25-00183, https://rscf.ru/project/23-25-00183/, Исследование выполнено за счет гранта Российского научного фонда № 23-25-00183, https://rscf.ru/ project/23-25-00183/
Source: Siberian journal of oncology; Том 22, № 5 (2023); 71-83 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 71-83 ; 2312-3168 ; 1814-4861
Subject Terms: перитуморальные микрососуды, tumor progression, programmed death-ligand 1 (Pd-L1), PD-L1 nuclear expression, isolated clusters of tumor cells, peritumoral microvessels, опухолевая прогрессия, лиганд рецептора программируемой клеточный гибели 1 (Pd-L1), ядерная экспрессия Pd-L1, изолированные кластеры опухолевых клеток
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2762/1173; WHO [Internet]. Breast cancer [cited 2023 Apr 20]. URL: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.; Zhang J., Zhang S., Gao S., Ma Y., Tan X., Kang Y., Ren W. HIF-1α, TWIST-1 and ITGB-1, associated with Tumor Stiffness, as Novel Predictive Markers for the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer Manag Res. 2020; 12: 2209–22. doi:10.2147/CMAR.S246349.; Messeha S.S., Zarmouh N.O., Soliman K.F.A. Polyphenols Modulating Effects of PD-L1/PD-1 Checkpoint and EMT-Mediated PD-L1 Overexpression in Breast Cancer. Nutrients. 2021; 13(5): 1718. doi:10.3390/nu13051718.; Nathanson S.D., Detmar M., Padera T.P., Yates L.R., Welch D.R., Beadnell T.C., Scheid A.D., Wrenn E.D., Cheung K. Mechanisms of breast cancer metastasis. Clin Exp Metastasis. 2022; 39(1): 117–37. doi:10.1007/s10585-021-10090-2.; Almozyan S., Colak D., Mansour F., Alaiya A., Al-Harazi O., Qattan A., Al-Mohanna F., Al-Alwan M., Ghebeh H. PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer. 2017; 141(7): 1402–12. doi:10.1002/ijc.30834.; Mansour F.A., Al-Mazrou A., Al-Mohanna F., Al-Alwan M., Ghebeh H. PD-L1 is overexpressed on breast cancer stem cells through notch3/mTOR axis. Oncoimmunology. 2020; 9(1). doi:10.1080/2162402X.2020.1729299.; Wang C., Zhu H., Zhou Y., Mao F., Lin Y., Pan B., Zhang X., Xu Q., Huang X., Sun Q. Prognostic Value of PD-L1 in Breast Cancer: A MetaAnalysis. Breast J. 2017; 23(4): 436–43. doi:10.1111/tbj.12753.; Karnik T., Kimler B.F., Fan F., Tawfik O. PD-L1 in breast cancer: comparative analysis of 3 different antibodies. Hum Pathol. 2018; 72: 28–34. doi:10.1016/j.humpath.2017.08.010.; Zhou T., Xu D., Tang B., Ren Y., Han Y., Liang G., Wang J., Wang L. Expression of programmed death ligand-1 and programmed death-1 in samples of invasive ductal carcinoma of the breast and its correlation with prognosis. Anticancer Drugs. 2018; 29(9): 904–10. doi:10.1097/CAD.0000000000000683.; Catacchio I., Silvestris N., Scarpi E., Schirosi L., Scattone A., Mangia A. Intratumoral, rather than stromal, CD8+ T cells could be a potential negative prognostic marker in invasive breast cancer patients. Transl Oncol. 2019; 12(3): 585–95. doi:10.1016/j.tranon.2018.12.005.; Evangelou Z., Papoudou-Bai A., Karpathiou G., Kourea H., Kamina S., Goussia A., Harissis H., Peschos D., Batistatou A. PD-L1 Expression and Tumor-infiltrating Lymphocytes in Breast Cancer: Clinicopathological Analysis in Women Younger than 40 Years Old. In Vivo. 2020; 34(2): 639–47. doi:10.21873/invivo.11818.; Huang W., Ran R., Shao B., Li H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat. 2019; 178(1): 17–33. doi:10.1007/s10549-019-05371-0.; Hoffmann L.G., Sarian L.O., Vassallo J., de Paiva Silva G.R., Ramalho S.O.B., Ferracini A.C., da Silva Araujo K., Jales R.M., Figueira D.E., Derchain S. Evaluation of PD-L1 and tumor infiltrating lymphocytes in paired pretreatment biopsies and post neoadjuvant chemotherapy surgical specimens of breast carcinoma. Sci Rep. 2021; 11(1): 22478. doi:10.1038/s41598-021-00944-w.; Du Q., Che J., Jiang X., Li L., Luo X., Li Q. PD-L1 Acts as a Promising Immune Marker to Predict the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Clin Breast Cancer. 2020; 20(1): 99–111. doi:10.1016/j.clbc.2019.06.014.; Cirqueira M.B., Mendonça C.R., Noll M., Soares L.R., de Paula Carneiro Cysneiros M.A., Paulinelli R.R., Moreira M.A.R., Freitas-Junior R. Prognostic Role of PD-L1 Expression in Invasive Breast Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel). 2021; 13(23): 6090. doi:10.3390/cancers13236090.; Zubareva E., Senchukova M., Karmakova T. Predictive significance of HIF-1α, Snail, and PD-L1 expression in breast cancer. Clin Exp Med. 2023. doi:10.1007/s10238-023-01026-z.; Chowdhury S., Veyhl J., Jessa F., Polyakova O., Alenzi A., MacMillan C., Ralhan R., Walfish P.G. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016; 7(22): 32318–28. doi:10.18632/oncotarget.8698.; Satelli A., Batth I.S., Brownlee Z., Rojas C., Meng Q.H., Kopetz S., Li S. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci Rep. 2016; 6. doi:10.1038/srep28910.; Wu Y., Chen W., Xu Z.P., Gu W. PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. Front Immunol. 2019; 10. doi:10.3389/fimmu.2019.02022.; Brierley J., Gospodarowicz M.K., Wittekind Ch. (2017). TNM Classification of Malignant Tumors (8th edition). Oxford, UK; Hoboken, NJ: John Wiley & Sons, Inc., 2017.; Kanugula A.K., Adapala R.K., Jamaiyar A., Lenkey N., Guarino B.D., Liedtke W., Yin L., Paruchuri S., Thodeti C.K. Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis. 2021; 24(3): 647–56. doi:10.1007/s10456-021-09775-9.; Rodig N., Ryan T., Allen J.A., Pang H., Grabie N., Chernova T., Greenfield E.A., Liang S.C., Sharpe A.H., Lichtman A.H., Freeman G.J. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol. 2003; 33(11): 3117–26. doi:10.1002/eji.200324270.; Gibbons Johnson R.M., Dong H. Functional Expression of Programmed Death-Ligand 1 (B7-H1) by Immune Cells and Tumor Cells. Front Immunol. 2017; 8: 961. doi:10.3389/fimmu.2017.00961.; Bracamonte-Baran W., Gilotra N.A., Won T., Rodriguez K.M., Talor M.V., Oh B.C., Griffin J., Wittstein I., Sharma K., Skinner J., Johns R.A., Russell S.D., Anders R.A., Zhu Q., Halushka M.K., Brandacher G., Čiháková D. Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8+ T-Cell Infiltration After Heart Transplantation. Circ Heart Fail. 2021; 14(10). doi:10.1161/CIRCHEARTFAILURE.120.007982.; Liu S., Qin T., Liu Z., Wang J., Jia Y., Feng Y., Gao Y., Li K. Аnlotinib alters tumor immune microenvironment by downregulating PD-L1 expression on vascular endothelial cells. Cell Death Dis. 2020; 11(5): 309. doi:10.1038/s41419-020-2511-3.; Vanharanta S., Massagué J. Origins of metastatic traits. Cancer Cell. 2013; 24(4): 410–21. doi:10.1016/j.ccr.2013.09.007.; Celià-Terrassa T., Kang Y. Distinctive properties of metastasisinitiating cells. Genes Dev. 2016; 30(8): 892–908. doi:10.1101/gad.277681.116.; Lambert A.W., Pattabiraman D.R., Weinberg R.A. Emerging Biological Principles of Metastasis. Cell. 2017; 168(4): 670–91. doi:10.1016/j.cell.2016.11.037.; Brown C.W., Amante J.J., Mercurio A.M. Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells. J Biol Chem. 2018; 293(33): 12741–8. doi:10.1074/jbc.RA118.003017.; Lo H.C., Xu Z., Kim I.S., Pingel B., Aguirre S., Kodali S., Liu J., Zhang W., Muscarella A.M., Hein S.M., Krupnick A.S., Neilson J.R., Paust S., Rosen J.M., Wang H., Zhang X.H. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat Cancer. 2020; 1(7): 709–22. doi:10.1038/s43018-020-0068-9.; Cheung K.J., Padmanaban V., Silvestri V., Schipper K., Cohen J.D., Fairchild A.N., Gorin M.A., Verdone J.E., Pienta K.J., Bader J.S., Ewald A.J. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA. 2016; 113(7): 854–63. doi:10.1073/pnas.1508541113.; Wrenn E., Huang Y., Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis. 2021; 38(4): 373–99. doi:10.1007/s10585-021-10111-0.; Pastushenko I., Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019; 29(3): 212–26. doi:10.1016/j.tcb.2018.12.001.; Jiang Y., Zhan H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020; 468: 72–81. doi:10.1016/j.canlet.2019.10.013.; Sahoo S., Nayak S.P., Hari K., Purkait P., Mandal S., Kishore A., Levine H., Jolly M.K. Immunosuppressive Traits of the Hybrid Epithelial/Mesenchymal Phenotype. Front Immunol. 2021; 12. doi:10.3389/fimmu.2021.797261.; Rom-Jurek E.M., Kirchhammer N., Ugocsai P., Ortmann O., Wege A.K., Brockhoff G. Regulation of Programmed Death Ligand 1 (PD-L1) Expression in Breast Cancer Cell Lines In Vitro and in Immunodeficient and Humanized Tumor Mice. Int J Mol Sci. 2018; 19(2): 563. doi:10.3390/ijms19020563.; Yu J., Qin B., Moyer A.M., Nowsheen S., Tu X., Dong H., Boughey J.C., Goetz M.P., Weinshilboum R., Lou Z., Wang L. Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 2020; 30(7): 590–601. doi:10.1038/s41422-020-0315-8.; Gao Y., Nihira N.T., Bu X., Chu C., Zhang J., Kolodziejczyk A., Fan Y., Chan N.T., Ma L., Liu J., Wang D., Dai X., Liu H., Ono M., Nakanishi A., Inuzuka H., North B.J., Huang Y.H., Sharma S., Geng Y., Xu W., Liu X.S., Li L., Miki Y., Sicinski P., Freeman G.J., Wei W. Acetylationdependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol. 2020; 22(9): 1064–75. doi:10.1038/s41556-020-0562-4.; Ma R., Liu Y., Che X., Li C., Wen T., Hou K., Qu X. Nuclear PDL1 promotes cell cycle progression of BRAF-mutated colorectal cancer by inhibiting THRAP3. Cancer Lett. 2022; 527: 127–39. doi:10.1016/j.canlet.2021.12.017.; Xiong W., Gao Y., Wei W., Zhang J. Extracellular and nuclear PD-L1 in modulating cancer immunotherapy. Trends Cancer. 2021; 7(9): 837–46. doi:10.1016/j.trecan.2021.03.003.; https://www.siboncoj.ru/jour/article/view/2762
-
17Academic Journal
Authors: I. A. Bogomolova, D. R. Dolgova, I. I. Antoneeva, T. V. Abakumova, I. R. Myagdieva, A. B. Peskov, T. P. Gening, И. А. Богомолова, Д. Р. Долгова, И. И. Антонеева, Т. В. Абакумова, И. Р. Мягдиева, А. Б. Песков, Т. П. Генинг
Source: Bulletin of Siberian Medicine; Том 22, № 1 (2023); 7-13 ; Бюллетень сибирской медицины; Том 22, № 1 (2023); 7-13 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-1
Subject Terms: опухолевая прогрессия, CXCL8, TGFb1, EGFR, tumor progression
File Description: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5126/3363; Dekker E., Tanis P.J., Vleugels J.L.A., Kasi P.M., Wallace M.B. Colorectal cancer. Lancet. 2019;394(10207):1467–1480. DOI:10.1016/S0140-6736(19)32319-0.; Mizutani J., Tokuda H., Matsushima-Nishiwaki R., Kato K., Kondo A., Natsume H. et al. Involvement of AMP-activated protein kinase in TGF-β-stimulated VEGF synthesis in osteoblasts. Int. J. Mol. Med. 2012;29(4):550–556. DOI:10.3892/ijmm.2012.893.; Lampropoulos P., Zizi-Sermpetzoglou A., Rizos S., Kostakis A., Nikiteas N., Papavassiliou A.G. TGF-beta signalling in colon carcinogenesis. Cancer Lett. 2012;314(1):1–7. DOI:10.1016/j.canlet.2011.09.041.; Colak S., Ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer. 2017;3(1):56–71. DOI:10.1016/j.trecan.2016.11.008.; Xu X., Zhang L., He X., Zhang P., Sun C., Xu X. et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, EMT and apoptosis. Biochem. Biophys. Res. Commun. 2018;502(1):160–165. DOI:10.1016/j.bbrc.2018.05.139.; Latifi Z., Nejabati H.R., Abroon S., Mihanfar A., Farzadi L., Hakimi P. et al. Dual role of TGF-β in early pregnancy: clues from tumor progression. Biol. Reprod. 2019;100(6):1417– 1430. DOI:10.1093/biolre/ioz024.; Neuzillet C., Tijeras-Raballand A., Cohen R., Cros J., Faivre S., Raymond E. et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 2015;147:22–31. DOI:10.1016/j.pharmthera.2014.11.001.; Tauriello D.V.F., Palomo-Ponce S., Stork D., Berenguer-Llergo A., Badia-Ramentol J., Iglesias M. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538–543. DOI:10.1038/nature25492.; Aschner Y., Downey G.P. Transforming growth factor-β: master regulator of the respiratory system in health and disease. Am. J. Respir. Cell Mol. Biol. 2016;54(5):647–655. DOI:10.1165/rcmb.2015-0391TR.; Ioannou M., Kouvaras E., Papamichali R., Samara M., Chiotoglou I., Koukoulis G. Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study. J. Mol. Histol. 2018;49(3):235–244. DOI:10.1007/s10735-018-9763-6.; Rao C., Lin S.L., Wen H., Deng H. Crosstalk between canonical TGF-β/Smad and Wnt/β-catenin signaling pathway. Zhejiang Da XueXue Bao Yi Xue Ban. 2013;42(5):591–596. DOI:10.3785/j.issn.1008-9292.2013.05.019.; Ning Y., Lenz H.J. Targeting IL-8 in colorectal cancer. Expert Opin. Ther. Targets. 2012;16(5):491–497. DOI:10.1517/14728222.2012.677440.; Asfaha S., Dubeykovskiy A.N., Tomita H., Yang X., Stokes S., Shibata W. et al. Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology. 2013;144(1):155–166. DOI:10.1053/j.gastro.2012.09.057.; Long X., Ye Y., Zhang L., Liu P., Yu W., Wei F. et al. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int. J. Oncol. 2016;48(1):5–12. DOI:10.3892/ijo.2015.3234.; Zhang M., Fang T., Wang K., Mei H., Lv Z., Wang F. et al. Association of polymorphisms in interleukin-8 gene with cancer risk: a meta-analysis of 22 case-control studies. Onco. Targets Ther. 2016;9:3727–737. DOI:10.2147/OTT.S103159.; Ramezani A. CtNorm: Real time PCR cycle of threshold (Ct) normalization algorithm. J. Microbiol. Methods. 2021;187:106267. DOI:10.1016/j.mimet.2021.106267.; Wei W., Kong B., Qu X. Alteration of HGF and TGFb1 expression in ovarian carcinoma associated with clinical features. J. Obstet. Gynaecol. Res. 2012;38(1):57–64. DOI:10.1111/j.1447-0756.2011.01695.x.; Luo K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb. Perspect. Biol. 2017;9(1):a022137. DOI:10.1101/cshperspect.a022137.; Zhang Y.E. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb. Perspect. Biol. 2017;9(2):a022129. DOI:10.1101/cshperspect.a022129.; Lee S., Heinrich E.L., Lu J., Lee W., Choi A.H., Luu C. et al. Epidermal growth factor receptor signaling to the mitogen activated protein kinase pathway bypasses ras in pancreatic cancer cells. Pancreas. 2016;45(2):286–292. DOI:10.1097/MPA.0000000000000379.; Bellam N., Pasche B. Tgf-beta signaling alterations and colon cancer. Cancer Treat Res. 2010;155:85–103. DOI:10.1007/978-1-4419-6033-7_5.; Yu M., Trobridge P., Wang Y., Kanngurn S., Morris S.M., Knoblaugh S. et al. Inactivation of TGF-β signaling and loss of PTEN cooperate to induce colon cancer in vivo. Oncogene. 2014;33(12):1538–1547. DOI:10.1038/onc.2013.102.; Djaldetti M., Bessler H. Modulators affecting the immune dialogue between human immune and colon cancer cells. World J. Gastrointest. Oncol. 2014;6(5):129–138. DOI:10.4251/wjgo.v6.i5.129.; Calon A., Espinet E., Palomo-Ponce S., Tauriello D.V., Iglesias M., Céspedes M.V. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22(5):571–584. DOI:10.1016/j.ccr.2012.08.013.; Malki A., ElRuz R.A., Gupta I., Allouch A., Vranic S., Al Moustafa A.E. Molecular mechanisms of colon cancer progression and metastasis: recent insights and advancements. Int. J. Mol. Sci. 2020;22(1):130. DOI:10.3390/ijms22010130.; https://bulletin.ssmu.ru/jour/article/view/5126
-
18Academic Journal
Subject Terms: Образование, преподавание, доступность, простота, последовательность, арифметическая прогрессия, вероятность, теорема, числа Фибоначчи
Relation: https://zenodo.org/records/5830523; oai:zenodo.org:5830523; https://doi.org/10.5281/zenodo.5830523
-
19Academic Journal
Authors: K. V. Danilko, K. I. Enikeeva, I. R. Kabirov, S. Y. Maksimova, D. S. Vishnyakov, J. G. Kzhyshkowska, V. N. Pavlov, К. В. Данилко, К. И. Еникеева, И. Р. Кабиров, С. Ю. Максимова, Д. С. Вишняков, Ю. Г. Кжышковска, В. Н. Павлов
Contributors: The study was funded by the state grant of the Ministry of Science and Higher Education of the Russian Federation “Genetic and epigenetic editing of tumor cells and the microenvironment to block metastasis” No. 075-15-2021-1073 (experiments) and BSMU Strategic Academic Leadership Program PRIORITY-2030 (clinical data analysis)., Исследование выполнено за счет гранта Министерства науки и высшего образования Российской Федерации «Генетическое и эпигенетическое редактирование опухолевых клеток и микроокружения с целью блокирования метастазирования» № 075-15-2021-1073 (эксперименты) и программы «Приоритет 2030» (клинические данные).
Source: Siberian journal of oncology; Том 21, № 6 (2022); 81-90 ; Сибирский онкологический журнал; Том 21, № 6 (2022); 81-90 ; 2312-3168 ; 1814-4861
Subject Terms: опухолевая прогрессия, tumor-associated macrophages, giant macrophages, tumor progression, опухоль-ассоциированные макрофаги, гигантские макрофаги
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2377/1056; Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65(2): 87–108. doi:10.3322/caac.21262.; Global Burden of Disease Cancer Collaboration, Fitzmaurice C., Abate D., Abbasi N., Abbastabar H., Abd-Allah F., Abdel-Rahman O., Abdelalim A., Abdoli A., Abdollahpour I., Abdulle A.S.M., Abebe N.D., Abraha H.N., Abu-Raddad L.J., at al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019; 5(12): 1749–68. doi:10.1001/jamaoncol.2019.2996. Erratum in: JAMA Oncol. 2020; 6(3): 444. Erratum in: JAMA Oncol. 2020; 6(5): 789. Erratum in: JAMA Oncol. 2021; 7(3): 466.; Steele C.B., Li J., Huang B., Weir H.K. Prostate cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer. 2017; 123 (Suppl 24): 5160–77. doi:10.1002/cncr.31026.; Sfanos K.S., Yegnasubramanian S., Nelson W.G., De Marzo A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018; 15(1): 11–24. doi:10.1038/nrurol.2017.167.; Patysheva M., Larionova I., Stakheyeva M., Grigoryeva E., Iamshchikov P., Tarabanovskaya N., Weiss C., Kardashova J., Frolova A., Rakina M., Prostakishina E., Zhuikova L., Cherdyntseva N., Kzhyshkowska J. Efect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front Oncol. 2022; 11. doi:10.3389/fonc.2021.800235.; Patysheva M., Frolova A., Larionova I., Afanas’ev S., Tarasova A., Cherdyntseva N., Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol. 2022; 13. doi:10.3389/fmmu.2022.994319.; Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.566511.; Kzhyshkowska J., Neyen C., Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012; 217(5): 492–502. doi:10.1016/j.imbio.2012.02.015.; Krawczyk K.M., Nilsson H., Allaoui R., Lindgren D., Arvidsson M., Leandersson K., Johansson M.E. Papillary renal cell carcinoma-derived chemerin, IL-8, and CXCL16 promote monocyte recruitment and diferentiation into foam-cell macrophages. Lab Invest. 2017; 97(11): 1296–305. doi:10.1038/labinvest.2017.78.; Corn K.C., Windham M.A., Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res. 2020; 80. doi:10.1016/j.plipres.2020.101055.; Wu H., Han Y., Rodriguez Sillke Y., Deng H., Siddiqui S., Treese C., Schmidt F., Friedrich M., Keye J., Wan J., Qin Y., Kühl A.A., Qin Z., Siegmund B., Glauben R. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019; 11(11). doi:10.15252/emmm.201910698.; Zhang Y., Sun Y., Rao E., Yan F., Li Q., Zhang Y., Silverstein K.A., Liu S., Sauter E., Cleary M.P., Li B. Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-β responses in tumor-associated macrophages. Cancer Res. 2014; 74(11): 2986–98. doi:10.1158/0008-5472.CAN-13-2689.; Zhang Q., Wang H., Mao C., Sun M., Dominah G., Chen L., Zhuang Z. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol. 2018; 94: 27–35. doi:10.1016/j.molimm.2017.12.011.; Chiba S., Hisamatsu T., Suzuki H., Mori K., Kitazume M.T., Shimamura K., Mizuno S., Nakamoto N., Matsuoka K., Naganuma M., Kanai T. Glycolysis regulates LPS-induced cytokine production in M2 polarized human macrophages. Immunol Lett. 2017; 183: 17–23. doi:10.1016/j.imlet.2017.01.012.; Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. 2008; 13: 453–61. doi:10.2741/2692.; Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016; 397(3): 231–47. doi:10.1515/hsz-2015-0269.; Larionova I.V., Sevastyanova T.N., Rakina A.A., Cherdyntseva N.V., Kzhyshkowska J.G. Chitinase-like proteins as promising markers in cancer patients. Siberian Journal of Oncology. 2018; 17(4): 99–105. doi:10.21294/1814-4861-2018-17-4-99-105.; Larionova I., Kazakova E., Gerashchenko T., Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel). 2021; 13(13): 3253. doi:10.3390/cancers13133253.; Larionova I., Kazakova E., Patysheva M., Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel). 2020; 12(6): 1411. doi:10.3390/ cancers12061411.; Dirat B., Bochet L., Dabek M., Daviaud D., Dauvillier S., Majed B., Wang Y.Y., Meulle A., Salles B., Le Gonidec S., Garrido I., Escourrou G., Valet P., Muller C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011; 71(7): 2455–65. doi:10.1158/0008-5472.CAN-10-3323.; Rakina M.A., Kazakova E.O., Sudaskikh T.S., Bezgodova N.V., Villert A.B., Kolomiets L.A., Larionova I.V. Giant foam-like macrophages in advanced ovarian cancer. Siberian Journal of Oncology. 2022; 21(2): 45–54. doi:10.21294/1814-4861-2022-21-2-45-54.; Kratz M., Coats B.R., Hisert K.B., Hagman D., Mutskov V., Peris E., Schoenfelt K.Q., Kuzma J.N., Larson I., Billing P.S., Landerholm R.W., Crouthamel M., Gozal D., Hwang S., Singh P.K., Becker L. Metabolic dysfunction drives a mechanistically distinct proinfammatory phenotype in adipose tissue macrophages. Cell Metab. 2014; 20(4): 614–25. doi:10.1016/j.cmet.2014.08.010.; Tiwari P., Blank A., Cui C., Schoenfelt K.Q., Zhou G., Xu Y., Khramtsova G., Olopade F., Shah A.M., Khan S.A., Rosner M.R., Becker L. Metabolically activated adipose tissue macrophages link obesity to triplenegative breast cancer. J Exp Med. 2019; 216(6): 1345–58. doi:10.1084/jem.20181616.; Boibessot C., Molina O., Lachance G., Tav C., Champagne A., Neveu B., Pelletier J.F., Pouliot F., Fradet V., Bilodeau S., Fradet Y., Bergeron A., Toren P. Subversion of infltrating prostate macrophages to a mixed immunosuppressive tumor-associated macrophage phenotype. Clin Transl Med. 2022; 12(1). doi:10.1002/ctm2.581.; Siefert J.C., Cioni B., Muraro M.J., Alshalalfa M., Vivié J., van der Poel H.G., Schoots I.G., Bekers E., Feng F.Y., Wessels L.F.A., Zwart W., Bergman A.M. The Prognostic Potential of Human Prostate Cancer-Associated Macrophage Subtypes as Revealed by Single-Cell Transcriptomics. Mol Cancer Res. 2021; 19(10): 1778–91. doi:10.1158/1541-7786.MCR-20-0740.; Su P., Wang Q., Bi E., Ma X., Liu L., Yang M., Qian J., Yi Q. Enhanced Lipid Accumulation and Metabolism Are Required for the Diferentiation and Activation of Tumor-Associated Macrophages. Cancer Res. 2020; 80(7): 1438–50. doi:10.1158/0008-5472.CAN-19-2994. Erratum in: Cancer Res. 2022; 82(5): 945.; Lissbrant I.F., Stattin P., Wikstrom P., Damber J.E., Egevad L., Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000; 17(3): 445–51. doi:10.3892/ijo.17.3.445.; Erlandsson A., Carlsson J., Lundholm M., Fält A., Andersson S.O., Andrén O., Davidsson S. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate. 2019; 79(4): 363–9. doi:10.1002/pros.23742.; Yuri P., Shigemura K., Kitagawa K., Hadibrata E., Risan M., Zulfqqar A., Soeroharjo I., Hendri A.Z., Danarto R., Ishii A., Yamasaki S., Yan Y., Heriyanto D.S., Fujisawa M. Increased tumor-associated macrophages in the prostate cancer microenvironment predicted patients’ survival and responses to androgen deprivation therapies in Indonesian patients cohort. Prostate Int. 2020; 8(2): 62–9. doi:10.1016/j.prnil.2019.12.001.; Shimura S., Yang G., Ebara S., Wheeler T.M., Frolov A., Thompson T.C. Reduced infltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res. 2000; 60(20): 5857–61.; https://www.siboncoj.ru/jour/article/view/2377
-
20Academic Journal
Authors: K. K. Kukanov, O. M. Vorobyova, Yu. M. Zabrodskaya, E. G. Potemkina, V. V. Ushanov, M. M. Tastanbekov, N. E. Ivanova, К. К. Куканов, О. М. Воробьёва, Ю. М. Забродская, Е. Г. Потёмкина, В. В. Ушанов, М. М. Тастанбеков, Н. Е. Иванова
Source: Siberian journal of oncology; Том 21, № 4 (2022); 110-123 ; Сибирский онкологический журнал; Том 21, № 4 (2022); 110-123 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-4
Subject Terms: генетический статус, recurrence, tumor progression, radiation therapy, chemotherapy, pathomorphology, prognostic markers, genetic status, рецидивы, прогрессия опухоли, радикальность удаления, лучевая терапия, химиотерапия, патоморфология, прогностические маркеры
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2247/1021; Cushing H. The meningiomas (dural endotheliomas): their source and favored seats of origin (Cavendish Lecture). Brain. 1922 Oct; 45(2): 282–316. doi:10.1093/brain/45.2.282.; Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6): 803–20. doi:10.1007/s00401-016-1545-1.; Ostrom Q.T., Patil N., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro Oncol. 2020; 22. doi:10.1093/neuonc/noaa200.; Улитин А.Ю., Олюшин В.Е., Поляков И.В. Эпидемиология первичных опухолей головного мозга в Санкт-Петербурге. Вопросы нейрохирургии им. Н.Н. Бурденко. 2005; 1: 6–12.; Leães C.G., Meurer R.T., Coutinho L.B., Ferreira N.P., Pereira-Lima J.F., da Costa Oliveira M. Immunohistochemical expression of aromatase and estrogen, androgen and progesterone receptors in normal and neoplastic human meningeal cells. Neuropathology. 2010; 30(1): 44–9. doi:10.1111/j.1440-1789.2009.01047.x.; Carroll R.S., Zhang J., Dashner K., Black P.M. Progesterone and glucocorticoid receptor activation in meningiomas. Neurosurgery. 1995; 37(1): 92–7. doi:10.1227/00006123-199507000-00014.; Reubi J.C., Maurer R., Klijn J.G., Stefanko S.Z., Foekens J.A., Blaauw G., Blankenstein M.A., Lamberts S.W. High incidence of somatostatin receptors in human meningiomas: biochemical characterization. J Clin Endocrinol Metab. 1986; 63(2): 433–8. doi:10.1210/jcem-63-2-433.; Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8): 1231–51. doi:10.1093/neuonc/noab106.; Китаев С.М., Китаев С.В. Лучевая диагностика заболеваний головного мозга. МЕДпресс-информ. 2018. 136 с.; Осборн А., Зальцман К., Завери М. Лучевая диагностика. Головной мозг. Издательство Панфилова. 2018. 1216 с.; Kleinschmidt-DeMasters B.K., Rodriguez F., Tihan T. Diagnostic pathology: Neuropathology (2nd edition). Elsevier. 2016. 864 p.; Кротенкова М. Б., Брюхов В.В., Морозова С.Н. Современные технологии нейровизуализации (лекция). Радиология-Практика. 2017; 2(62): 47–63.; Кривошапкин А.Л., Сергеев Г.С., Курбатов В.П., Гайтан А.С., Дуйшобаев А.Р., Пятов С.М., Мишинов С.В., Кальнеус Л.Е., Янченко А.А., Волков А.М. Предоперационная верификация гистологического типа опухолей мозговых оболочек по данным магнитно-резонансной томографии. Нейрохирургия. 2017; (3): 11–9.; Бывальцев В.А., Степанов И.А., Кичигин А.И., Антипина С.Л. Возможности диффузно-взвешенной МРТ в дифференциальной диагностике степени злокачественности менингиом головного мозга. Сибирский онкологический журнал. 2017; 16(3): 19–26. doi:10.21294/1814-4861-2017-16-3-19-26.; Хостен Н., Либиг Т. Компьютерная томография головы и позвоночника. МЕДпресс-информ. 2017. 576 с.; Яковленко Ю.Г., Молдованов В.А., Арасланова Л.В., Блинов И.М., Суханова О.П. Предоперационная оценка венозной системы при удалении парасагиттальной менингиомы. Медицинский вестник Юга России. 2019; 10(1): 79–83. doi:10.21886/2219-8075-2019-10-1-79-83.; Сергиенко В.Б., Аншелес А.А. Радионуклидная диагностика с нейротропными радиофармпрепаратами. Инфра-М. 2016. 128 c.; Бродская З.Л., Скворцова Т.Ю., Малахова Е., Гурчин А.Ф., Панфиленко А.Ф., Медведев С.В. ПЭТ-диагностика внутричерепных менингиом. Медицинская визуализация. 2012; 2: 18–29.; Шмырев В., Васильев А., Рудас М., Язвенко А., Оверченко К. Позитронно-эмиссионная томография в неврологической практике. Кремлевская медицина. Клинический вестник. 2017; 1(4): 77–81.; Yao A., Sarkiss C.A., Lee J., Zarzour H.K., Shrivastava R.K. Surgical limitations in convexity meningiomas en-plaque: Is radical resection necessary? J Clin Neurosci. 2016; 27: 28–33. doi:10.1016/j.jocn.2015.06.033.; Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957; 20(1): 22–39. doi:10.1136/jnnp.20.1.22.; Violaris K., Katsarides V., Sakellariou P. The Recurrence Rate in Meningiomas: Analysis of Tumor Location, Histological Grading, and Extent of Resection. Open J Modern Neurosurg. 2012; 2: 6–10. doi:10.4236/ojmn.2012.21002.; Kotecha R.S., Pascoe E.M., Rushing E.J., Rorke-Adams L.B., Zwerdling T., Gao X., Li X., Greene S., Amirjamshidi A., Kim S.K., Lima M.A., Hung P.C., Lakhdar F., Mehta N., Liu Y., Devi B.I., Sudhir B.J., Lund-Johansen M., Gjerris F., Cole C.H., Gottardo N.G. Meningiomas in children and adolescents: a meta-analysis of individual patient data. Lancet Oncol. 2011; 12(13): 1229–39. doi:10.1016/S1470-2045(11)70275-3.; Goldbrunner R., Minniti G., Preusser M., Jenkinson M.D., Sallabanda K., Houdart E., von Deimling A., Stavrinou P., Lefranc F., Lund-Johansen M., Moyal E.C., Brandsma D., Henriksson R., Soffietti R., Weller M. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016; 17(9): 383–91. doi:10.1016/S1470-2045(16)30321-7.; Rogers L., Barani I., Chamberlain M., Kaley T.J., McDermott M., Raizer J., Schiff D., Weber D.C., Wen P.Y., Vogelbaum M.A. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg. 2015; 122(1): 4–23. doi:10.3171/2014.7.JNS131644.; Buerki R.A., Horbinski C.M., Kruser T., Horowitz P.M., James C.D., Lukas R.V. An overview of meningiomas. Future Oncol. 2018; 14(21): 2161–77. doi:10.2217/fon-2018-0006.; Oya S., Kawai K., Nakatomi H., Saito N. Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg. 2012; 117(1): 121–8. doi:10.3171/2012.3.JNS111945.; Reuss D.E., Piro R.M., Jones D.T., Simon M., Ketter R., Kool M., Becker A., Sahm F., Pusch S., Meyer J., Hagenlocher C., Schweizer L., Capper D., Kickingereder P., Mucha J., Koelsche C., Jäger N., Santarius T., Tarpey P.S., Stephens P.J., Andrew Futreal P., Wellenreuther R., Kraus J., Lenartz D., Herold-Mende C., Hartmann C., Mawrin C., Giese N., Eils R., Collins V.P., König R., Wiestler O.D., Pfister S.M., von Deimling A. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013; 125(3): 351–8. doi:10.1007/s00401-013-1093-x.; Strickland M.R., Gill C.M., Nayyar N., D’Andrea M.R., Thiede C., Juratli T.A., Schackert G., Borger D.R., Santagata S., Frosch M.P., Cahill D.P., Brastianos P.K., Barker F.G. Targeted sequencing of SMO and AKT1 in anterior skull base meningiomas. J Neurosurg. 2017; 127(2): 438–44. doi:10.3171/2016.8.JNS161076.; Yesilöz Ü., Kirches E., Hartmann C., Scholz J., Kropf S., Sahm F., Nakamura M., Mawrin C. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro Oncol. 2017; 19(8): 1088–96. doi:10.1093/neuonc/nox018.; Walcott B.P., Nahed B.V., Brastianos P.K., Loeffler J.S. Radiation Treatment for WHO Grade II and III Meningiomas. Front Oncol. 2013; 3: 227. doi:10.3389/fonc.2013.00227.; Aghi M.K., Carter B.S., Cosgrove G.R., Ojemann R.G., Amin-Hanjani S., Martuza R.L., Curry W.T. Jr., Barker F.G. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery. 2009; 64(1): 56–60; discussion 60. doi:10.1227/01.NEU.0000330399.55586.63.; Komotar R.J., Iorgulescu J.B., Raper D.M., Holland E.C., Beal K., Bilsky M.H., Brennan C.W., Tabar V., Sherman J.H., Yamada Y., Gutin P.H. The role of radiotherapy following gross-total resection of atypical meningiomas. J Neurosurg. 2012; 117(4): 679–86. doi:10.3171/2012.7.JNS112113.; Dziuk T.W., Woo S., Butler E.B., Thornby J., Grossman R., Dennis W.S., Lu H., Carpenter L.S., Chiu J.K. Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol. 1998; 37(2): 177–88. doi:10.1023/a:1005853720926.; Central Nervous System Cancers [Internet]. NCCN Guidelines; 2021. URL:http://nccn.org/ [cited 2021 Dec 27].; Schrell U.M., Rittig M.G., Anders M., Koch U.H., Marschalek R., Kiesewetter F., Fahlbusch R. Hydroxyurea for treatment of unresectable and recurrent meningiomas. II. Decrease in the size of meningiomas in patients treated with hydroxyurea. J Neurosurg. 1997; 86(5): 840–4. doi:10.3171/jns.1997.86.5.0840.; Newton H.B., Slivka M.A., Stevens C. Hydroxyurea chemotherapy for unresectable or residual meningioma. J Neurooncol. 2000; 49(2): 165–70. doi:10.1023/a:1026770624783.; Mason W.P., Gentili F., Macdonald D.R., Hariharan S., Cruz C.R., Abrey L.E. Stabilization of disease progression by hydroxyurea in patients with recurrent or unresectable meningioma. J Neurosurg. 2002; 97(2): 341–6. doi:10.3171/jns.2002.97.2.0341.; Rosenthal M.A., Ashley D.L., Cher L. Treatment of high risk or recurrent meningiomas with hydroxyurea. J Clin Neurosci. 2002; 9(2): 156–8. doi:10.1054/jocn.2001.1019.; Paus S., Klockgether T., Urbach H., Schlegel U. Meningioma of the optic nerve sheath: treatment with hydroxyurea. J Neurol Neurosurg Psychiatry. 2003 Sep; 74(9): 1348–50. doi:10.1136/jnnp.74.9.1348-a.; Loven D., Hardoff R., Sever Z.B., Steinmetz A.P., Gornish M., Rappaport Z.H., Fenig E., Ram Z., Sulkes A. Non-resectable slow-growing meningiomas treated by hydroxyurea. J Neurooncol. 2004; 67(1–2): 221–6. doi:10.1023/b:neon.0000021827.85754.8e.; Hahn B.M., Schrell U.M., Sauer R., Fahlbusch R., Ganslandt O., Grabenbauer G.G. Prolonged oral hydroxyurea and concurrent 3d-conformal radiation in patients with progressive or recurrent meningioma: results of a pilot study. J Neurooncol. 2005; 74(2): 157–65. doi:10.1007/s11060-004-2337-3.; Weston G.J., Martin A.J., Mufti G.J., Strong A.J., Gleeson M.J. Hydroxyurea treatment of meningiomas: a pilot study. Skull Base. 2006; 16(3): 157–60. doi:10.1055/s-2006-949518.; Swinnen L.J., Rankin C., Rushing E.J., Laura H.F., Damek D.M., Barger G.R. Phase II study of hydroxyurea for unresectable meningioma (Southwest Oncology Group S9811). J Clin Oncol. 2009; 27(15): 2063. doi:10.1200/jco.2009.27.15_suppl.2063.; Chamberlain M.C., Johnston S.K. Hydroxyurea for recurrent surgery and radiation refractory meningioma: a retrospective case series. J Neurooncol. 2011; 104(3): 765–71. doi:10.1007/s11060-011-0541-5.; Chamberlain M.C. Hydroxyurea for recurrent surgery and radiation refractory high-grade meningioma. J Neurooncol. 2012; 107(2): 315–21. doi:10.1007/s11060-011-0741-z.; Chamberlain M.C., Tsao-Wei D.D., Groshen S. Temozolomide for treatment-resistant recurrent meningioma. Neurology. 2004; 62(7): 1210–2. doi:10.1212/01.wnl.0000118300.82017.f4.; Chamberlain M.C., Tsao-Wei D.D., Groshen S. Salvage chemotherapy with CPT-11 for recurrent meningioma. J Neurooncol. 2006; 78(3): 271–6. doi:10.1007/s11060-005-9093-x.; Chamberlain M.C. Adjuvant combined modality therapy for malignant meningiomas. J Neurosurg. 1996; 84(5): 733–6. doi:10.3171/ jns.1996.84.5.0733.; Kaba S.E., DeMonte F., Bruner J.M., Kyritsis A.P., Jaeckle K.A., Levin V., Yung W.K. The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery. 1997; 40(2): 271–5. doi:10.1097/00006123-199702000-00007.; Muhr C., Gudjonsson O., Lilja A., Hartman M., Zhang Z.J., Långström B. Meningioma treated with interferon-alpha, evaluated with [(11)C]-L-methionine positron emission tomography. Clin Cancer Res. 2001; 7(8): 2269–76.; Chamberlain M.C., Glantz M.J. Interferon-alpha for recurrent World Health Organization grade 1 intracranial meningiomas. Cancer. 2008; 113(8): 2146–51. doi:10.1002/cncr.23803.; Grunberg S.M., Weiss M.H., Spitz I.M., Ahmadi J., Sadun A., Russell C.A., Lucci L., Stevenson L.L. Treatment of unresectable meningiomas with the antiprogesterone agent mifepristone. J Neurosurg. 1991; 74(6): 861–6. doi:10.3171/jns.1991.74.6.0861.; Steven M., Grunberg C.R., Townsend J. Phase III double-blind randomized placebo-controlled study of mifepristone (RU) for the treatment of unresectable meningioma. Proc Am Soc Clin Oncol. 2001.; Grunberg S.M., Weiss M.H., Russell C.A., Spitz I.M., Ahmadi J., Sadun A., Sitruk-Ware R. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006; 24(8): 727–33. doi:10.1080/07357900601062339.; Grunberg S.M., Weiss M.H. Lack of efficacy of megestrol acetate in the treatment of unresectable meningioma. J Neurooncol. 1990; 8(1): 61–5. doi:10.1007/BF00182088.; Jääskeläinen J., Laasonen E., Kärkkäinen J., Haltia M., Troupp H. Hormone treatment of meningiomas: lack of response to medroxyprogesterone acetate (MPA). A pilot study of five cases. Acta Neurochir (Wien). 1986; 80(1–2): 35–41. doi:10.1007/BF01809555.; Markwalder T.M., Seiler R.W., Zava D.T. Antiestrogenic therapy of meningiomas--a pilot study. Surg Neurol. 1985; 24(3): 245–9. doi:10.1016/0090-3019(85)90030-8.; Goodwin J.W., Crowley J., Eyre H.J., Stafford B., Jaeckle K.A., Townsend J.J. A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J Neurooncol. 1993; 15(1): 75–7. doi:10.1007/BF01050266.; Rünzi M.W., Jaspers C., Windeck R., Benker G., Mehdorn H.M., Reinhardt V., Reinwein D. Successful treatment of meningioma with octreotide. Lancet. 1989; 1(8646): 1074. doi:10.1016/s0140-6736-(89)92465-3.; García-Luna P.P., Relimpio F., Pumar A., Pereira J.L., Leal-Cerro A., Trujillo F., Cortés A., Astorga R. Clinical use of octreotide in unresectable meningiomas. A report of three cases. J Neurosurg Sci. 1993; 37(4): 237–41.; Jaffrain-Rea M.L., Minniti G., Santoro A., Bastianello S., Tamburrano G., Gulino A., Cantore G. Visual improvement during octreotide therapy in a case of episellar meningioma. Clin Neurol Neurosurg. 1998; 100(1): 40–3. doi:10.1016/s0303-8467(97)00110-8.; Johnson D.R., Kimmel D.W., Burch P.A., Cascino T.L., Giannini C., Wu W., Buckner J.C. Phase II study of subcutaneous octreotide in adults with recurrent or progressive meningioma and meningeal hemangiopericytoma. Neuro Oncol. 2011; 13(5): 530–5. doi:10.1093/neuonc/nor044.; Chamberlain M.C., Glantz M.J., Fadul C.E. Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurology. 2007; 69(10): 969–73. doi:10.1212/01.wnl.0000271382.62776.b7.; Norden A.D., Ligon K.L., Hammond S.N., Muzikansky A., Reardon D.A., Kaley T.J., Batchelor T.T., Plotkin S.R., Raizer J.J., Wong E.T., Drappatz J., Lesser G.J., Haidar S., Beroukhim R., Lee E.Q., Doherty L., Lafrankie D., Gaffey S.C., Gerard M., Smith K.H., McCluskey C., Phuphanich S., Wen P.Y. Phase II study of monthly pasireotide LAR (SOM230C) for recurrent or progressive meningioma. Neurology. 2015; 84(3): 280–6. doi:10.1212/WNL.0000000000001153.; Wen P.Y., Yung W.K., Lamborn K.R., Norden A.D., Cloughesy T.F., Abrey L.E., Fine H.A., Chang S.M., Robins H.I., Fink K., Deangelis L.M., Mehta M., Di Tomaso E., Drappatz J., Kesari S., Ligon K.L., Aldape K., Jain R.K., Stiles C.D., Egorin M.J., Prados M.D. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01-08). Neuro Oncol. 2009; 11(6): 853–60. doi:10.1215/15228517-2009-010.; Raizer J.J., Abrey L.E., Lassman A.B., Chang S.M., Lamborn K.R., Kuhn J.G., Yung W.K., Gilbert M.R., Aldape K.D., Wen P.Y., Fine H.A., Mehta M., Deangelis L.M., Lieberman F., Cloughesy T.F., Robins H.I., Dancey J., Prados M.D.; North American Brain Tumor Consortium. A phase I trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas. Neuro Oncol. 2010; 12(1): 87–94. doi:10.1093/neuonc/nop017.; Norden A.D., Raizer J.J., Abrey L.E., Lamborn K.R., Lassman A.B., Chang S.M., Yung W.K., Gilbert M.R., Fine H.A., Mehta M., Deangelis L.M., Cloughesy T.F., Robins H.I., Aldape K., Dancey J., Prados M.D., Lieberman F., Wen P.Y. Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma. J Neurooncol. 2010; 96(2): 211–7. doi:10.1007/s11060-009-9948-7.; Kaley T.J., Wen P., Schiff D., Ligon K., Haidar S., Karimi S., Lassman A.B., Nolan C.P., DeAngelis L.M., Gavrilovic I., Norden A., Drappatz J., Lee E.Q., Purow B., Plotkin S.R., Batchelor T., Abrey L.E., Omuro A. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol. 2015; 17(1): 116–21. doi:10.1093/neuonc/nou148.; Puchner M.J.A., Hans V.H., Harati A., Lohmann F., Glas M., Herrlinger U. Bevacizumab-induced regression of anaplastic meningioma. Ann Oncol. 2010; 21(12): 2445–6. doi:10.1093/annonc/mdq634.; Goutagny S., Raymond E., Sterkers O., Colombani J.M., Kalamarides M. Radiographic regression of cranial meningioma in a NF2 patient treated by bevacizumab. Ann Oncol. 2011; 22(4): 990–1. doi:10.1093/annonc/mdr012.; Wilson T.J., Heth J.A. Regression of a meningioma during paclitaxel and bevacizumab therapy for breast cancer. J Clin Neurosci. 2012; 19(3): 468–9. doi:10.1016/j.jocn.2011.07.024.; Lou E., Sumrall A.L., Turner S., Peters K.B., Desjardins A., Vredenburgh J.J., McLendon R.E., Herndon J.E., McSherry F., Norfleet J., Friedman H.S., Reardon D.A. Bevacizumab therapy for adults with recurrent/progressive meningioma: a retrospective series. J Neurooncol. 2012; 109(1): 63–70. doi:10.1007/s11060-012-0861-0.; Nayak L., Iwamoto F.M., Rudnick J.D., Norden A.D., Lee E.Q., Drappatz J., Omuro A., Kaley T.J. Atypical and anaplastic meningiomas treated with bevacizumab. J Neurooncol. 2012; 109(1): 187–93. doi:10.1007/s11060-012-0886-4.; Macdonald D.R., Cascino T.L., Schold S.C. Jr., Cairncross J.G. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990; 8(7): 1277–80. doi:10.1200/JCO.1990.8.7.1277.; Wen P.Y., Macdonald D.R., Reardon D.A., Cloughesy T.F., Sorensen A.G., Galanis E., Degroot J., Wick W., Gilbert M.R., Lassman A.B., Tsien C., Mikkelsen T., Wong E.T., Chamberlain M.C., Stupp R., Lamborn K.R., Vogelbaum M.A., van den Bent M.J., Chang S.M. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010; 28(11): 1963–72. doi:10.1200/JCO.2009.26.3541.; Quant E.C., Wen P.Y. Response assessment in neuro-oncology. Curr Oncol Rep. 2011; 13(1): 50–6. doi:10.1007/s11912-010-0143-y.; Kaley T., Barani I., Chamberlain M., McDermott M., Panageas K., Raizer J., Rogers L., Schiff D., Vogelbaum M., Weber D., Wen P. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol. 2014; 16(6): 829–40. doi:10.1093/neuonc/not330.; Каприн А.Д., Иванов С.А., Клименко А.А. Рак предстательной железы: новые возможности в диагностике локализованных и местнораспространенных форм заболевания. Андрология и генитальная хирургия. 2006; 7(2): 14–9.; Barresi V., Lionti S., Caliri S., Caffo M. Histopathological features to define atypical meningioma: What does really matter for prognosis? Brain Tumor Pathol. 2018; 35(3): 168–80. doi:10.1007/s10014-018-0318-z.; Nakaguchi H., Fujimaki T., Matsuno A., Matsuura R., Asai A., Suzuki I., Sasaki T., Kirino T. Postoperative residual tumor growth of meningioma can be predicted by MIB-1 immunohistochemistry. Cancer. 1999; 85(10): 2249–54.; Bertero L., Dalla Dea G., Osella-Abate S., Botta C., Castellano I., Morra I., Pollo B., Calatozzolo C., Patriarca S., Mantovani C., Rudà R., Tardivo V., Zenga F., Garbossa D., Papotti M., Soffietti R., Ricardi U., Cassoni P. Prognostic Characterization of Higher-Grade Meningiomas: A Histopathological Score to Predict Progression and Outcome. J Neuropathol Exp Neurol. 2019; 78(3): 248–56. doi:10.1093/jnen/nly127.; Shan B., Zhang J., Song Y., Xu J. Prognostic factors for patients with World Health Organization grade III meningiomas treated at a single center. Medicine (Baltimore). 2017; 96(26). doi:10.1097/MD.0000000000007385.; Li B., Tao B., Bai H., Zhong J., Wu X., Shi J., Sun H., Li S. Papillary meningioma: an aggressive variant meningioma with clinical features and treatment: a retrospective study of 10 cases. Int J Neurosci. 2016; 126(10): 878–87. doi:10.3109/00207454.2015.1077833.; Surov A., Hamerla G., Meyer H.J., Winter K., Schob S., Fiedler E. Whole lesion histogram analysis of meningiomas derived from ADC values. Correlation with several cellularity parameters, proliferation index KI67, nucleic content, and membrane permeability. Magn Reson Imaging. 2018; 51: 158–62. doi:10.1016/j.mri.2018.05.009.; Surov A., Meyer H.J., Wienke A. Associations between apparent diffusion coefficient (ADC) and KI67 in different tumors: a meta-analysis. Part 1: ADCmean. Oncotarget. 2017; 8(43): 75434–44. doi:10.18632/oncotarget.20406.; Bi W.L., Greenwald N.F., Abedalthagafi M., Wala J., Gibson W.J., Agarwalla P.K., Horowitz P., Schumacher S.E., Esaulova E., Mei Y., Chevalier A., Ducar M., Thorner A.R., van Hummelen P., Stemmer-Rachamimov A., Artyomov M., Al-Mefty O., Dunn G.P., Santagata S., Dunn I.F., Beroukhim R. Genomic landscape of high-grade meningiomas. NPJ Genom Med. 2017; 2: 15. doi:10.1038/s41525-017-0014-7.; Clark V.E., Erson-Omay E.Z., Serin A., Yin J., Cotney J., Ozduman K., Avşar T., Li J., Murray P.B., Henegariu O., Yilmaz S., Günel J.M., Carrión-Grant G., Yilmaz B., Grady C., Tanrikulu B., Bakircioğlu M., Kaymakçalan H., Caglayan A.O., Sencar L., Ceyhun E., Atik A.F., Bayri Y., Bai H., Kolb L.E., Hebert R.M., Omay S.B., Mishra-Gorur K., Choi M., Overton J.D., Holland E.C., Mane S., State M.W., Bilgüvar K., Baehring J.M., Gutin P.H., Piepmeier J.M., Vortmeyer A., Brennan C.W., Pamir M.N., Kiliç T., Lifton R.P., Noonan J.P., Yasuno K., Günel M. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013; 339(6123): 1077–80. doi:10.1126/science.1233009.; Peyre M., Gauchotte G., Giry M., Froehlich S., Pallud J., Graillon T., Bielle F., Cazals-Hatem D., Varlet P., Figarella-Branger D., Loiseau H., Kalamarides M. De novo and secondary anaplastic meningiomas: a study of clinical and histomolecular prognostic factors. Neuro Oncol. 2018; 20(8): 1113–21. doi:10.1093/neuonc/nox231.; Gao F., Shi L., Russin J., Zeng L., Chang X., He S., Chen T.C., Giannotta S.L., Weisenberger D.J., Zada G., Mack W.J., Wang K. DNA methylation in the malignant transformation of meningiomas. PLoS One. 2013; 8(1). doi:10.1371/journal.pone.0054114.; Sahm F., Schrimpf D., Stichel D., Jones D.T.W., Hielscher T., Schefzyk S., Okonechnikov K., Koelsche C., Reuss D.E., Capper D., Sturm D., Wirsching H.G., Berghoff A.S., Baumgarten P., Kratz A., Huang K., Wefers A.K., Hovestadt V., Sill M., Ellis H.P., Kurian K.M., Okuducu A.F., Jungk C., Drueschler K., Schick M., Bewerunge-Hudler M., Mawrin C., Seiz-Rosenhagen M., Ketter R., Simon M., Westphal M., Lamszus K., Becker A., Koch A., Schittenhelm J., Rushing E.J., Collins V.P., Brehmer S., Chavez L., Platten M., Hänggi D., Unterberg A., Paulus W., Wick W., Pfister S.M., Mittelbronn M., Preusser M., Herold-Mende C., Weller M., von Deimling A. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017; 18(5): 682–94. doi:10.1016/S1470-2045(17)30155-9.; Shaikh N., Dixit K., Raizer J. Recent advances in managing/understanding meningioma. F1000Res. 2018; 7. doi:10.12688/f1000research.13674.1.; Brastianos P.K., Horowitz P.M., Santagata S., Jones R.T., McKenna A., Getz G., Ligon K.L., Palescandolo E., Van Hummelen P., Ducar M.D., Raza A., Sunkavalli A., Macconaill L.E., Stemmer-Rachamimov A.O., Louis D.N., Hahn W.C., Dunn I.F., Beroukhim R. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013; 45(3): 285–9. doi:10.1038/ng.2526.; Abedalthagafi M., Bi W.L., Aizer A.A., Merrill P.H., Brewster R., Agarwalla P.K., Listewnik M.L., Dias-Santagata D., Thorner A.R., Van Hummelen P., Brastianos P.K., Reardon D.A., Wen P.Y., Al-Mefty O., Ramkissoon S.H., Folkerth R.D., Ligon K.L., Ligon A.H., Alexander B.M., Dunn I.F., Beroukhim R., Santagata S. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016; 18(5): 649–55. doi:10.1093/neuonc/nov316.; Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat Rev. 2017; 59: 93–101. doi:10.1016/j.ctrv.2017.07.005.; Basset-Séguin N., Hauschild A., Kunstfeld R., Grob J., Dréno B., Mortier L., Ascierto P.A., Licitra L., Dutriaux C., Thomas L., Meyer N., Guillot B., Dummer R., Arenberger P., Fife K., Raimundo A., Dika E., Dimier N., Fittipaldo A., Xynos I., Hansson J. Vismodegib in patients with advanced basal cell carcinoma: Primary analysis of STEVIE, an international, open-label trial. Eur J Cancer. 2017; 86: 334–48. doi:10.1016/j.ejca.2017.08.022.; de Bono J.S., De Giorgi U., Rodrigues D.N., Massard C., Bracarda S., Font A., Arranz Arija J.A., Shih K.C., Radavoi G.D., Xu N., Chan W.Y., Ma H., Gendreau S., Riisnaes R., Patel P.H., Maslyar D.J., Jinga V. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin Cancer Res. 2019; 25(3): 928–36. doi:10.1158/1078-0432.CCR-18-0981.; Goutagny S., Nault J.C., Mallet M., Henin D., Rossi J.Z., Kalamarides M. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol. 2014; 24(2): 184–9. doi:10.1111/bpa.12110.; Di Vinci A., Brigati C., Casciano I., Banelli B., Borzì L., Forlani A., Ravetti G.L., Allemanni G., Melloni I., Zona G., Spaziante R., Merlo D.F., Romani M. HOXA7, 9, and 10 are methylation targets associated with aggressive behavior in meningiomas. Transl Res. 2012; 160(5): 355–62. doi:10.1016/j.trsl.2012.05.007.; Harmancı A.S., Youngblood M.W., Clark V.E., Coşkun S., Henegariu O., Duran D., Erson-Omay E.Z., Kaulen L.D., Lee T.I., Abraham B.J., Simon M., Krischek B., Timmer M., Goldbrunner R., Omay S.B., Baranoski J., Baran B., Carrión-Grant G., Bai H., Mishra-Gorur K., Schramm J., Moliterno J., Vortmeyer A.O., Bilgüvar K., Yasuno K., Young R.A., Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun. 2017; 8: 14433. doi:10.1038/ncomms14433.; Kishida Y., Natsume A., Kondo Y., Takeuchi I., An B., Okamoto Y., Shinjo K., Saito K., Ando H., Ohka F., Sekido Y., Wakabayashi T. Epigenetic subclassification of meningiomas based on genome-wide DNA methylation analyses. Carcinogenesis. 2012; 33(2): 436–41. doi:10.1093/carcin/bgr260.; Vengoechea J., Sloan A.E., Chen Y., Guan X., Ostrom Q.T., Kerstetter A., Capella D., Cohen M.L., Wolinsky Y., Devine K., Selman W., Barnett G.H., Warnick R.E., McPherson C., Chiocca E.A., Elder J.B., Barnholtz-Sloan J.S. Methylation markers of malignant potential in meningiomas. J Neurosurg. 2013; 119(4): 899–906. doi:10.3171/2013.7.JNS13311.; Olar A., Wani K.M., Wilson C.D., Zadeh G., DeMonte F., Jones D.T., Pfister S.M., Sulman E.P., Aldape K.D. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017; 133(3): 431–44. doi:10.1007/s00401-017-1678-x.; https://www.siboncoj.ru/jour/article/view/2247