-
1Academic Journal
Source: Клиническая онкогематология, Vol 16, Iss 3 (2024)
-
2Academic Journal
Authors: Munteanu Ivanov, M.V.
Source: Buletinul Academiei de Ştiinţe a Moldovei. Ştiinţe Medicale 81 (1) 69-79
Subject Terms: dereglarea microcirculaţiei coronariene, Disfuncţie endotelială, spasm microvascular, microtromboză, markeri prognostici, coronary microcirculation dysfunction, endothelial dysfunction, microvascular spasm, microthrombosis, prognostic biomarkers, нарушение коронарной микроциркуляции, эндотелиальная дисфункция, микровазоспазм, микротромбоз, прогностические маркёры
File Description: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/237885; urn:issn:18570011
-
3Academic Journal
Authors: A. R. Meltonian, M. Yu. Laevskaya, Yu. N. Savchenkov, A. Yu. Babenko, А. Р. Мелтонян, М. Ю. Лаевская, Ю. Н. Савченков, А. Ю. Бабенко
Source: Meditsinskiy sovet = Medical Council; № 23 (2024); 137-143 ; Медицинский Совет; № 23 (2024); 137-143 ; 2658-5790 ; 2079-701X
Subject Terms: прогностические маркеры, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, glucose-lowering therapy, prognostic markers, агонисты рецепторов глюкагоноподобного пептида 1, ингибиторы натрий-глюкозного котранспортера 2-го типа, сахароснижающая терапия
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8839/7748; Cao L, An Y, Liu H, Jiang J, Liu W, Zhou Y et al. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: a systematic review and meta-analysis. BMC Med. 2024;22(1):101. https://doi.org/10.1186/s12916-024-03315-0.; Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. https://doi.org/10.1016/S0140-6736(20)32511-3.; Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus – mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021;18(9):599–612. https://doi.org/10.1038/s41575-021-00448-y.; Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of Insulin Resistance in MAFLD. Int J Mol Sci. 2021;22(8):4156. https://doi.org/10.3390/ijms22084156.; Fan JG, Xu XY, Yang RX, Nan YM, Wei L, Jia JD et al. Guideline for the Prevention and Treatment of Metabolic Dysfunction-associated Fatty Liver Disease (Version 2024). J Clin Transl Hepatol. 2024;12(11):955–974. https://doi.org/10.14218/JCTH.2024.00311.; Zeng M, Chen L, Li Y, Mi Y, Xu L. Problems and Challenges Associated with Renaming Non-alcoholic Fatty Liver Disease to Metabolic Associated Fatty Liver Disease. Medicine. 2023;3(3):105–113. https://doi.org/10.1097/ID9.0000000000000085.; Zhang Y, Yan Q, Gong L, Xu H, Liu B, Fang X et al. C-terminal truncated HBx initiates hepatocarcinogenesis by downregulating TXNIP and reprogramming glucose metabolism. Oncogene. 2021;40(6):1147–1161. https://doi.org/10.1038/s41388-020-01593-5.; Tauil RB, Golono PT, de Lima EP, de Alvares Goulart R, Guiguer EL, Bechara MD et al. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals. 2024;17(10):1354. https://doi.org/10.3390/ph17101354.; Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH et al. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov. 2024;10(1):399. https://doi.org/10.1038/s41420-024-02168-z.; Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 2017;74:1–9. https://doi.org/10.1016/j.metabol.2017.06.002.; Cho S, Ying F, Sweeney G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed J. 2023;46(5):100624. https://doi.org/10.1016/j.bj.2023.100624.; Park HS, Song JW, Park JH, Lim BK, Moon OS, Son HY et al. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy. 2021;17(9):2549–2564. https://doi.org/10.1080/15548627.2020.1834711.; Tokushige K, Ikejima K, Ono M, Eguchi Y, Kamada Y, Itoh Y et al. Evidencebased clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. J Gastroenterol. 2021;56(11):951–963. https://doi.org/10.1007/s00535-021-01796-x.; Boursier J, Hagström H, Ekstedt M, Moreau C, Bonacci M, Cure S et al. Noninvasive tests accurately stratify patients with NAFLD based on their risk of liver-related events. J Hepatol. 2022;76(5):1013–1020. https://doi.org/10.1016/j.jhep.2021.12.031.; Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18(12):835–856. https://doi.org/10.1038/s41575-021-00502-9.; Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. https://doi.org/10.1016/j.jhep.2019.06.021.; Castera L, Laouenan C, Vallet-Pichard A, Vidal-Trécan T, Manchon P, Paradis V et al.; QUID-NASH investigators. High Prevalence of NASH and Advanced Fibrosis in Type 2 Diabetes: A Prospective Study of 330 Outpatients Undergoing Liver Biopsies for Elevated ALT, Using a Low Threshold. Diabetes Care. 2023;46(7):1354–1362. https://doi.org/10.2337/dc22-2048.; Guo Q, Xin M, Lu Q, Feng D, Yang V, Peng LF et al. A novel NEDD4L-TXNIPCHOP axis in the pathogenesis of nonalcoholic steatohepatitis. Theranostics. 2023;13(7):2210–2225. https://doi.org/10.7150/thno.81192.; Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem. 2014;289(52):36275–36283. https://doi.org/10.1074/jbc.m114.592360.; Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS et al. Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization. Cell. 2018;175:117–132.e21. https://doi.org/10.1016/j.cell.2018.08.017.; Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol. 2023;14:1076343. https://doi.org/10.3389/fendo.2023.1076343.; Dagnell M, Schmidt EE, Arner ESJ. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic Biol Med. 2018;115:484–496. https://doi.org/10.1016/j.freeradbiomed.2017.12.029.; Choi EH, Park SJ. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target. Exp Mol Med. 2023;55(7):1348–1356. https://doi.org/10.1038/s12276-023-01019-8.; Li A, Guan L, Su W, Zhao N, Song X, Wang J et al. TXNIP inhibition in the treatment of type 2 diabetes mellitus: design, synthesis, and biological evaluation of quinazoline derivatives. J Enzyme Inhib Med Chem. 2023;38(1):2166937. https://doi.org/10.1080/14756366.2023.2166937.; Zhao W, Pu M, Shen S, Yin F. Geniposide improves insulin resistance through AMPK-mediated Txnip protein degradation in 3T3-L1 adipocytes. Acta Biochim Biophys Sin. 2021;53(2):160–169. https://doi.org/10.1093/abbs/gmaa157.; Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci. 2023;24(11):9677. https://doi.org/10.3390/ijms24119677.; Chan KE, Koh TJL, Tang ASP, Quek J, Yong JN, Tay P, et al. Global Prevalence and Clinical Characteristics of Metabolic-associated Fatty Liver Disease: A MetaAnalysis and Systematic Review of 10 739 607 Individuals. J Clin Endocrinol Metab. 2022;107(9):2691–2700. https://doi.org/10.1210/clinem/dgac321.; Chen F, Xing Y, Chen Z, Chen X, Li J, Gong S, Luo F, Cai Q. Competitive adsorption of microRNA-532-3p by circular RNA SOD2 activates Thioredoxin Interacting Protein/NLR family pyrin domain containing 3 pathway and promotes pyroptosis of non-alcoholic fatty hepatocytes. Eur J Med Res. 2024;29(1):250. https://doi.org/10.1186/s40001-024-01817-4.; He K, Zhu X, Liu Y, Miao C, Wang T, Li P et al. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for non-alcoholic fatty liver disease development. Oncotarget. 2017;8(23):37657–37672. https://doi.org/10.18632/oncotarget.17489.; Dagdeviren S, Lee RT, Wu N. Physiological and Pathophysiological Roles of Thioredoxin Interacting Protein: A Perspective on Redox Inflammation and Metabolism. Antioxid Redox Signal. 2023;38(4-6):442–460. https://doi.org/10.1089/ars.2022.0022.
-
4Academic Journal
Authors: Э.Н, Ташкенбаева, К.С, Пулатова, А.Р., Миниярова
Source: JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH; Vol. 4 No. 1 (2025): Journal of Healthcare and Life-Science Research; 188-192
Subject Terms: индекс MetS-IR, инсулинорезистентность, ишемическая болезнь сердца, коронарное стентирование, ожирение, инфаркт миокарда, прогностические маркеры, метаболический синдром
File Description: application/pdf
-
5Academic Journal
Authors: A. V. Manzyuk, T. E. Morozova, A. A. Gertsog, M. A. Litvinova, А. В. Манзюк, Т. Е. Морозова, А. А. Герцог, М. А. Литвинова
Source: Meditsinskiy sovet = Medical Council; № 12 (2024); 136–142 ; Медицинский Совет; № 12 (2024); 136–142 ; 2658-5790 ; 2079-701X
Subject Terms: прогноз, hematological test, systemic lupus erythematosus, ANCA-associated vasculitis, prognostic markers, prognosis, гематологический тест, системная красная волчанка, АНЦА-ассоциированный васкулит, прогностические маркеры
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8481/7459; Авдеева АС. Маркеры воспаления при ревматических заболеваниях. Научно-практическая ревматология. 2022;60(6):561–569. https://doi.org/10.47360/1995-4484-2022-561-569.; Александрова ЕН, Новиков АА, Насонов ЕЛ. Лабораторная диагностика ревматических заболеваний. Лабораторная служба. 2015;4(2):44–58. https://doi.org/10.17116/labs20154244-58.; Xie S, Chen X. Red blood cell distribution width-to-platelet ratio as a disease activity-associated factor in systemic lupus erythematosus. Medicine (Baltimore). 2018;97(39):e12342. https://doi.org/10.1097/MD.0000000000012342.; Gasparyan AY, Ayvazyan L, Mukanova U, Yessirkepov M, Kitas GD. The Platelet-to-Lymphocyte Ratio as an Inflammatory Marker in Rheumatic Diseases. Ann Lab Med. 2019;39(4):345–357. https://doi.org/10.3343/alm.2019.39.4.345.; Hu B, Yang XR, Xu Y, Sun YF, Sun C, Guo W et al. Systemic immuneinflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res. 2014;20(23):6212–6222. https://doi.org/10.1158/1078-0432.CCR-14-0442.; Chen JB, Tang R, Zhong Y, Zhou YO, Zuo X, Luo H et al. Systemic immune-inflammation index predicts a reduced risk of end-stage renal disease in Chinese patients with myeloperoxidase-anti-neutrophil cytoplasmic antibody-associated vasculitis: A retrospective observational study. Exp Ther Med. 2021;22(3):989. https://doi.org/10.3892/etm.2021.10421.; Hao X, Li D, Wu D, Zhang N. The Relationship between Hematological Indices and Autoimmune Rheumatic Diseases (ARDs), a Meta-Analysis. Sci Rep. 2017;7(1):10833. https://doi.org/10.1038/s41598-017-11398-4.; Song CS, Park DI, Yoon MY, Seok HS, Park JH, Kim HJ et al. Association between red cell distribution width and disease activity in patients with inflammatory bowel disease. Dig Dis Sci. 2012;57(4):1033–1038. https://doi.org/10.1007/s10620-011-1978-2.; Lolli C, Basso U, Derosa L, Scarpi E, Sava T, Santoni M et al. Systemic immune-inflammation index predicts the clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Oncotarget. 2016;7(34):54564–54571. https://doi.org/10.18632/oncotarget.10515.; Lei H, Xu S, Mao X, Chen X, Chen Y, Sun X, Sun P. Systemic immuneinflammatory index as a predictor of lymph node metastasis in endometrial cancer. J Inflamm Res. 2021;14:7131–7142. https://doi.org/10.2147/jir.S345790.; Demir M, Özbek M. A novel predictor in patients with coronary chronic total occlusion: systemic immune-inflammation index: a single-center cross-sectional study. Rev Assoc Med Bras (1992). 2022;68(5):579–585. https://doi.org/10.1590/1806-9282.20211097.; Li H, Zhou Y, Ma Y, Han S, Zhou L. The prognostic value of the platelet-to-lymphocyte ratio in acute coronary syndrome: a systematic review and meta-analysis. Kardiol Pol. 2017;75(7):666–673. https://doi.org/10.5603/KP.a2017.0068.; Karaçalılar M, Demir M. A novel predictor in patients undergoing heart valve surgery: systemic inflammation response index: a single center cross-sectional study. Eur Rev Med Pharmacol Sci. 2023;27(3):1016–1022. https://doi.org/10.26355/eurrev_202302_31196.; Kwon HC, Kim SH, Oh SY, Lee S, Lee JH, Choi HJ et al. Clinical significance of preoperative neutrophil-lymphocyte versus plateletlymphocyte ratio in patients with operable colorectal cancer. Biomarkers. 2012;17(3):216–222. https://doi.org/10.3109/1354750X.2012.656705.; Ozisler C, Sandikci SC. Evaluation of red blood cell distribution width in patients with psoriatic arthritis. The Egyptian Rheumatologist. 2020;42(4):309–312. https://doi.org/10.1016/j.ejr.2019.06.001.; Fraenkel PG. Anemia of Inflammation: A Review. Med Clin North Am. 2017;101(2):285–296. https://doi.org/10.1016/j.mcna.2016.09.005.; Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133(1):40–50. https://doi.org/10.1182/blood-2018-06-856500.; Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol. 2002;168(9):4620–4627. https://doi.org/10.4049/jimmunol.168.9.4620.; Tecer D, Sezgin M, Kanık A, İncel NA, Çimen ÖB, Biçer A, Şahin G. Can mean platelet volume and red blood cell distribution width show disease activity in rheumatoid arthritis? Biomark Med. 2016;10(9):967–974. https://doi.org/10.2217/bmm-2016-0148.; Hong J, Zhu B, Cai X, Liu S, Liu S, Zhu Q et al. Assessment of the association between red blood cell distribution width and disease activity in patients with systemic vasculitis. Exp Ther Med. 2021;22(1):691. https://doi.org/10.3892/etm.2021.10123.; Vayá A, Alis R, Hernández JL, Calvo J, Micó L, Romagnoli M, Ricarte JM. RDW in patients with systemic lupus erythematosus. Influence of anaemia and inflammatory markers. Clin Hemorheol Microcirc. 2013;54(3):333–339. https://doi.org/10.3233/CH-131738.; Kim HJ, Yoo J, Jung SM, Song JJ, Park YB, Lee SW. Red Blood Cell Distribution Width Can Predict Vasculitis Activity and Poor Prognosis in Granulomatosis with Polyangiitis. Yonsei Med J. 2018;59(2):294–302. https://doi.org/10.3349/ymj.2018.59.2.294.; Horta-Baas G, Romero-Figueroa MDS. Clinical utility of red blood cell distribution width in inflammatory and non-inflammatory joint diseases. Int J Rheum Dis. 2019;22(1):47–54. https://doi.org/10.1111/1756-185X.13332.; Moreno-Torres V, Castejón R, Mellor-Pita S, Tutor-Ureta P, Durán-Del Campo P, Martínez-Urbistondo M et al. Usefulness of the hemogram as a measure of clinical and serological activity in systemic lupus erythematosus. J Transl Autoimmun. 2022;5:100157. https://doi.org/10.1016/j.jtauto.2022.100157.; Harigai M. Lymphoproliferative disorders in patients with rheumatoid arthritis in the era of widespread use of methotrexate: A review of the literature and current perspective. Mod Rheumatol. 2018;28(1):1–8. https://doi.org/10.1080/14397595.2017.1352477.; Bromberg L, Roufosse F, Pradier O, Delporte C, Van Antwerpen P, De Maertelaer V, Cogan E. Methylprednisolone-Induced Lymphocytosis in Patients with Immune-Mediated Inflammatory Disorders. Am J Med. 2016;129(7):746–752.e3. https://doi.org/10.1016/j.amjmed.2016.02.013.; Hu ZD, Chen Y, Zhang L, Sun Y, Huang YL, Wang QQ et al. Red blood cell distribution width is a potential index to assess the disease activity of systemic lupus erythematosus. Clin Chim Acta. 2013;425:202–205. https://doi.org/10.1016/j.cca.2013.08.007.; Tatsi C, Boden R, Sinaii N, Keil M, Lyssikatos C, Belyavskaya E et al. Decreased lymphocytes and increased risk for infection are common in endogenous pediatric Cushing syndrome. Pediatr Res. 2018;83(2):431–437. https://doi.org/10.1038/pr.2017.278.; Crawford VL, McNerlan SE, Stout RW. Seasonal changes in platelets, fibrinogen and factor VII in elderly people. Age Ageing. 2003;32(6):661–665. https://doi.org/10.1093/ageing/afg113.; Subhashree AR, Parameaswari PJ, Shanthi B, Revathy C, Parijatham BO. The reference intervals for the haematological parameters in healthy adult population of Chennai, Southern India. J Clin Diagn Res. 2012;6(10):1675–1680. https://doi.org/10.7860/JCDR/2012/4882.2630.
-
6Academic Journal
Authors: Yu. V. Ostankova, M. A. Saitgalina, N. A. Arsentieva, A. A. Totolian, Ю. В. Останкова, М. А. Сайтгалина, Н. А. Арсентьева, А. А. Тотолян
Source: HIV Infection and Immunosuppressive Disorders; Том 16, № 2 (2024); 51-59 ; ВИЧ-инфекция и иммуносупрессии; Том 16, № 2 (2024); 51-59 ; 2077-9828 ; 10.22328/2077-9828-2024-16-2
Subject Terms: прогностические маркеры, immunodeficiency, HIV, TREC, KREC, laboratory diagnostics, predictive markers, иммунодефицит, ВИЧ, лабораторная диагностика
File Description: application/pdf
Relation: https://hiv.bmoc-spb.ru/jour/article/view/909/588; Sattler S. The Role of the Immune System Beyond the Fight Against Infection // Adv. Exp. Med. Biol. 2017. Vol. 1003. Р. 3–14. doi:10.1007/978-3-319-57613-8_1.; Tuano K.S., Seth N., Chinen J. Secondary immunodeficiencies: An overview // Annals of Allergy, Asthma & Immunology. 2021. Vol. 127, No. 6. P. 617–626. doi:10.1016/j.anai.2021.08.413.; Li K., Zhang Q. Eliminating the HIV tissue reservoir: current strategies and challenges // Infect. Dis. (Lond.). 2024. Vol. 53, No. 3. Р. 165– 182. doi:10.1080/23744235.2023.2298450.; Lu L., Wang J., Yang Q., Xie X., Huang Y. The role of CD38 in HIV infection // AIDS Res Ther. 2021. Vol. 18. Р. 11. https://doi.org/10.1186/s12981-021-00330-6.; Kazer S.W., Walker B.D., Shalek A.K. Evolution and diversity of immune responses during acute HIV infection // Immunity. 2020. Vol. 53, No. 5. P. 908–924.; Moir S., Malaspina A., Ogwaro K.M., Donoghue E.T., Hallahan C.W., Ehler L.A., Liu S., Adelsberger J., Lapointe R., Hwu P., Baseler M., Orenstein J.M., Chun T.W., Mican J.A., Fauci A.S. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals // Proc. Natl. Acad. Sci. U S A. 2001. Vol. 98, No. 18. Р. 10362–10367. doi:10.1073/pnas.181347898.; Sánchez-Ramón S., Bermúdez A., González-Granado L.I., Rodríguez-Gallego C., Sastre A., Soler-Palacín P.; ID-Signal Onco-Haematology Group. Primary and secondary immunodeficiency diseases in oncohaematology: warning signs, diagnosis, and management // Frontiers in immunology. 2019. Vol. 10. P. 586. doi:10.3389/fimmu.2019.00586.; Seidel M.G. Autoimmune and other cytopenias in primary immunodeficiencies: pathomechanisms, novel differential diagnoses, and treatment // Blood. 2014. Vol. 124, No. 15. P. 2337–2344.; Van Zelm M.C., van der Burg M., Langerak A.W., van Dongen J.J. PID comes full circle: applications of V (D) J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders // Frontiers in immunology. 2011. Vol. 2. P. 12. doi:10.3389/fimmu.2011.00012.; Сайтгалина М.А., Останкова Ю.В., Любимова Н.Е., Семенов А.В., Кузнецова Р.Н., Тотолян А.А. Модифицированный метод количественного определения уровней TREC и KREC в периферической крови у больных с иммунодефицитными состояниями // Инфекция и иммунитет. 2022. Т. 12, № 5. C. 981–996. doi:10.15789/2220-7619-MMF-2039.; Сайтгалина М.А., Любимова Н.Е., Останкова Ю.В., Кузнецова Р.Н., Тотолян Арег А. Определение референтных интервалов циркулирующих в крови эксцизионных колец TREC и KREC у лиц старше 18 лет // Медицинская иммунология. 2022. Т. 24, № 6. С. 1227–1236. doi:10.15789/1563-0625-DOR-2587.; Сайтгалина М.А., Останкова Ю.В., Арсентьева Н.А., Коробова З.Р., Любимова Н.Е., Кащенко В.А., Куликов А.Н., Певцов Д.Э., Станевич О.В., Черных Е.И., Тотолян А.А. Оценка уровней молекул TREC и KREC у больных COVID-19 с разной степенью тяжести течения заболевания // Инфекция и иммунитет. 2023. Т. 13. № 5. C. 873–884. doi:10.15789/2220-7619-AOT-16937.; Mensen A., Ochs C., Stroux A., Wittenbecher F., Szyska M., Imberti L., Fillatreau S., Uharek L., Arnold R., Dörken B., Thiel A., Scheibenbogen C, Na I.K. Utilization of TREC and KREC quantification for the monitoring of early T-and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation // Journal of translational medicine. 2013. Vol. 11. P. 1–9. doi:10.1186/1479-5876-11-188.; He S., Zhang Z., Fu Y., Qin C., Li S., Han X., Xu J., Liu J., Jiang Y., Shang H. Thymic Function Is Most Severely Impaired in Chronic HIV-1 Infection, but Individuals With Faster Disease Progression During Early HIV-1 Infection Expressed Lower Levels of RTEs // J Acquir Immune Defic Syndr. 2015. Vol. 70, No. 5. Р. 472–478. doi:10.1097/QAI.0000000000000801.; Ferrando-Martinez S., De Pablo-Bernal R.S., De Luna-Romero M., De Ory S.J., Genebat M., Pacheco Y.M., Parras F.J., Montero M., Blanco J.R., Gutierrez F., Santos J., Vidal F., Koup R.A., Muñoz-Fernández M.Á., Leal M., Ruiz-Mateos E. Thymic Function Failure Is Associated With Human Immunodeficiency Virus Disease Progression // Clin Infect Dis. 2017. Vol. 64, No. Р. 1191–1197. doi:10.1093/cid/cix095.; Quiros-Roldan E, Serana F., Chiarini M., Zanotti C., Sottini A., Gotti D., Torti C., Caimi L., Imberti L. Effects of combined antiretroviral therapy on B-and T-cell release from production sites in long-term treated HIV-1+ patients // Journal of translational medicine. 2012. Vol. 10. P. 94. doi:10.1186/1479-5876-10-94.; Drylewicz J., Vrisekoop N., Mugwagwa T., de Boer A.B., Otto S.A., Hazenberg M.D., Tesselaar K., de Boer R.J., Borghans J.A. Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection // PLoS One. 2016. Vol. 11, No. 3. Р. e0152513. doi:10.1371/journal.pone.0152513.; Payne H., Chain G., Adams S., Hunter P., Luckhurst N., Gilmour K., Lewis J., Babiker A., Cotton M., Violari A., Gibb D., Callard R., Klein N. Naive B Cell Output in HIV-Infected and HIV-Uninfected Children // AIDS Res Hum Retroviruses. 2019. Vol. 35, No. 1. Р. 33–39. doi:10.1089/AID.2018.0170.; Shmakova A., Hugot C., Kozhevnikova Y., Schwager Karpukhina A., Tsimailo I., Gérard L., Boutboul D., Oksenhendler E., Szewczyk-Roszczenko O., Roszczenko P., Buzun K., Sheval E.V., Germini D., Vassetzky Y. Chronic HIV-1 Tat action induces HLA-DR downregulation in B cells: A mechanism for lymphoma immune escape in people living with HIV // J. Med. Virol. 2024. Vol. 96, No. 2. Р. e29423. doi:10.1002/jmv.29423.; Kurosaki T., Kometani K., Ise W. Memory B cells // Nat Rev Immunol. 2015. 15(3. Р. 149–59. doi:10.1038/nri3802.; Moir S., Fauci A.S. Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals // Immunol Rev. 2013. Vol. 254, No. 1. Р. 207–24. doi:10.1111/imr.12067.; Badura R., Foxall R.B., Ligeiro D., Rocha M., Godinho-Santos A., Trombetta A.C., Sousa A.E. Early ART in Acute HIV-1 Infection: Impact on the B-Cell Compartment // Front Cell Infect Microbiol. 2020. Vol. 10. Р. 347. doi:10.3389/fcimb.2020.00347.
-
7Academic Journal
Authors: Golovach, I.Yu., Yehudina, Ye.D.
Source: Практична онкологія-Praktična onkologìâ; Том 2, № 3 (2019); 9-23
Practical oncology; Том 2, № 3 (2019); 9-23
Практическая онкология-Praktična onkologìâ; Том 2, № 3 (2019); 9-23Subject Terms: lymphoma, Sjogren's syndrome, lymphoproliferative diseases, prognostic markers, cryoglobulinemia, risk factors, diagnosis, лімфома, синдром Шегрена, лімфопроліферативне захворювання, прогностичні маркери, кріоглобулінемія, фактори ризику, діагностика, лимфома, лимфопролиферативное заболевание, прогностические маркеры, криоглобулинемия, факторы риска, диагностика, 3. Good health
File Description: application/pdf
-
8Academic Journal
Source: Ukrainian Journal «Health of Woman»; No. 4(167) (2023): Ukrainian Journal Health of Woman; 52-60
Ukrainian Journal «Health of Woman»; № 4(167) (2023): Ukrainian Journal Health of Woman; 52-60
Український журнал "Здоров'я жінки"; № 4(167) (2023): Український журнал Здоров’я жінки; 52-60Subject Terms: інгібітори хемокінів широкого спектра дії, матково-цервікальний кут, лабораторные прогностические маркеры, interleukin 1 receptor antagonists, cervical elastography, тактика ведения, prostaglandin F2α-receptor target drugs, таргетні препарати до рецепторів простагландину F2α, broad-spectrum chemokine inhibitors, laboratory prediction markers, ингибиторы хемокинов широкого спектра действия, передчасні пологи, uterine-cervical angle, антагонисты рецепторов интерлейкина-1, таргетные препараты к рецепторам простагландина F2α, системи наноносіїв, лабораторні прогностичні маркери, антагоністи рецепторів інтерлейкіна-1, nanoparticle platforms, premature birth, цервікальна еластографія, management tactics, 3. Good health, цервикальная эластография, тактика ведення, системы наноносителей, маточно-цервикальный угол, преждевременные роды
File Description: application/pdf
-
9Report
Subject Terms: гериатрические пациенты, community-acquired pneumonia, antibiotic resistance, внебольничная пневмония, возрастные особенности, geriatric patients, клиническая картина, лабораторная диагностика, прогностические маркеры, антибиотикорезистентность, clinical picture, comorbidity, Streptococcus pneumoniae, коморбидность, age characteristics, laboratory diagnostics, prognostic markers
-
10Academic Journal
Authors: Петренко, Є.В., Дубоссарська, Ю.О.
Source: Ukrainian Journal «Health of Woman»; No. 4(167) (2023): Ukrainian Journal Health of Woman; 52-60 ; Ukrainian Journal «Health of Woman»; № 4(167) (2023): Ukrainian Journal Health of Woman; 52-60 ; Український журнал "Здоров'я жінки"; № 4(167) (2023): Український журнал Здоров’я жінки; 52-60 ; 2786-6017 ; 2786-6009
Subject Terms: передчасні пологи, тактика ведення, лабораторні прогностичні маркери, матково-цервікальний кут, цервікальна еластографія, інгібітори хемокінів широкого спектра дії, таргетні препарати до рецепторів простагландину F2α, антагоністи рецепторів інтерлейкіна-1, системи наноносіїв, premature birth, management tactics, laboratory prediction markers, uterine-cervical angle, cervical elastography, broad-spectrum chemokine inhibitors, prostaglandin F2α-receptor target drugs, interleukin 1 receptor antagonists, nanoparticle platforms, преждевременные роды, тактика ведения, лабораторные прогностические маркеры, маточно-цервикальный угол, цервикальная эластография, ингибиторы хемокинов широкого спектра действия, таргетные препараты к рецепторам простагландина F2α, антагонисты рецепторов интерлейкина-1, системы наноносителей
File Description: application/pdf
Relation: http://ujhw.med-expert.com.ua/article/view/292116/285276; http://ujhw.med-expert.com.ua/article/view/292116
Availability: http://ujhw.med-expert.com.ua/article/view/292116
-
11Academic Journal
Authors: O. N. Selyutina, I. B. Lysenko, N. K. Guskova, I. A. Novikova, E. Yu. Zlatnik, T. F. Pushkareva, N. V. Nikolaeva, I. A. Kamaeva, N. Yu. Samaneva, E. A. Kapuza, О. Н. Селютина, И. Б. Лысенко, Н. К. Гуськова, И. А. Новикова, Е. Ю. Златник, Т. Ф. Пушкарева, Н. В. Николаева, И. А. Камаева, Н. Ю. Саманева, Е. А. Капуза
Source: Siberian journal of oncology; Том 22, № 2 (2023); 34-42 ; Сибирский онкологический журнал; Том 22, № 2 (2023); 34-42 ; 2312-3168 ; 1814-4861
Subject Terms: иммунохимиотерапия, flow cytometry, LAG-3, minimal residual disease, immunophenotypic prognostic markers, immunochemotherapy, проточная цитофлуориметрия, минимальная остаточная болезнь, иммунофенотипические прогностические маркеры
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2527/1093; Kipps T.J., Stevenson F.K., Wu C.J., Croce C.M., Packham G., Wierda W.G., O’Brien S., Gribben J., Rai K. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017; 3: 1–22. doi:10.1038/nrdp.2016.96.; Chiorazzi N., Rai K.R., Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005; 352(8): 804–15. doi:10.1056/NEJMra041720.; Yosifov D.Y., Wolf C., Stilgenbauer S., Mertens D. From Biology to Therapy: The CLL Success Story. Hemasphere. 2019; 3(2). doi:10.1097/HS9.0000000000000175.; Кравченко Д.В., Свирновский А.И. Хронический лимфоцитарный лейкоз: клиника, диагностика, лечение. Гомель, 2017. 117 с.; Craig F.E., Foon K.A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008; 111(8): 3941–67. doi:10.1182/blood-2007-11-120535.; Гуськова Н.К., Селютина О.Н., Новикова И.А., Максимов А.Ю., Ноздричева А.С., Абакумова С.В. Морфологические и иммунофенотипические особенности моноклональной популяции В-лимфоцитов при хроническом лимфолейкозе. Южно-Российский онкологический журнал. 2020; 1(3): 27–35. doi:10.37748/2687-0533-2020-1-3-3.; Rodríguez-Vicente A.E., Díaz M.G., Hernández-Rivas J.M. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet. 2013; 206(3): 49–62. doi:10.1016/j.cancergen.2013.01.003.; Eichhorst B., Robak T., Montserrat E., Ghia P., Niemann C.U., Kater A.P., Gregor M., Cymbalista F., Buske C., Hillmen P., Hallek M., Mey U.; ESMO Guidelines Committee. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021; 32(1): 23–33. doi:10.1016/j.annonc.2020.09.019.; Baliakas P., Mattsson M., Stamatopoulos K., Rosenquist R. Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med. 2016; 279(4): 347–57. doi:10.1111/joim.12455.; Brown J.R., Hillmen P., O’Brien S., Barrientos J.C., Reddy N.M., Coutre S.E., Tam C.S., Mulligan S.P., Jaeger U., Barr P.M., Furman R.R., Kipps T.J., Cymbalista F., Thornton P., Caligaris-Cappio F., Delgado J., Montillo M., DeVos S., Moreno C., Pagel J.M., Munir T., Burger J.A., Chung D., Lin J., Gau L., Chang B., Cole G., Hsu E., James D.F., Byrd J.C. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018; 32(1): 83–91. doi:10.1038/leu.2017.175.; Taghiloo S., Allahmoradi E., Ebadi R., Tehrani M., HosseiniKhah Z., Janbabaei G., Shekarriz R., Asgarian-Omran H. Upregulation of Galectin-9 and PD-L1 Immune Checkpoints Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev. 2017; 18(8): 2269–74. doi:10.22034/APJCP.2017.18.8.2269.; Mohammed Basabaeen A.A., Abdelgader E.A., Babekir E.A., Abdelrahim S.O., Eltayeb N.H., Altayeb O.A., Fadul E.A., Sabo A., Ibrahim I.K. TP53 Gene 72 Arg/Pro (rs1042522) Single Nucleotide Polymorphism Contribute to Increase the Risk of B-Chronic Lymphocytic Leukemia in the Sudanese Population. Asian Pac J Cancer Prev. 2019; 20(5): 1579–85. doi:10.31557/APJCP.2019.20.5.1579.; Joshi N.S., Cui W., Chandele A., Lee H.K., Urso D.R., Hagman J., Gapin L., Kaech S.M. Inflammation directs memory precursor and short-lived efector CD8(+) T cell fates via the graded expression of Tbet transcription factor. Immunity. 2007; 27(2): 281–95. doi:10.1016/j.immuni.2007.07.010.; Fischer K., Bahlo J., Fink A.M., Goede V., Herling C.D., Cramer P., Langerbeins P., von Tresckow J., Engelke A., Maurer C., Kovacs G., Herling M., Tausch E., Kreuzer K.A., Eichhorst B., Böttcher S., Seymour J.F., Ghia P., Marlton P., Kneba M., Wendtner C.M., Döhner H., Stilgenbauer S., Hallek M. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016; 127(2): 208–15. doi:10.1182/blood-2015-06-651125.; Fischer K., Cramer P., Busch R., Böttcher S., Bahlo J., Schubert J., Pfüger K.H., Schott S., Goede V., Isfort S., von Tresckow J., Fink A.M., Bühler A., Winkler D., Kreuzer K.A., Staib P., Ritgen M., Kneba M., Döhner H., Eichhorst B.F., Hallek M., Stilgenbauer S., Wendtner C.M. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012; 30(26): 3209–16. doi:10.1200/JCO.2011.39.2688.; Eichhorst B., Fink A.M., Bahlo J., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M., Sökler M., Schlag R., Vehling-Kaiser U., Köchling G., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M.; international group of investigators; German CLL Study Group (GCLLSG). First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016; 17(7): 928–42. doi:10.1016/S1470-2045(16)30051-1.; Al-Sawaf O., Hallek M., Fischer K. The role of minimal residual disease in chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2022; 20(2): 97–103.; Böttcher S., Ritgen M., Fischer K., Stilgenbauer S., Busch R.M., Fingerle-Rowson G., Fink A.M., Bühler A., Zenz T., Wenger M.K., Men-dila M., Wendtner C.M., Eichhorst B.F., Döhner H., Hallek M.J., Kneba M. Minimal residual disease quantifcation is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012; 30(9): 980–8. doi:10.1200/JCO.2011.36.9348.; Goede V., Fischer K., Busch R., Engelke A., Eichhorst B., Wendtner C.M., Chagorova T., de la Serna J., Dilhuydy M.S., Illmer T., Opat S., Owen C.J., Samoylova O., Kreuzer K.A., Stilgenbauer S., Döhner H., Langerak A.W., Ritgen M., Kneba M., Asikanius E., Humphrey K., Wenger M., Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370(12): 1101–10. doi:10.1056/NEJMoa1313984.; Kovacs G., Robrecht S., Fink A.M., Bahlo J., Cramer P., von Tresckow J., Maurer C., Langerbeins P., Fingerle-Rowson G., Ritgen M., Kneba M., Döhner H., Stilgenbauer S., Klapper W., Wendtner C.M., Fischer K., Hallek M., Eichhorst B., Böttcher S. Minimal Residual Disease Assessment Improves Prediction of Outcome in Patients With Chronic Lymphocytic Leukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol. 2016; 34(31): 3758–65. doi:10.1200/JCO.2016.67.1305.; Dimier N., Delmar P., Ward C., Morariu-Zamfr R., Fingerle-Rowson G., Bahlo J., Fischer K., Eichhorst B., Goede V., van Dongen J.J.M., Ritgen M., Böttcher S., Langerak A.W., Kneba M., Hallek M. A model for predicting efect of treatment on progression-free survival using MRD as a surrogate end point in CLL. Blood. 2018; 131(9): 955–62. doi:10.1182/blood-2017-06-792333.; Molica S., Giannarelli D., Montserrat E. Minimal Residual Disease and Survival Outcomes in Patients With Chronic Lymphocytic Leukemia: A Systematic Review and Meta-analysis. Clin Lymphoma Myeloma Leuk. 2019; 19(7): 423–30. doi:10.1016/j.clml.2019.03.014.; Huard B., Tournier M., Hercend T., Triebel F., Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994; 24(12): 3216–21. doi:10.1002/eji.1830241246.; Shapiro M., Herishanu Y., Katz B.Z., Dezorella N., Sun C., Kay S., Polliack A., Avivi I., Wiestner A., Perry C. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017; 102(5): 874–82. doi:10.3324/haematol.2016.148965.; Kotaskova J., Tichy B., Trbusek M., Francova H.S., Kabathova J., Malcikova J., Doubek M., Brychtova Y., Mayer J., Pospisilova S. High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival. J Mol Diagn. 2010; 12(3): 328–34. doi:10.2353/jmoldx.2010.090100.; Никитин Е.А., Бялик Т.Е., Зарицкий А.Ю., Исебер Л., Капланов К.Д., Лопаткина Т.Н., Луговская С.А., Мухортова О.В., Османов Е.А., Поддубная И.В., Самойлова О.С., Стадник Е.А., Фалалеева Н.А., Байков В.В., Ковригина А.М., Невольских А.А., Иванов С.А., Хайлова Ж.В., Геворкян Т.Г. Хронический лимфоцитарный лейкоз/лимфома из малых лимфоцитов. Клинические рекомендации. Современная Онкология. 2020; 22(3): 24–44. doi:10.26442/18151434.2020.3.200385.; Rawstron A.C., Villamor N., Ritgen M., Böttcher S., Ghia P., Zehnder J.L., Lozanski G., Colomer D., Moreno C., Geuna M., Evans P.A., Natkunam Y., Coutre S.E., Avery E.D., Rassenti L.Z., Kipps T.J., CaligarisCappio F., Kneba M., Byrd J.C., Hallek M.J., Montserrat E., Hillmen P. International standardized approach for fow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007; 21(5): 956–64. doi:10.1038/sj.leu.2404584.; Кит О.И., Тимофеева С.В., Ситковская А.О., Новикова И.А., Колесников Е.Н. Биобанк ФГБУ «НМИЦ онкологии» Минздрава России как ресурс для проведения исследований в области персонифицированной медицины. Современная онкология. 2022; 24(1): 6–11. doi:10.26442/18151434.2022.1.201384.; Wierz M., Pierson S., Guyonnet L., Viry E., Lequeux A., Oudin A., Niclou S.P., Ollert M., Berchem G., Janji B., Guérin C., Paggetti J., Moussay E. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018; 131(14): 1617–21. doi:10.1182/blood-2017-06-792267.; Sordo-Bahamonde C., Lorenzo-Herrero S., González-Rodríguez A.P., Payer Á.R., González-García E., López-Soto A., Gonzalez S. LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021; 13(9): 2112. doi:10.3390/cancers13092112.; Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.J., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D.M., Korman A.J., Drake C.G., Vignali D.A. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72(4): 917–27. doi:10.1158/0008-5472.CAN-11-1620.; Grosso J.F., Kelleher C.C., Harris T.J., Maris C.H., Hipkiss E.L., De Marzo A., Anders R., Netto G., Getnet D., Bruno T.C., Goldberg M.V., Pardoll D.M., Drake C.G. LAG-3 regulates CD8+ T cell accumulation and efector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007; 117(11): 3383–92. doi:10.1172/JCI31184.; Qi Y., Chen L., Liu Q., Kong X., Fang Y., Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Efective Immunotherapy Strategy. Front Immunol. 2021; 11. doi:10.3389/fmmu.2020.563258.; Liu D. Cancer biomarkers for targeted therapy. Biomark Res. 2019; 7: 25. doi:10.1186/s40364-019-0178-7.; Grzywnowicz M., Karabon L., Karczmarczyk A., Zajac M., Skorka K., Zaleska J., Wlasiuk P., Chocholska S., Tomczak W., BojarskaJunak A., Dmoszynska A., Frydecka I., Giannopoulos K. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma. 2015; 56(10): 2908–13. doi:10.3109/10428194.2015.1017820.; Li M., Sun X.H., Zhu X.J., Jin S.G., Zeng Z.J., Zhou Z.H., Yu Z., Gao Y.Q. HBcAg induces PD-1 upregulation on CD4+T cells through activation of JNK, ERK and PI3K/AKT pathways in chronic hepatitisB-infected patients. Lab Invest. 2012; 92(2): 295–304. doi:10.1038/labinvest.2011.157.; McClanahan F., Riches J.C., Miller S., Day W.P., Kotsiou E., Neuberg D., Croce C.M., Capasso M., Gribben J.G. Mechanisms of PDL1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model. Blood. 2015; 126(2): 212–21. doi:10.1182/blood-2015-02-626754.; Ramsay A.G., Clear A.J., Fatah R., Gribben J.G. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012; 120(7): 1412–21. doi:10.1182/blood-2012-02-411678.; Табаков Д.В., Заботина Т.Н., Чантурия Н.В., Захарова Е.Н., Воротников И.К., Сельчук В.Ю., Соколовский В.В., Петровский А.В. Взаимосвязь экспрессии GITR, Lag-3 и PD-1 с основными показателями системного и локального иммунитета у больных раком молочной железы. Современная онкология. 2021; 23(3): 457–65. doi:10.26442/18151434.2021.3.200809.; Wang Q., Zhang J., Tu H., Liang D., Chang D.W., Ye Y., Wu X. Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. J Immunother Cancer. 2019; 7(1): 334. doi:10.1186/s40425-019-0810-y.; He Y., Wang Y., Zhao S., Zhao C., Zhou C., Hirsch F.R. sLAG-3 in non-small-cell lung cancer patients’ serum. Onco Targets Ther. 2018; 11: 4781–4. doi:10.2147/OTT.S164178.; Eichhorst B., Fink A.M., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M.G., Soekler M., Schlag R., Vehling-Kaiser U., Köchling G.R.A., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M. Frontline chemoimmunotherapy with fudarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) shows superior efcacy in comparison to bendamustine (B) and rituximab (BR) in previously untreated and physically ft patients (pts) with advanced chronic lymphocytic leukemia (CLL): Final analysis of an international, randomized study of the German CLL Study Group (GCLLSG) (CLL10 study). Blood. 2014; 124 (21): 19. doi:10.1182/blood.V124.21.19.19.; https://www.siboncoj.ru/jour/article/view/2527
-
12Academic Journal
Authors: K. K. Kukanov, O. M. Vorobyova, Yu. M. Zabrodskaya, E. G. Potemkina, V. V. Ushanov, M. M. Tastanbekov, N. E. Ivanova, К. К. Куканов, О. М. Воробьёва, Ю. М. Забродская, Е. Г. Потёмкина, В. В. Ушанов, М. М. Тастанбеков, Н. Е. Иванова
Source: Siberian journal of oncology; Том 21, № 4 (2022); 110-123 ; Сибирский онкологический журнал; Том 21, № 4 (2022); 110-123 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-4
Subject Terms: генетический статус, recurrence, tumor progression, radiation therapy, chemotherapy, pathomorphology, prognostic markers, genetic status, рецидивы, прогрессия опухоли, радикальность удаления, лучевая терапия, химиотерапия, патоморфология, прогностические маркеры
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2247/1021; Cushing H. The meningiomas (dural endotheliomas): their source and favored seats of origin (Cavendish Lecture). Brain. 1922 Oct; 45(2): 282–316. doi:10.1093/brain/45.2.282.; Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6): 803–20. doi:10.1007/s00401-016-1545-1.; Ostrom Q.T., Patil N., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro Oncol. 2020; 22. doi:10.1093/neuonc/noaa200.; Улитин А.Ю., Олюшин В.Е., Поляков И.В. Эпидемиология первичных опухолей головного мозга в Санкт-Петербурге. Вопросы нейрохирургии им. Н.Н. Бурденко. 2005; 1: 6–12.; Leães C.G., Meurer R.T., Coutinho L.B., Ferreira N.P., Pereira-Lima J.F., da Costa Oliveira M. Immunohistochemical expression of aromatase and estrogen, androgen and progesterone receptors in normal and neoplastic human meningeal cells. Neuropathology. 2010; 30(1): 44–9. doi:10.1111/j.1440-1789.2009.01047.x.; Carroll R.S., Zhang J., Dashner K., Black P.M. Progesterone and glucocorticoid receptor activation in meningiomas. Neurosurgery. 1995; 37(1): 92–7. doi:10.1227/00006123-199507000-00014.; Reubi J.C., Maurer R., Klijn J.G., Stefanko S.Z., Foekens J.A., Blaauw G., Blankenstein M.A., Lamberts S.W. High incidence of somatostatin receptors in human meningiomas: biochemical characterization. J Clin Endocrinol Metab. 1986; 63(2): 433–8. doi:10.1210/jcem-63-2-433.; Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8): 1231–51. doi:10.1093/neuonc/noab106.; Китаев С.М., Китаев С.В. Лучевая диагностика заболеваний головного мозга. МЕДпресс-информ. 2018. 136 с.; Осборн А., Зальцман К., Завери М. Лучевая диагностика. Головной мозг. Издательство Панфилова. 2018. 1216 с.; Kleinschmidt-DeMasters B.K., Rodriguez F., Tihan T. Diagnostic pathology: Neuropathology (2nd edition). Elsevier. 2016. 864 p.; Кротенкова М. Б., Брюхов В.В., Морозова С.Н. Современные технологии нейровизуализации (лекция). Радиология-Практика. 2017; 2(62): 47–63.; Кривошапкин А.Л., Сергеев Г.С., Курбатов В.П., Гайтан А.С., Дуйшобаев А.Р., Пятов С.М., Мишинов С.В., Кальнеус Л.Е., Янченко А.А., Волков А.М. Предоперационная верификация гистологического типа опухолей мозговых оболочек по данным магнитно-резонансной томографии. Нейрохирургия. 2017; (3): 11–9.; Бывальцев В.А., Степанов И.А., Кичигин А.И., Антипина С.Л. Возможности диффузно-взвешенной МРТ в дифференциальной диагностике степени злокачественности менингиом головного мозга. Сибирский онкологический журнал. 2017; 16(3): 19–26. doi:10.21294/1814-4861-2017-16-3-19-26.; Хостен Н., Либиг Т. Компьютерная томография головы и позвоночника. МЕДпресс-информ. 2017. 576 с.; Яковленко Ю.Г., Молдованов В.А., Арасланова Л.В., Блинов И.М., Суханова О.П. Предоперационная оценка венозной системы при удалении парасагиттальной менингиомы. Медицинский вестник Юга России. 2019; 10(1): 79–83. doi:10.21886/2219-8075-2019-10-1-79-83.; Сергиенко В.Б., Аншелес А.А. Радионуклидная диагностика с нейротропными радиофармпрепаратами. Инфра-М. 2016. 128 c.; Бродская З.Л., Скворцова Т.Ю., Малахова Е., Гурчин А.Ф., Панфиленко А.Ф., Медведев С.В. ПЭТ-диагностика внутричерепных менингиом. Медицинская визуализация. 2012; 2: 18–29.; Шмырев В., Васильев А., Рудас М., Язвенко А., Оверченко К. Позитронно-эмиссионная томография в неврологической практике. Кремлевская медицина. Клинический вестник. 2017; 1(4): 77–81.; Yao A., Sarkiss C.A., Lee J., Zarzour H.K., Shrivastava R.K. Surgical limitations in convexity meningiomas en-plaque: Is radical resection necessary? J Clin Neurosci. 2016; 27: 28–33. doi:10.1016/j.jocn.2015.06.033.; Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957; 20(1): 22–39. doi:10.1136/jnnp.20.1.22.; Violaris K., Katsarides V., Sakellariou P. The Recurrence Rate in Meningiomas: Analysis of Tumor Location, Histological Grading, and Extent of Resection. Open J Modern Neurosurg. 2012; 2: 6–10. doi:10.4236/ojmn.2012.21002.; Kotecha R.S., Pascoe E.M., Rushing E.J., Rorke-Adams L.B., Zwerdling T., Gao X., Li X., Greene S., Amirjamshidi A., Kim S.K., Lima M.A., Hung P.C., Lakhdar F., Mehta N., Liu Y., Devi B.I., Sudhir B.J., Lund-Johansen M., Gjerris F., Cole C.H., Gottardo N.G. Meningiomas in children and adolescents: a meta-analysis of individual patient data. Lancet Oncol. 2011; 12(13): 1229–39. doi:10.1016/S1470-2045(11)70275-3.; Goldbrunner R., Minniti G., Preusser M., Jenkinson M.D., Sallabanda K., Houdart E., von Deimling A., Stavrinou P., Lefranc F., Lund-Johansen M., Moyal E.C., Brandsma D., Henriksson R., Soffietti R., Weller M. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016; 17(9): 383–91. doi:10.1016/S1470-2045(16)30321-7.; Rogers L., Barani I., Chamberlain M., Kaley T.J., McDermott M., Raizer J., Schiff D., Weber D.C., Wen P.Y., Vogelbaum M.A. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg. 2015; 122(1): 4–23. doi:10.3171/2014.7.JNS131644.; Buerki R.A., Horbinski C.M., Kruser T., Horowitz P.M., James C.D., Lukas R.V. An overview of meningiomas. Future Oncol. 2018; 14(21): 2161–77. doi:10.2217/fon-2018-0006.; Oya S., Kawai K., Nakatomi H., Saito N. Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg. 2012; 117(1): 121–8. doi:10.3171/2012.3.JNS111945.; Reuss D.E., Piro R.M., Jones D.T., Simon M., Ketter R., Kool M., Becker A., Sahm F., Pusch S., Meyer J., Hagenlocher C., Schweizer L., Capper D., Kickingereder P., Mucha J., Koelsche C., Jäger N., Santarius T., Tarpey P.S., Stephens P.J., Andrew Futreal P., Wellenreuther R., Kraus J., Lenartz D., Herold-Mende C., Hartmann C., Mawrin C., Giese N., Eils R., Collins V.P., König R., Wiestler O.D., Pfister S.M., von Deimling A. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013; 125(3): 351–8. doi:10.1007/s00401-013-1093-x.; Strickland M.R., Gill C.M., Nayyar N., D’Andrea M.R., Thiede C., Juratli T.A., Schackert G., Borger D.R., Santagata S., Frosch M.P., Cahill D.P., Brastianos P.K., Barker F.G. Targeted sequencing of SMO and AKT1 in anterior skull base meningiomas. J Neurosurg. 2017; 127(2): 438–44. doi:10.3171/2016.8.JNS161076.; Yesilöz Ü., Kirches E., Hartmann C., Scholz J., Kropf S., Sahm F., Nakamura M., Mawrin C. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro Oncol. 2017; 19(8): 1088–96. doi:10.1093/neuonc/nox018.; Walcott B.P., Nahed B.V., Brastianos P.K., Loeffler J.S. Radiation Treatment for WHO Grade II and III Meningiomas. Front Oncol. 2013; 3: 227. doi:10.3389/fonc.2013.00227.; Aghi M.K., Carter B.S., Cosgrove G.R., Ojemann R.G., Amin-Hanjani S., Martuza R.L., Curry W.T. Jr., Barker F.G. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery. 2009; 64(1): 56–60; discussion 60. doi:10.1227/01.NEU.0000330399.55586.63.; Komotar R.J., Iorgulescu J.B., Raper D.M., Holland E.C., Beal K., Bilsky M.H., Brennan C.W., Tabar V., Sherman J.H., Yamada Y., Gutin P.H. The role of radiotherapy following gross-total resection of atypical meningiomas. J Neurosurg. 2012; 117(4): 679–86. doi:10.3171/2012.7.JNS112113.; Dziuk T.W., Woo S., Butler E.B., Thornby J., Grossman R., Dennis W.S., Lu H., Carpenter L.S., Chiu J.K. Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol. 1998; 37(2): 177–88. doi:10.1023/a:1005853720926.; Central Nervous System Cancers [Internet]. NCCN Guidelines; 2021. URL:http://nccn.org/ [cited 2021 Dec 27].; Schrell U.M., Rittig M.G., Anders M., Koch U.H., Marschalek R., Kiesewetter F., Fahlbusch R. Hydroxyurea for treatment of unresectable and recurrent meningiomas. II. Decrease in the size of meningiomas in patients treated with hydroxyurea. J Neurosurg. 1997; 86(5): 840–4. doi:10.3171/jns.1997.86.5.0840.; Newton H.B., Slivka M.A., Stevens C. Hydroxyurea chemotherapy for unresectable or residual meningioma. J Neurooncol. 2000; 49(2): 165–70. doi:10.1023/a:1026770624783.; Mason W.P., Gentili F., Macdonald D.R., Hariharan S., Cruz C.R., Abrey L.E. Stabilization of disease progression by hydroxyurea in patients with recurrent or unresectable meningioma. J Neurosurg. 2002; 97(2): 341–6. doi:10.3171/jns.2002.97.2.0341.; Rosenthal M.A., Ashley D.L., Cher L. Treatment of high risk or recurrent meningiomas with hydroxyurea. J Clin Neurosci. 2002; 9(2): 156–8. doi:10.1054/jocn.2001.1019.; Paus S., Klockgether T., Urbach H., Schlegel U. Meningioma of the optic nerve sheath: treatment with hydroxyurea. J Neurol Neurosurg Psychiatry. 2003 Sep; 74(9): 1348–50. doi:10.1136/jnnp.74.9.1348-a.; Loven D., Hardoff R., Sever Z.B., Steinmetz A.P., Gornish M., Rappaport Z.H., Fenig E., Ram Z., Sulkes A. Non-resectable slow-growing meningiomas treated by hydroxyurea. J Neurooncol. 2004; 67(1–2): 221–6. doi:10.1023/b:neon.0000021827.85754.8e.; Hahn B.M., Schrell U.M., Sauer R., Fahlbusch R., Ganslandt O., Grabenbauer G.G. Prolonged oral hydroxyurea and concurrent 3d-conformal radiation in patients with progressive or recurrent meningioma: results of a pilot study. J Neurooncol. 2005; 74(2): 157–65. doi:10.1007/s11060-004-2337-3.; Weston G.J., Martin A.J., Mufti G.J., Strong A.J., Gleeson M.J. Hydroxyurea treatment of meningiomas: a pilot study. Skull Base. 2006; 16(3): 157–60. doi:10.1055/s-2006-949518.; Swinnen L.J., Rankin C., Rushing E.J., Laura H.F., Damek D.M., Barger G.R. Phase II study of hydroxyurea for unresectable meningioma (Southwest Oncology Group S9811). J Clin Oncol. 2009; 27(15): 2063. doi:10.1200/jco.2009.27.15_suppl.2063.; Chamberlain M.C., Johnston S.K. Hydroxyurea for recurrent surgery and radiation refractory meningioma: a retrospective case series. J Neurooncol. 2011; 104(3): 765–71. doi:10.1007/s11060-011-0541-5.; Chamberlain M.C. Hydroxyurea for recurrent surgery and radiation refractory high-grade meningioma. J Neurooncol. 2012; 107(2): 315–21. doi:10.1007/s11060-011-0741-z.; Chamberlain M.C., Tsao-Wei D.D., Groshen S. Temozolomide for treatment-resistant recurrent meningioma. Neurology. 2004; 62(7): 1210–2. doi:10.1212/01.wnl.0000118300.82017.f4.; Chamberlain M.C., Tsao-Wei D.D., Groshen S. Salvage chemotherapy with CPT-11 for recurrent meningioma. J Neurooncol. 2006; 78(3): 271–6. doi:10.1007/s11060-005-9093-x.; Chamberlain M.C. Adjuvant combined modality therapy for malignant meningiomas. J Neurosurg. 1996; 84(5): 733–6. doi:10.3171/ jns.1996.84.5.0733.; Kaba S.E., DeMonte F., Bruner J.M., Kyritsis A.P., Jaeckle K.A., Levin V., Yung W.K. The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery. 1997; 40(2): 271–5. doi:10.1097/00006123-199702000-00007.; Muhr C., Gudjonsson O., Lilja A., Hartman M., Zhang Z.J., Långström B. Meningioma treated with interferon-alpha, evaluated with [(11)C]-L-methionine positron emission tomography. Clin Cancer Res. 2001; 7(8): 2269–76.; Chamberlain M.C., Glantz M.J. Interferon-alpha for recurrent World Health Organization grade 1 intracranial meningiomas. Cancer. 2008; 113(8): 2146–51. doi:10.1002/cncr.23803.; Grunberg S.M., Weiss M.H., Spitz I.M., Ahmadi J., Sadun A., Russell C.A., Lucci L., Stevenson L.L. Treatment of unresectable meningiomas with the antiprogesterone agent mifepristone. J Neurosurg. 1991; 74(6): 861–6. doi:10.3171/jns.1991.74.6.0861.; Steven M., Grunberg C.R., Townsend J. Phase III double-blind randomized placebo-controlled study of mifepristone (RU) for the treatment of unresectable meningioma. Proc Am Soc Clin Oncol. 2001.; Grunberg S.M., Weiss M.H., Russell C.A., Spitz I.M., Ahmadi J., Sadun A., Sitruk-Ware R. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006; 24(8): 727–33. doi:10.1080/07357900601062339.; Grunberg S.M., Weiss M.H. Lack of efficacy of megestrol acetate in the treatment of unresectable meningioma. J Neurooncol. 1990; 8(1): 61–5. doi:10.1007/BF00182088.; Jääskeläinen J., Laasonen E., Kärkkäinen J., Haltia M., Troupp H. Hormone treatment of meningiomas: lack of response to medroxyprogesterone acetate (MPA). A pilot study of five cases. Acta Neurochir (Wien). 1986; 80(1–2): 35–41. doi:10.1007/BF01809555.; Markwalder T.M., Seiler R.W., Zava D.T. Antiestrogenic therapy of meningiomas--a pilot study. Surg Neurol. 1985; 24(3): 245–9. doi:10.1016/0090-3019(85)90030-8.; Goodwin J.W., Crowley J., Eyre H.J., Stafford B., Jaeckle K.A., Townsend J.J. A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J Neurooncol. 1993; 15(1): 75–7. doi:10.1007/BF01050266.; Rünzi M.W., Jaspers C., Windeck R., Benker G., Mehdorn H.M., Reinhardt V., Reinwein D. Successful treatment of meningioma with octreotide. Lancet. 1989; 1(8646): 1074. doi:10.1016/s0140-6736-(89)92465-3.; García-Luna P.P., Relimpio F., Pumar A., Pereira J.L., Leal-Cerro A., Trujillo F., Cortés A., Astorga R. Clinical use of octreotide in unresectable meningiomas. A report of three cases. J Neurosurg Sci. 1993; 37(4): 237–41.; Jaffrain-Rea M.L., Minniti G., Santoro A., Bastianello S., Tamburrano G., Gulino A., Cantore G. Visual improvement during octreotide therapy in a case of episellar meningioma. Clin Neurol Neurosurg. 1998; 100(1): 40–3. doi:10.1016/s0303-8467(97)00110-8.; Johnson D.R., Kimmel D.W., Burch P.A., Cascino T.L., Giannini C., Wu W., Buckner J.C. Phase II study of subcutaneous octreotide in adults with recurrent or progressive meningioma and meningeal hemangiopericytoma. Neuro Oncol. 2011; 13(5): 530–5. doi:10.1093/neuonc/nor044.; Chamberlain M.C., Glantz M.J., Fadul C.E. Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurology. 2007; 69(10): 969–73. doi:10.1212/01.wnl.0000271382.62776.b7.; Norden A.D., Ligon K.L., Hammond S.N., Muzikansky A., Reardon D.A., Kaley T.J., Batchelor T.T., Plotkin S.R., Raizer J.J., Wong E.T., Drappatz J., Lesser G.J., Haidar S., Beroukhim R., Lee E.Q., Doherty L., Lafrankie D., Gaffey S.C., Gerard M., Smith K.H., McCluskey C., Phuphanich S., Wen P.Y. Phase II study of monthly pasireotide LAR (SOM230C) for recurrent or progressive meningioma. Neurology. 2015; 84(3): 280–6. doi:10.1212/WNL.0000000000001153.; Wen P.Y., Yung W.K., Lamborn K.R., Norden A.D., Cloughesy T.F., Abrey L.E., Fine H.A., Chang S.M., Robins H.I., Fink K., Deangelis L.M., Mehta M., Di Tomaso E., Drappatz J., Kesari S., Ligon K.L., Aldape K., Jain R.K., Stiles C.D., Egorin M.J., Prados M.D. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01-08). Neuro Oncol. 2009; 11(6): 853–60. doi:10.1215/15228517-2009-010.; Raizer J.J., Abrey L.E., Lassman A.B., Chang S.M., Lamborn K.R., Kuhn J.G., Yung W.K., Gilbert M.R., Aldape K.D., Wen P.Y., Fine H.A., Mehta M., Deangelis L.M., Lieberman F., Cloughesy T.F., Robins H.I., Dancey J., Prados M.D.; North American Brain Tumor Consortium. A phase I trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas. Neuro Oncol. 2010; 12(1): 87–94. doi:10.1093/neuonc/nop017.; Norden A.D., Raizer J.J., Abrey L.E., Lamborn K.R., Lassman A.B., Chang S.M., Yung W.K., Gilbert M.R., Fine H.A., Mehta M., Deangelis L.M., Cloughesy T.F., Robins H.I., Aldape K., Dancey J., Prados M.D., Lieberman F., Wen P.Y. Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma. J Neurooncol. 2010; 96(2): 211–7. doi:10.1007/s11060-009-9948-7.; Kaley T.J., Wen P., Schiff D., Ligon K., Haidar S., Karimi S., Lassman A.B., Nolan C.P., DeAngelis L.M., Gavrilovic I., Norden A., Drappatz J., Lee E.Q., Purow B., Plotkin S.R., Batchelor T., Abrey L.E., Omuro A. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol. 2015; 17(1): 116–21. doi:10.1093/neuonc/nou148.; Puchner M.J.A., Hans V.H., Harati A., Lohmann F., Glas M., Herrlinger U. Bevacizumab-induced regression of anaplastic meningioma. Ann Oncol. 2010; 21(12): 2445–6. doi:10.1093/annonc/mdq634.; Goutagny S., Raymond E., Sterkers O., Colombani J.M., Kalamarides M. Radiographic regression of cranial meningioma in a NF2 patient treated by bevacizumab. Ann Oncol. 2011; 22(4): 990–1. doi:10.1093/annonc/mdr012.; Wilson T.J., Heth J.A. Regression of a meningioma during paclitaxel and bevacizumab therapy for breast cancer. J Clin Neurosci. 2012; 19(3): 468–9. doi:10.1016/j.jocn.2011.07.024.; Lou E., Sumrall A.L., Turner S., Peters K.B., Desjardins A., Vredenburgh J.J., McLendon R.E., Herndon J.E., McSherry F., Norfleet J., Friedman H.S., Reardon D.A. Bevacizumab therapy for adults with recurrent/progressive meningioma: a retrospective series. J Neurooncol. 2012; 109(1): 63–70. doi:10.1007/s11060-012-0861-0.; Nayak L., Iwamoto F.M., Rudnick J.D., Norden A.D., Lee E.Q., Drappatz J., Omuro A., Kaley T.J. Atypical and anaplastic meningiomas treated with bevacizumab. J Neurooncol. 2012; 109(1): 187–93. doi:10.1007/s11060-012-0886-4.; Macdonald D.R., Cascino T.L., Schold S.C. Jr., Cairncross J.G. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990; 8(7): 1277–80. doi:10.1200/JCO.1990.8.7.1277.; Wen P.Y., Macdonald D.R., Reardon D.A., Cloughesy T.F., Sorensen A.G., Galanis E., Degroot J., Wick W., Gilbert M.R., Lassman A.B., Tsien C., Mikkelsen T., Wong E.T., Chamberlain M.C., Stupp R., Lamborn K.R., Vogelbaum M.A., van den Bent M.J., Chang S.M. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010; 28(11): 1963–72. doi:10.1200/JCO.2009.26.3541.; Quant E.C., Wen P.Y. Response assessment in neuro-oncology. Curr Oncol Rep. 2011; 13(1): 50–6. doi:10.1007/s11912-010-0143-y.; Kaley T., Barani I., Chamberlain M., McDermott M., Panageas K., Raizer J., Rogers L., Schiff D., Vogelbaum M., Weber D., Wen P. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol. 2014; 16(6): 829–40. doi:10.1093/neuonc/not330.; Каприн А.Д., Иванов С.А., Клименко А.А. Рак предстательной железы: новые возможности в диагностике локализованных и местнораспространенных форм заболевания. Андрология и генитальная хирургия. 2006; 7(2): 14–9.; Barresi V., Lionti S., Caliri S., Caffo M. Histopathological features to define atypical meningioma: What does really matter for prognosis? Brain Tumor Pathol. 2018; 35(3): 168–80. doi:10.1007/s10014-018-0318-z.; Nakaguchi H., Fujimaki T., Matsuno A., Matsuura R., Asai A., Suzuki I., Sasaki T., Kirino T. Postoperative residual tumor growth of meningioma can be predicted by MIB-1 immunohistochemistry. Cancer. 1999; 85(10): 2249–54.; Bertero L., Dalla Dea G., Osella-Abate S., Botta C., Castellano I., Morra I., Pollo B., Calatozzolo C., Patriarca S., Mantovani C., Rudà R., Tardivo V., Zenga F., Garbossa D., Papotti M., Soffietti R., Ricardi U., Cassoni P. Prognostic Characterization of Higher-Grade Meningiomas: A Histopathological Score to Predict Progression and Outcome. J Neuropathol Exp Neurol. 2019; 78(3): 248–56. doi:10.1093/jnen/nly127.; Shan B., Zhang J., Song Y., Xu J. Prognostic factors for patients with World Health Organization grade III meningiomas treated at a single center. Medicine (Baltimore). 2017; 96(26). doi:10.1097/MD.0000000000007385.; Li B., Tao B., Bai H., Zhong J., Wu X., Shi J., Sun H., Li S. Papillary meningioma: an aggressive variant meningioma with clinical features and treatment: a retrospective study of 10 cases. Int J Neurosci. 2016; 126(10): 878–87. doi:10.3109/00207454.2015.1077833.; Surov A., Hamerla G., Meyer H.J., Winter K., Schob S., Fiedler E. Whole lesion histogram analysis of meningiomas derived from ADC values. Correlation with several cellularity parameters, proliferation index KI67, nucleic content, and membrane permeability. Magn Reson Imaging. 2018; 51: 158–62. doi:10.1016/j.mri.2018.05.009.; Surov A., Meyer H.J., Wienke A. Associations between apparent diffusion coefficient (ADC) and KI67 in different tumors: a meta-analysis. Part 1: ADCmean. Oncotarget. 2017; 8(43): 75434–44. doi:10.18632/oncotarget.20406.; Bi W.L., Greenwald N.F., Abedalthagafi M., Wala J., Gibson W.J., Agarwalla P.K., Horowitz P., Schumacher S.E., Esaulova E., Mei Y., Chevalier A., Ducar M., Thorner A.R., van Hummelen P., Stemmer-Rachamimov A., Artyomov M., Al-Mefty O., Dunn G.P., Santagata S., Dunn I.F., Beroukhim R. Genomic landscape of high-grade meningiomas. NPJ Genom Med. 2017; 2: 15. doi:10.1038/s41525-017-0014-7.; Clark V.E., Erson-Omay E.Z., Serin A., Yin J., Cotney J., Ozduman K., Avşar T., Li J., Murray P.B., Henegariu O., Yilmaz S., Günel J.M., Carrión-Grant G., Yilmaz B., Grady C., Tanrikulu B., Bakircioğlu M., Kaymakçalan H., Caglayan A.O., Sencar L., Ceyhun E., Atik A.F., Bayri Y., Bai H., Kolb L.E., Hebert R.M., Omay S.B., Mishra-Gorur K., Choi M., Overton J.D., Holland E.C., Mane S., State M.W., Bilgüvar K., Baehring J.M., Gutin P.H., Piepmeier J.M., Vortmeyer A., Brennan C.W., Pamir M.N., Kiliç T., Lifton R.P., Noonan J.P., Yasuno K., Günel M. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013; 339(6123): 1077–80. doi:10.1126/science.1233009.; Peyre M., Gauchotte G., Giry M., Froehlich S., Pallud J., Graillon T., Bielle F., Cazals-Hatem D., Varlet P., Figarella-Branger D., Loiseau H., Kalamarides M. De novo and secondary anaplastic meningiomas: a study of clinical and histomolecular prognostic factors. Neuro Oncol. 2018; 20(8): 1113–21. doi:10.1093/neuonc/nox231.; Gao F., Shi L., Russin J., Zeng L., Chang X., He S., Chen T.C., Giannotta S.L., Weisenberger D.J., Zada G., Mack W.J., Wang K. DNA methylation in the malignant transformation of meningiomas. PLoS One. 2013; 8(1). doi:10.1371/journal.pone.0054114.; Sahm F., Schrimpf D., Stichel D., Jones D.T.W., Hielscher T., Schefzyk S., Okonechnikov K., Koelsche C., Reuss D.E., Capper D., Sturm D., Wirsching H.G., Berghoff A.S., Baumgarten P., Kratz A., Huang K., Wefers A.K., Hovestadt V., Sill M., Ellis H.P., Kurian K.M., Okuducu A.F., Jungk C., Drueschler K., Schick M., Bewerunge-Hudler M., Mawrin C., Seiz-Rosenhagen M., Ketter R., Simon M., Westphal M., Lamszus K., Becker A., Koch A., Schittenhelm J., Rushing E.J., Collins V.P., Brehmer S., Chavez L., Platten M., Hänggi D., Unterberg A., Paulus W., Wick W., Pfister S.M., Mittelbronn M., Preusser M., Herold-Mende C., Weller M., von Deimling A. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017; 18(5): 682–94. doi:10.1016/S1470-2045(17)30155-9.; Shaikh N., Dixit K., Raizer J. Recent advances in managing/understanding meningioma. F1000Res. 2018; 7. doi:10.12688/f1000research.13674.1.; Brastianos P.K., Horowitz P.M., Santagata S., Jones R.T., McKenna A., Getz G., Ligon K.L., Palescandolo E., Van Hummelen P., Ducar M.D., Raza A., Sunkavalli A., Macconaill L.E., Stemmer-Rachamimov A.O., Louis D.N., Hahn W.C., Dunn I.F., Beroukhim R. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013; 45(3): 285–9. doi:10.1038/ng.2526.; Abedalthagafi M., Bi W.L., Aizer A.A., Merrill P.H., Brewster R., Agarwalla P.K., Listewnik M.L., Dias-Santagata D., Thorner A.R., Van Hummelen P., Brastianos P.K., Reardon D.A., Wen P.Y., Al-Mefty O., Ramkissoon S.H., Folkerth R.D., Ligon K.L., Ligon A.H., Alexander B.M., Dunn I.F., Beroukhim R., Santagata S. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016; 18(5): 649–55. doi:10.1093/neuonc/nov316.; Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat Rev. 2017; 59: 93–101. doi:10.1016/j.ctrv.2017.07.005.; Basset-Séguin N., Hauschild A., Kunstfeld R., Grob J., Dréno B., Mortier L., Ascierto P.A., Licitra L., Dutriaux C., Thomas L., Meyer N., Guillot B., Dummer R., Arenberger P., Fife K., Raimundo A., Dika E., Dimier N., Fittipaldo A., Xynos I., Hansson J. Vismodegib in patients with advanced basal cell carcinoma: Primary analysis of STEVIE, an international, open-label trial. Eur J Cancer. 2017; 86: 334–48. doi:10.1016/j.ejca.2017.08.022.; de Bono J.S., De Giorgi U., Rodrigues D.N., Massard C., Bracarda S., Font A., Arranz Arija J.A., Shih K.C., Radavoi G.D., Xu N., Chan W.Y., Ma H., Gendreau S., Riisnaes R., Patel P.H., Maslyar D.J., Jinga V. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin Cancer Res. 2019; 25(3): 928–36. doi:10.1158/1078-0432.CCR-18-0981.; Goutagny S., Nault J.C., Mallet M., Henin D., Rossi J.Z., Kalamarides M. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol. 2014; 24(2): 184–9. doi:10.1111/bpa.12110.; Di Vinci A., Brigati C., Casciano I., Banelli B., Borzì L., Forlani A., Ravetti G.L., Allemanni G., Melloni I., Zona G., Spaziante R., Merlo D.F., Romani M. HOXA7, 9, and 10 are methylation targets associated with aggressive behavior in meningiomas. Transl Res. 2012; 160(5): 355–62. doi:10.1016/j.trsl.2012.05.007.; Harmancı A.S., Youngblood M.W., Clark V.E., Coşkun S., Henegariu O., Duran D., Erson-Omay E.Z., Kaulen L.D., Lee T.I., Abraham B.J., Simon M., Krischek B., Timmer M., Goldbrunner R., Omay S.B., Baranoski J., Baran B., Carrión-Grant G., Bai H., Mishra-Gorur K., Schramm J., Moliterno J., Vortmeyer A.O., Bilgüvar K., Yasuno K., Young R.A., Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun. 2017; 8: 14433. doi:10.1038/ncomms14433.; Kishida Y., Natsume A., Kondo Y., Takeuchi I., An B., Okamoto Y., Shinjo K., Saito K., Ando H., Ohka F., Sekido Y., Wakabayashi T. Epigenetic subclassification of meningiomas based on genome-wide DNA methylation analyses. Carcinogenesis. 2012; 33(2): 436–41. doi:10.1093/carcin/bgr260.; Vengoechea J., Sloan A.E., Chen Y., Guan X., Ostrom Q.T., Kerstetter A., Capella D., Cohen M.L., Wolinsky Y., Devine K., Selman W., Barnett G.H., Warnick R.E., McPherson C., Chiocca E.A., Elder J.B., Barnholtz-Sloan J.S. Methylation markers of malignant potential in meningiomas. J Neurosurg. 2013; 119(4): 899–906. doi:10.3171/2013.7.JNS13311.; Olar A., Wani K.M., Wilson C.D., Zadeh G., DeMonte F., Jones D.T., Pfister S.M., Sulman E.P., Aldape K.D. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017; 133(3): 431–44. doi:10.1007/s00401-017-1678-x.; https://www.siboncoj.ru/jour/article/view/2247
-
13Academic Journal
Authors: Kushnir T.I., Arnotskaya N.E., Kudryavtsev I.A., Mitrofanov A.A., Bekyashev A.K., Shevchenko V.E.
Contributors: Финансируется в рамках госбюджетной темы № 2021-76
Source: Advances in Molecular Oncology; Vol 8, No 1 (2021); 32-40 ; Успехи молекулярной онкологии; Vol 8, No 1 (2021); 32-40 ; 2413-3787 ; 2313-805X
Subject Terms: glioblastoma multiforme, hypoxia, proteome, secretome, prognostic markers, mass spectrometry, мультиформная глиобластома, гипоксия, протеом, секретом, прогностические маркеры, масс-спектрометрия
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/330/222; https://umo.abvpress.ru/jour/article/view/330
-
14Academic Journal
Authors: Deryusheva, I. V., Garbukov, Evgeny Yu., Ibragimova, Marina K., Kzhyshkowska, Julia G., Slonimskaya, Elena M., Cherdyntseva, Nadezhda V., Litvyakov, Nicolay V., Tsyganov, Matvey M.
Source: Experimental oncology. 2017. Vol. 39, № 2. P. 145-150
Subject Terms: Adult, 0301 basic medicine, Original contributions, Loss of Heterozygosity, Breast Neoplasms, прогностические маркеры, 03 medical and health sciences, 0302 clinical medicine, Gene Frequency, Biomarkers, Tumor, Humans, Neoplasm Metastasis, рак молочной железы, Alleles, Aged, Neoplasm Staging, Oligonucleotide Array Sequence Analysis, 2. Zero hunger, 0303 health sciences, Polymorphism, Genetic, Middle Aged, Prognosis, Survival Analysis, потеря гетерозиготности, отсутствие метастазов, 3. Good health, Female, Neoplasm Grading, Genome-Wide Association Study
File Description: application/pdf
Access URL: http://dspace.nbuv.gov.ua/xmlui/bitstream/123456789/137975/1/11-Deryusheva.pdf
https://pubmed.ncbi.nlm.nih.gov/29483489
http://europepmc.org/abstract/MED/29483489
https://www.ncbi.nlm.nih.gov/pubmed/29483489
https://pubmed.ncbi.nlm.nih.gov/29483489/
http://dspace.nbuv.gov.ua/handle/123456789/137975
http://dspace.nbuv.gov.ua/handle/123456789/137975
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000621056 -
15Academic Journal
Authors: A. S. Zhukov, I. N. Telichko, A. V. Samcov, I. E. Belousova
Source: Vestnik Dermatologii i Venerologii, Vol 0, Iss 2, Pp 20-26 (2017)
Subject Terms: mycosis fungoides, выживаемость, Dermatology, риск прогрессии, прогностические маркеры, 3. Good health, 03 medical and health sciences, survival rates, 0302 clinical medicine, грибовидный микоз, RL1-803, прогноз, risk of disease progression, prognosis, prognostic markers
-
16Academic Journal
Source: Вестник интенсивной терапии, Iss 1 (2020)
Subject Terms: прогностические маркеры, эффективность реабилитации, шкалы функционального восстановления, ранняя реабилитация, реабилитационный потенциал, Medical emergencies. Critical care. Intensive care. First aid, RC86-88.9
File Description: electronic resource
-
17Academic Journal
Authors: Evgenii L. Choynzonov, E. V. Kaigorodova, Vyacheslav A. Bychkov, V. M. Perelmuter, M. V. Zavyalova
Source: Cancer biomarkers. 2016. Vol. 17, № 2. P. 145-153
Subject Terms: Adult, Aged, 80 and over, Cell Nucleus, Male, Cytoplasm, HSP27 Heat-Shock Proteins, рак гортани, Kaplan-Meier Estimate, Middle Aged, Prognosis, Immunohistochemistry, прогностические маркеры, Tumor Burden, 3. Good health, Protein Transport, 03 medical and health sciences, 0302 clinical medicine, Lymphatic Metastasis, Biomarkers, Tumor, Humans, Female, иммуногистохимия, Laryngeal Neoplasms, белки теплового шока, Aged
Access URL: https://pubmed.ncbi.nlm.nih.gov/27540972
https://europepmc.org/abstract/MED/27540972
https://pubmed.ncbi.nlm.nih.gov/27540972/
https://content.iospress.com/articles/cancer-biomarkers/cbm625
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/CBM-160625
https://www.ncbi.nlm.nih.gov/pubmed/27540972/
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000574911 -
18Academic Journal
Authors: Ph. S. Bova, O. I. Kit, A. Yu. Maksimov, Ф. С. Бова, О. И. Кит, А. Ю. Максимов
Contributors: No funding of this work has been held., Финансирование данной работы не проводилось.
Source: Research and Practical Medicine Journal; Том 6, № 3 (2019); 10-19 ; Research'n Practical Medicine Journal; Том 6, № 3 (2019); 10-19 ; 2410-1893 ; 10.17709/2409-2231-2019-6-3
Subject Terms: прогностические маркеры, biochemical recurrence, gene expression, transcription, neoangiogenesis, prognostic markers, биохимический рецидив, экспрессия генов, транскрипция, неоангиогенез
File Description: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/417/308; Iommarini L, Ghelli A, Gasparre G, Porcelli AM. Mitochondrial metabolism and energy sensing in tumor progression. Biochim Biophys Acta Bioenerg. 2017 Aug;1858 (8):582–590. DOI:10.1016/j.bbabio.2017.02.006; Гулиев Ф. А. Предикторы биохимического прогрессирования рака предстательной железы. Казанский медицинский журнал. 2017;98 (6):890–4. DOI:10.17750/KMJ2017–890; Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G, et al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet. 2009 Oct;41 (10):1058–60. DOI:10.1038/ng.452; Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large scale variation in the human genome. Nat Genet. 2004 Sep;36 (9):949–51. DOI:10.1038/ng1416; Kader T, Goode DL, Wong SQ, Connaughton J, Rowley SM, Devereux L, et al. Copy number analysis by low coverage whole genome sequencing using ultra low-input DNA from formalin-fixed paraffin embedded tumor tissue. Genome Med. 2016 Nov 15;8 (1):121. DOI:10.1186/s13073–016–0375-z; Junnila S, Kokkola A, Karjalainen-Lindsberg M, Puolakkainen P, Monni O. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines. BMC Cancer. 2010 Mar 1;10:73. DOI:10.1186/1471–2407–10–73; Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet. 2007 Jul;39 (7 Suppl): S43–7. DOI:10.1038/ng2084; Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015 Mar;16 (3):172–83. DOI:10.1038/nrg3871.; Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010 Oct 22;40 (2):294–309. DOI:10.1016/j.molcel.2010.09.022; Maruyama W, Shirakawa K, Matsui H. Classical NF-kappa B pathway is responsible for APOBEC3 B expression in cancer cells. Biochem Biophys Res Commun. 2016 Sep 23;478 (3):1466–71. DOI:10.1016/j.bbrc.2016.08.148.; Liu ZQ, Fang JM, Xiao YY, Zhao Y, Cui R, Hu F, Xu Q. Prognostic role of vascular endothelial growth factor in prostate cancer: A systematic review and meta-analysis. Int J Clin Exp Med. 2015 Feb 15;8 (2):2289–98.; Rivera-Perez J, Monter-Vera M, Barrientos-Alvarado C, Toscano-Garibay JD, Cuesta-Mejías T, Flores-Estrada J. Evaluation of VEGF and PEDF in prostate cancer: A preliminary study in serum and biopsies. Oncol Lett. 2018 Jan;15 (1):1072–1078. DOI:10.3892/ol.2017.7374; Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Greenberg NM. Angiogenesis and Prostate Cancer: Identification of A Molecular Progression Switch. Cancer Res. 2001 Mar 15;61 (6):2736–43.; Prior S, Kim A, Yoshihara T, Tobita S, Takeuchi T, Higuchi M. Mitochondrial respiratory function induces endogenous hypoxia. PLoS One. 2014 Feb 21;9 (2): e88911. DOI:10.1371/journal.pone.0088911; Anvari K, Toussi MS, Kalantari M, Naseri S. Expression of Bcl-2 and Bax in advanced or metastatic prostate carcinoma. Urol J. 2012 Winter;9 (1):381–8.; Renner W, Langsenlehner U, Krenn-Pilko S, Eder P, Langsenlehner T. BCL2 genotypes and prostate cancer survival. Strahlenther Onkol. 2017 Jun;193 (6):466–471. DOI:10.1007/s00066–017–1126–9; Черняев В. А. VEGF и рак предстательной железы. РМЖ. Онкология. 2012;1:17–19.; Eisermann K, Fraizer G. The androgen receptor and VEGF: mechanisms of androgen-regulated angiogenesis in prostate cancer. Cancers (Basel). 2017 Apr 10;9 (4). pii: E32. DOI:10.3390/cancers9040032.; Ma T, Yang S, Jing H, Cong L, Cao Z, Liu Z, Huang Z. Apparent diffusion coefficients in prostate cancer: correlation with molecular markers Ki-67, HIF-1α and VEGF. NMR Biomed. 2018 Mar;31 (3). DOI:10.1002/nbm.3884.; Ranasinghe WK, Sengupta S, Williams S, Chang M, Shulkes A, Bolton DM, et al. The effects of nonspecific HIF1α inhibitors on development of castrate resistance and metastases in prostate cancer. Cancer Med. 2014 Apr;3 (2):245–51. DOI:10.1002/cam4.189; https://www.rpmj.ru/rpmj/article/view/417
-
19Academic Journal
Authors: Kaigorodova, Evgeniya V., Bogatyuk, Maria V., Tarabanovskaya, Natalia A., Slonimskaya, Elena M., Perelmuter, Vladimir M., Zavyalova, Marina V.
Source: Cancer biomarkers. 2015. Vol. 15, № 2. P. 143-150
Subject Terms: Adult, HSP27 Heat-Shock Proteins, Gene Expression, Breast Neoplasms, Middle Aged, Immunohistochemistry, метастазы в лимфатических узлах, прогностические маркеры, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, Lymphatic Metastasis, Biomarkers, Tumor, Humans, Female, Lymph Nodes, Prospective Studies, Phosphorylation, иммуногистохимия, рак молочной железы, Heat-Shock Proteins, белки теплового шока, Molecular Chaperones, Neoplasm Staging
Access URL: https://pubmed.ncbi.nlm.nih.gov/25519015
https://pubmed.ncbi.nlm.nih.gov/25519015/
https://www.ncbi.nlm.nih.gov/pubmed/25519015
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/CBM-140446
https://content.iospress.com/articles/cancer-biomarkers/cbm00446
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000574849 -
20Academic Journal
Authors: S. A. Rodin, D. V. Maltseva, С. А. Родин, Д. В. Мальцева
Contributors: RSF, grant № 17-14-01338, РСФ, грант № 17-14-01338
Source: Research and Practical Medicine Journal; Том 4, № 4 (2017); 73-78 ; Research'n Practical Medicine Journal; Том 4, № 4 (2017); 73-78 ; 2410-1893 ; 10.17709/2409-2231-2017-4-4
Subject Terms: прогностические маркеры рака, colorectal cancer, prognostic markers of cancer, ламинины
File Description: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/222/209; Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N. Colorectal cancer. Lancet. 2010 Mar 20;375 (9719):1030–47. DOI:10.1016/S0140–6736 (10)60353–4; Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;1:119–50. DOI:10.1146/annurev.pathol.1.110304.100224; Domogatskaya A, Rodin S, Tryggvason K. Functional diversity of laminins. Annu Rev Cell Dev Biol. 2012;28:523–53. DOI:10.1146/annurev-cellbio-101011–155750; Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol. 2011 Feb 1;3 (2). pii: a004911. DOI:10.1101/cshperspect.a004911; Qin Y, Rodin S, Simonson OE, Hollande F. Laminins and cancer stem cells: Partners in crime? Semin Cancer Biol. 2017 Aug;45:3–12. DOI:10.1016/j.semcancer.2016.07.004; Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002 Jun;12 (3):197–207. DOI:10.1016/S1044–579X(02)00023–8; Tran M, Rousselle P, Nokelainen P, Tallapragada S, Nguyen NT, Fincher EF, Marinkovich MP. Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res. 2008 Apr 15;68 (8):2885–94. DOI:10.1158/0008–5472.CAN-07–6160; Teller IC, Auclair J, Herring E, Gauthier R, Ménard D, Beaulieu JF. Laminins in the developing and adult human small intestine: relation with the functional absorptive unit. Dev Dyn. 2007; 236 (70): 1980–90. DOI:10.1002/dvdy.21186; Marinkovich, M. P. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer. 2007 May; 7 (5): 370–80. DOI:10.1038/nrc2089; Lenander C, Habermann JK, Ost A, Nilsson B, Schimmelpenning H, Tryggvason K, Auer G. Laminin-5 gamma 2 chain expression correlates with unfavorable prognosis in colon carcinomas. Anal Cell Pathol. 2001; 22 (4): 201–9.; Aoki S, Nakanishi Y, Akimoto S, Moriya Y, Yoshimura K, Kitajima M, et al. Prognostic significance of laminin-5 gamma2 chain expression in colorectal carcinoma: immunohistochemical analysis of 103 cases. Dis Colon Rectum. 2002 Nov;45 (11):1520–7. DOI:10.1097/01.DCR.0000029593.41892.62; Shinto E, Tsuda H, Ueno H, Hashiguchi Y, Hase K, Tamai S, et al. Prognostic implication of laminin-5 gamma 2 chain expres sion in the invasive front of colorectal cancers, disclosed by area-specific four-point tissue microarrays. Lab Invest. 2005 Feb;85 (2):257–66. DOI:10.1038/labinvest.3700199; Fukazawa S, Shinto E, Tsuda H, Ueno H, Shikina A, Kajiwara Y, et al. Laminin beta3 expression as a prognostic factor and a predictive marker of chemoresistance in colorectal cancer. Jpn J Clin Oncol. 2015 Jun;45 (6):533–40. DOI:10.1093/jjco/hyv037; Hewitt RE, Powe DG, Morrell K, Balley E, Leach IH, Ellis IO, Turner DR. Laminin and collagen IV subunit distribution in normal and neoplastic tissues of colorectum and breast. Br J Cancer. 1997; 75 (2): 221–9.; Pouliot N, Connolly LM, Moritz RL, Simpson RJ, Burgess AW. Colon cancer cells adhesion and spreading on autocrine laminin-10 is mediated by multiple integrin receptors and modulated by EGF receptor stimulation. Exp Cell Res. 2000 Dec 15;261 (2):360–71. DOI:10.1006/excr.2000.5065; Pouliot N, Nice EC, Burgess AW. Laminin-10 mediates basal and EGF-stimulated motility of human colon carcinoma cells via alpha (3)beta (1) and alpha (6)beta (4) integrins. Exp Cell Res. 2001 May 15; 266 (1): 1–10. DOI:10.1006/excr.2001.5197; Huang D, Du C, Ji D, Xi J, Gu J. Overexpression of LAMC2 predicts poor prognosis in colorectal cancer patients and promotes cancer cell proliferation, migration, and invasion. Tumour Biol. 2017 Jun;39 (6):1010428317705849. DOI:10.1177/1010428317705849; De Arcangelis A,, Lefebvre O, Méchine-Neuville A, Arnold C, Klein A, Rémy L, et al. Overexpression of laminin alpha1 chain in colonic cancer cells induces an increase in tumor growth. Int J Cancer. 2001 Oct 1;94 (1):44–53. DOI:10.1002/ijc.1444; Lin Q, Lim HS, Lin HL, Tan HT, Lim TK, Cheong WK, et al. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer.Proteomics. 2015 Nov;15 (22):3905–20. DOI:10.1002/pmic.201500236; Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001 May 28;153 (5):933–46.; Kenne E, Soehnlein O, Genové G, Rotzius P, Eriksson EE, Lindbom L. Immune cell recruitment to inflammatory loci is impaired in mice deficient in basement membrane protein laminin alpha4. J Leukoc Biol. 2010 Sep;88 (3):523–8. DOI:10.1189/jlb.0110043; Takkunen M, Ainola M, Vainionpää N, Grenman R, Patarroyo M, García de Herreros A, et al. Epithelial-mesenchymal transition downregulates laminin alpha5 chain and upregulates laminin alpha4 chain in oral squamous carcinoma cells. Histochem Cell Biol. 2008 Sep;130 (3):509–25. DOI:10.1007/s00418–008–0443–6; https://www.rpmj.ru/rpmj/article/view/222