Εμφανίζονται 1 - 20 Αποτελέσματα από 75 για την αναζήτηση '"ПРИОБРЕТЕННЫЕ ПОРОКИ СЕРДЦА"', χρόνος αναζήτησης: 1,16δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: Исследование проведено в рамках гранта Министерства науки и высшего образования РФ № 075- 15-2022-823.

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 26, № 1 (2024); 178-190 ; Вестник трансплантологии и искусственных органов; Том 26, № 1 (2024); 178-190 ; 1995-1191

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1709/1576; https://journal.transpl.ru/vtio/article/view/1709/1640; https://journal.transpl.ru/vtio/article/downloadSuppFile/1709/1478; Iung B, Vahanian A. Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol. 2011; 8 (3): 162–172. https://doi.org/10.1038/nrcardio.2010.202.; Aluru JS, Barsouk A, Saginala K, Rawla P, Barsouk A. Valvular Heart Disease Epidemiology. Med Sci (Basel). 2022; 10 (2): 32. doi:10.3390/medsci10020032.; Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 129 (23): e521–643. https://doi.org/10.161/CIR.0000000000000029.; Иванов ВА, Евсеев ЕП, Айдамиров ЯА, Попов СО, Иванова ЛН, Никитюк ТГ. Эволюция протезирования митрального клапана. Хирургия. Журнал имени Н.И. Пирогова. 2018; 7: 23–26. https://doi.org/10.17116/hirurgia2018723.; Перекопская ВС, Морова НА, Цеханович ВН. Структурно-геометрические и функциональные параметры сердца у больных после митрального протезирования новыми полнопроточными клапанами в отдаленном периоде. CardioСоматика. 2022; 13 (1): 4–10. https://doi.org/10.17816/22217185.2022.1.201469.; Starr A, Edwards ML, Mccord C, Griswold HE. Aortic replacement: clinical experience with a semirigid ballvalve prosthesis. Circulation. 1963; 27 (4): 779–783. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=Starr+A.+et+al.+Aortic+replacement%3A+clinical+experience+with+a+semirigid+ball-valve+prosthesis+%2F%2FCirculation.+–+1963.+–+Т.+27.+–+№.+4.+–+С.+779–783. (accessed: 05.11.2022).; Harken DE, Taylor WJ, LefemineAA, Lunzer S, Low HB, Cohen ML, Jacobey JA. Aortic valve replacement with a gaged ball valve. Am J Cardiol. 1962; 9 (2): 292–299. https://doi.org/10.1016/0002-9149(62)90047-4.; Floersch J, Evans MC, Midha PA. Ineffective Orifice Area: Practical Limitations of Accurate EOA Assessment for Low-Gradient Heart Valve Prostheses. Cardiovasc Eng Technol. 2021; 12 (6): 598–605. https://doi.org/10.1007/s13239-021-00548-5.; Ivanovic B, Trifunovic D, Matic S, Petrovic J, Sacic D, Tadic M. Prosthetic valve endocarditis – A trouble or a challenge? J Cardiol. 2019; 73 (2): 126–133. https://doi.org/10.1016/j.jjcc.2018.08.007.; Aagaard J. The Carbomedics aortic heart valve prosthesis: a review. J Cardiovasc Surg (Torino). 2004; 45 (6): 531–534.; Kiyose AT, Suzumura EA, Laranjeira L, Buehler AM, Santo JAE, Berwanger O et al. Comparison of Biological and Mechanical Prostheses for Heart Valve Surgery: A Systematic Review of Randomized Controlled Trials. Arq Bras Cardiol. 2019; 112 (3): 292–301. https://doi.org/10.5935/abc.20180272.; Bluestein D, Einav S, Slepian MJ. Device thrombogenicity emulation: A novel methodology for optimizing the thromboresistance of cardiovascular devices. J Biomech. 2013; 46 (2): 338–344. https://doi.org/10.1016/j.jbiomech.2012.11.033.; Dangas GD, Weitz JI, Giustino G, Makkar R, Mehran R. Prosthetic Heart Valve Thrombosis. J Am Coll Cardiol. 2016; 68 (24): 2670–2689. https://doi.org/10.1016/j.jacc.2016.09.958.; Pibarot P, Dumesnil JG. Prosthetic heart valves: Selection of the optimal prosthesis and long-term management. Circulation. 2009; 119 (7): 1034–1048. https://doi.org/10.1161/circulationaha.108.778886.; Salamon J, Munoz-Mendoza J, Liebelt JJ, Taub CC. Mechanical valve obstruction: Review of diagnostic and treatment strategies. World J Cardiol. 2015; 7 (12): 875. doi:10.4330/wjc.v7.i12.875.; Шатов ДВ, Захарьян ЕА. Тромбоз протезов клапанов сердца: эпидемиология, этиология и патогенез. Крымский журнал экспериментальной и клинической медицины. 2017; 7 (2): 155–159. Available from: https://cyberleninka.ru/article/n/tromboz-protezov-klapanov-serdtsa-epidemiologiya-etiologiya-i-patogenez/viewer (accessed: 20.10.2023).; Turpie A, Gent M, Laupacis A, Latour Y, Gunstensen J, Basile F et al. A Comparison of Aspirin with Placebo in Patients Treated with Warfarin after Heart-Valve Replacement. N Engl J Med. 1993; 329 (8): 524–529. https://doi.org/10.1056/nejm199308193290802.; Roy RK, Lee KR. Biomedical applications of diamondlike carbon coatings: A review. J Biomed Mater Res B Appl Biomater. 2007; 83 (1): 72–84. https://doi.org/10.1002/jbm.b.30768.; The development of the Starr–Edwards heart valve – PubMed [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/9885105/ (accessed: 21.12.2022).; Starr A, Grunkemeier GL. Durability of the Starr–Edwards Heart Valve: Early Decisions Led to Successful Results. Tex Heart Inst J. 2016; 43 (1): 1–3. https://doi.org/10.14503/thij-15-5640.; Best JF, Hassanein KM, Pugh DM, Dunn M. Starr–Edwards aortic prosthesis: a 20-year retrospective study. Am Heart J. 1986; 111 (1): 136–142. https://doi.org/10.1016/0002-8703(86)90565-x.; Akins CW. Results with mechanical cardiac valvular prostheses. Ann Thorac Surg. 1995; 60 (6): 1836–1844. https://doi.org/10.1016/0003-4975(95)00766-0.; Isom OW, Glassman SE, Teiko P, Boyd AD, Cunningham JN, Reed GE. Long-term results in 1375 patients undergoing valve replacement with the Starr–Edwards cloth-covered steel ball prosthesis. Ann Surg. 1977; 186 (3): 310–323. https://doi.org/10.1097/00000658197709000-00009.; Shiono M, Sezai A, Hata M, Iida M, Negishi N, Sezai Y. Valve dysfunction of the cloth-covered Starr–Edwards ball valve. Circ J. 2005; 69 (7): 844–849. https://doi.org/10.1253/circj.69.844.; Miller DC, Oyer PE, Mitchell RS, Stinson EB, Jamieson SW, Baldwin JC, Shumway NE. Performance characteristics of the Starr-Edwards Model 1260 aortic valve prosthesis beyond ten years. J Thorac Cardiovasc Surg. 1984 Aug; 88 (2): 193–207. PubMed [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/6748713/ (accessed: 21.12.2022).; Orszulak TA, Schaff HV, Puga FJ, Danielson GK, Mullany CJ, Anderson BJ, Ilstrup DM. Event status of the Starr–Edwards aortic valve to 20 years: A benchmark for comparison. Ann Thorac Surg. 1997; 63 (3): 620–626. https://doi.org/10.1016/s0003-4975(97)00060-x.; Wieting DW. The Björk–Shiley Delrin tilting disc heart valve: historical perspective, design and need for scientific analyses after 25 years. J Heart Valve Dis. 1996; 5 Suppl 2: S157–S168.; Cortina JM, Martinell J, Artiz V, Fraile J, Rábago G. Comparative clinical results with Omniscience (STM1), Medtronic-Hall, and Björk–Shiley convexo-concave (70 degrees) prostheses in mitral valve replacement. J Thorac Cardiovasc Surg. 1986; 91 (2): 174–183. https://doi.org/10.1016/s0022-5223(19)36076-3.; Falk RH, Mackinnon J, Wainscoat J, Melikian V, Bignell AH. Intravascular haemolysis after valve replacement: comparative study between Starr–Edwards (ball valve) and Björk–Shiley (disc valve) prosthesis. Thorax. 1979; 34 (6): 746–748. https://doi.org/10.1136/thx.34.6.746.; Björk VO. Development of an artificial heart valve. Ann Thorac Surg. 1990; 50 (1): 151–154. https://doi.org/10.1016/0003-4975(90)90114-l.; Gunn JM, Malmberg M, Vähäsilta T, Lahti AI, Kuttila KT. Thirty-year results after implantation of the Björk–Shiley Convexo-Concave Heart valve prosthesis. Ann Thorac Surg. 2014; 97 (2): 552–556. https://doi.org/10.1016/j.athoracsur.2013.09.032.; Oxenham H, Bloomfield P, Wheatley DJ, Lee RJ, Cunningham J, Prescott RJ, Miller HC. Twenty year comparison of a Björk–Shiley mechanical heart valve with porcine bioprostheses. Heart. 2003; 89 (7): 715–721. https://doi.org/10.1136/heart.89.7.715.; Lindblom D, Rodriguez L, Björk VO. Mechanical failure of the Björk-Shiley valve. Updated follow-up and considerations on prophylactic rereplacement. J Thorac Cardiovasc Surg. 1989 Jan; 97 (1): 95-97. PubMed [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/2911201/ (accessed: 21.12.2022).; Omar RZ, Morton LS, Halliday DA, Danns EM, Beirne MT, Blot WJ, Taylor KM. Outlet strut fracture of Björk–Shiley convexo concave heart valves: the UK cohort study. Heart. 2001; 86 (1): 57–62. https://doi.org/10.1136/heart.86.1.57.; Gott VL, Alejo DE, Cameron DE. Mechanical Heart Valves: 50 Years of Evolution. Ann Thorac Surg. 2003; 76 (6): S2230–S2239. https://doi.org/10.1016/j.athoracsur.2003.09.002.; Pavlov AV, Chernov II, Urtaev RA, Kondratiev DA, Ruban DV, Baysugurov ST, Tarasov DG. Our experience of aortic valve replacement. Clin Experiment Surg. Petrovsky J. 2014; (4): 26–30. [In Russ, English abstract]. [Electronic resource]. URL: https://scardio.ru/ratings/uploads/2198.pdf?553299954 (accessed: 20.10.2023).; Walther T, Falk V, Tigges R, Krüger M, Langebartels G, Diegeler A et al. Comparison of On-X and SJM HP bileaflet aortic valves. J Heart Valve Dis. 2000 May; 9 (3): 403–407. PubMed [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/10888098/ (accessed: 05.11.2022).; Nygaard H, Paulsen PK, Hasenkam JM, KromannHansen O, Pedersen EM, Rovsing PE. Quantitation of the turbulent stress distribution downstream of normal, diseased and artificial aortic valves in humans. Eur J Cardiothorac Surg. 1992; 6 (11): 609–617. https://doi.org/10.1016/1010-7940(92)90135-k.; Emery RW, Krogh CC, Arom KV, Emery AM, BenyoAlbrecht K, Joyce LD, Nicoloff DM. The St. Jude Medical cardiac valve prosthesis: a 25-year experience with single valve replacement. Ann Thorac Surg. 2005; 79 (3): 776–782. https://doi.org/10.1016/j.athoracsur.2004.08.047.; Волкова НА. Надежность и характеристики искусственных механических клапанов сердца. Труды Международного симпозиума «Надежность и качество». 2011; 2: 304–308. URL: https://cyberleninka.ru/article/n/nadezhnost-i-harakteristiki-iskusstvennyh-mehanicheskih-klapanov-serdtsa/viewer (accessed: 20.10.2023).; Rodrigues AJ, Evora PR, Bassetto S, Alves L Jr, Scorzoni Filho A, Vicente WV. Isolated mitral and aortic valve replacement with the St. Jude Medical valve: a midterm follow-up. Arq Bras Cardiol. 2009; 93 (3): 290–298. doi:10.1590/s0066-782x2009000900014.; Jawitz OK, Wang TY, Lopes RD, Chavez A, Boyer B, Kim H et al. Rationale and design of PROACT Xa: A randomized, multicenter, open-label, clinical trial to evaluate the efficacy and safety of apixaban versus warfarin in patients with a mechanical On-X Aortic Heart Valve. Am Heart J. 2020; 227: 91–99. https://doi.org/10.1016/j.ahj.2020.06.014.; Huang DT, Yealy DM, Angus DC; ProACT Investigators. Longer-Term Outcomes of the ProACT Trial. N Engl J Med. 2020 Jan 30; 382 (5): 485–486. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/31995699/ (accessed: 15.11.2022).; Khan SS, Trento A, DeRobertis M, Kass RM, Sandhu M, Czer LS et al. Twenty-year comparison of tissue and mechanical valve replacement. J Thorac Cardiovasc Surg. 2001; 122 (2): 257–269. https://doi.org/10.1067/mtc.2001.115238.; Toole JM, Stroud MR, Kratz JM, Crumbley AJ 3rd, Bradley SM, Crawford FA Jr, Ikonomidis JS. Twentyfive year experience with the St. Jude medical mechanical valve prosthesis. Ann Thorac Surg. 2010; 89 (5): 1402–1409. https://doi.org/10.1016/j.athoracsur.2010.01.045.; Tatsuishi W, Nakano K. Long-term outcomes after St. Jude Medical mechanical valve implantation. Circ J. 2015; 79 (11): 2320–2321. https://doi.org/10.1253/circj.cj-15-1018.; Tossios P, Reber D, Oustria M, Holland-Letz T, Germing A, Buchwald D, Laczkovics A. Single-center experience with the On-X prosthetic heart valve between 1996 and 2005. J Heart Valve Dis. 2007 Sep; 16 (5): 551–557. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/17944128/ (accessed: 21.12.2022).; Carrier M, Pellerin M, Basmadjian A, Bouchard D, Perrault LP, Cartier R et al. Fifteen years of clinical and echocardiographic follow up with the carbomedics heart valve. J Heart Valve Dis. 2006 Jan; 15 (1): 67–72; discussion 72. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/16480014/ (accessed: 21.12.2022).; Butchart EG, Li HH, Payne N, Buchan K, Grunkemeier GL. Twenty years’ experience with the Medtronic Hall valve. J Thorac Cardiovasc Surg. 2001; 121 (6): 1090–1100. https://doi.org/10.1067/mtc.2001.113754.; Svennevig JL, Abdelnoor M, Nitter-Hauge S. Twentyfive-year experience with the Medtronic-Hall valve prosthesis in the aortic position: a follow-up cohort study of 816 consecutive patients. Circulation. 2007; 116 (16): 1795–1800. https://doi.org/10.1161/circulationaha.106.677773.; Ahn H, Kim KH, Kim DJ, Jeong DS. Long-term experience with the Björk–Shiley Monostrut tilting disc valve. J Korean Med Sci. 2007; 22 (6): 1060–1064. https://doi.org/10.3346/jkms.2007.22.6.1060.; Deitrich MS, Nashef SAM, Bain WH. Heart valve replacement with the Björk–Shiley monostrut valve in patients over 60 years of age. Thorac Cardiovasc Surg. 1989; 37 (3): 131–134. https://doi.org/10.1055/s-2007-1020304.; Kallewaard M, Algra A, Defauw J, Grobbee D, van der Graaf Y. Long-term survival after valve replacement with Björk–Shiley CC valves. Am J Cardiol. 2000; 85 (5): 598–603. https://doi.org/10.1016/s00029149(99)00818-8.; Абдульянов ИВ, Вагизов ИИ, Каипов АЭ. Клинические результаты протезирования клапанов сердца двустворчатым полнопроточным механическим протезом «МедИнж-СТ». Ангиология и сосудистая хирургия. 2020; 26 (4): 141–148. https://doi.org/10.33529/ANGIO2020419.; Евдокимов СВ, Евдокимов АС, Муйземнек АЮ. Гемодинамика полнопроточного клапана сердца «МедИнж-СТ». Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2020; 4: 119–132. https://doi.org/10.21685/2072-3032-2020-4-11.; Cáceres-Lóriga FM, Pérez-López H, Santos-Gracia J, Morlans-Hernandez K. Prosthetic heart valve thrombosis: pathogenesis, diagnosis and management. Int J Cardiol. 2006; 110 (1): 1–6. https://doi.org/10.1016/j.ijcard.2005.06.051.; Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth Analg. 2012; 114 (2): 275–285. https://doi.org/10.1213/ane.0b013e31823a088c.; Makkar RR, Fontana G, Jilaihawi H, Chakravarty T, Kofoed KF, De Backer O et al. Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. N Engl J Med. 2015; 373 (21): 2015–2024. https://doi.org/10.1056/NEJMoa1509233.; Freudenberger RS, Hellkamp AS, Halperin JL, Poole J, Anderson J, Johnson G et al. Risk of thromboembolism in heart failure: An analysis from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Circulation. 2007; 115 (20): 2637–2641. https://doi.org/10.1161/circulationaha.106.661397.; Roudaut R, Serri K, Lafitte S. Thrombosis of prosthetic heart valves: Diagnosis and therapeutic considerations. Heart. 2007; 93 (1): 137–142. https://doi.org/10.1136/hrt.2005.071183.; Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng. 1997; 25 (2): 344–356.; Morshed KN, Bark D Jr, Forleo M, Dasi LP. Theory to predict shear stress on cells in turbulent blood flow. PLoS One. 2014; 9 (8): e105357. https://doi.org/10.1007/bf02648048.; Beiras-Fernandez A, Oberhoffer M, Kur F, Kaczmarek I, Vicol C, Reichart B. 34-year durability of a DeBakey Surgitool mechanical aortic valve prosthesis. Interact Cardiovasc Thorac Surg. 2006; 5 (5): 637–639. https://doi.org/10.1510/icvts.2006.135087.; Sadeghi H. Dysfunctions of heart valve prostheses and their surgical treatment. Schweiz Med Wochenschr. 1987 Oct 24; 117 (43): 1665–1670. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/3321421/ (accessed: 06.11.2022).; Zaidi M, Premkumar G, Naqvi R, Khashkhusha A, Aslam Z, Ali A et al. Aortic valve surgery: management and outcomes in the paediatric population. Eur J Pediatr. 2021; 180 (10): 3129–3139. https://doi.org/10.1007/s00431-021-04092-1.; Schaff HV. Progress in Management of Mechanical Valve Thrombosis. J Am Coll Cardiol. 2022; 79 (10): 990–992. https://doi.org/10.1016/j.jacc.2022.01.008.; Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005; 11 (1–2): 1–18. https://doi.org/10.1089/ten.2005.11.1.; Ortega-Vinuesa JL, Tengvall P, Wälivaara B, Lundström I. Stagnant versus dynamic conditions: A comparative adsorption study of blood proteins. Biomaterials. 1998; 19 (1–3): 251–262. https://doi.org/10.1016/s0142-9612(97)00206-8.; Krishnan A, Liu YH, Cha P, Allara D, Vogler EA. Scaled interfacial activity of proteins at a hydrophobic solid/aqueous-buffer interface. J Biomed Mater Res A. 2005; 75 (2): 445–457. https://doi.org/10.1002/jbm.a.30444.; Turbill P, Beugeling T, Poot AA. Proteins involved in the Vroman effect during exposure of human blood plasma to glass and polyethylene. Biomaterials. 1996 Jul; 17 (13): 1279–1287. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/8805975/ (accessed: 20.01.2021).; Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004; 25 (26): 5681–5703. https://doi.org/10.1016/b978-0080451541.50025-3.; Tsai WB, Grunkemeier JM, Horbett TA. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. J Biomed Mater Res. 1999; 44 (2): 130–139. https://doi.org/10.1002/(sici)10974636(199902)44:23.0.co;2-9.; Tsai WB, Grunkemeier JM, McFarland CD, Horbett TA. Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. J Biomed Mater Res. 2002; 60 (3): 348–359. https://doi.org/10.1002/jbm.10048.; Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA et al. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci U S A. 1991; 88 (3): 1044–1048. doi:10.1073/pnas.88.3.1044.; Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, Loike JD. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci U S A. 1988; 85 (20): 7734–7738. https://doi.org/10.1073/pnas.85.20.7734.; Bowers VM, Fisher LR, Francis GW, Williams KL. A micromechanical technique for monitoring cell-substrate adhesiveness: Measurements of the strength of red blood cell adhesion to glass and polymer test surfaces. J Biomed Mater Res. 1989; 23 (12): 1453–1473. https://doi.org/10.1002/jbm.820231208.; Bender M, Haferkorn K, Tajmiri-Gondai S, Uhl E, Stein M. Fibrinogen to Albumin Ratio as Early Serum Biomarker for Prediction of Intra-Hospital Mortality in Neurosurgical Intensive Care Unit Patients with Spontaneous Intracerebral Hemorrhage. J Clin Med. 2022; 11 (14): 4214. https://doi.org/10.3390/jcm11144214.; Wannop J, Kowalchuk S, Esposito M, Stefanyshyn D. Influence of Artificial Turf Surface Stiffness on Athlete Performance. Life (Basel). 2020; 10 (12): 340. https://doi.org/10.3390/life10120340.; Huang G, Schaff HV, Sundt TM, Rahimtoola SH. Treatment of obstructive thrombosed prosthetic heart valve. J Am Coll Cardiol. 2013; 62 (19): 1731–1736. https://doi.org/10.1016/j.jacc.2013.07.075.; Basmadjian D, Sefton MV, Baldwin SA. Coagulation on biomaterials in flowing blood: some theoretical considerations. Biomaterials. 1997; 18 (23): 1511–1522. https://doi.org/10.1016/s0142-9612(97)80002-6.; De Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules. 2008; 9 (11): 2969–2979. https://doi.org/10.1021/bm800681k.; Meng J, Zhu G, Xu H. Effects of nanotopography for biomaterials on cell behaviors. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Jun; 24 (3): 685–689. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/17713289/ (accessed: 20.01.2021).; Milner KR, Siedlecki CA. Fibroblast response is enhanced by poly(L-lactic acid) nanotopography edge density and proximity. Int J Nanomedicine. 2007; 2 (2): 201–211. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/17722548/ (accessed: 20.01.2021).; Leslie DC, Waterhouse A, Berthet JB, Valentin TM, Watters AL, Jain A et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol. 2014; 32 (11): 1134–1140. https://doi.org/10.1038/nbt.3020.; Sun T, Tan H, Han D, Fu Q, Jiang L. No platelet can adhere – largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small. 2005; 1 (10): 959–963. https://doi.org/10.1002/smll.200500095.; Wang W, Vahabi H, Movafaghi S, Kota AK. Superomniphobic Surfaces with Improved Mechanical Durability: Synergy of Hierarchical Texture and Mechanical Interlocking. Adv Mater Interfaces. 2019; 6 (18): 1900538. https://doi.org/10.1002/admi.201900538.; Lee C, Kim CJ. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir. 2009; 25 (21): 12812–12818. https://doi.org/10.1021/la901824d.; Wu Y, Butchart EG, Borer JS, Yoganathan A, Grunkemeier GL. Clinical evaluation of new heart valve prostheses: update of objective performance criteria. Ann Thorac Surg. 2014; 98 (5): 1865–1874. https://doi.org/10.1016/j.athoracsur.2014.05.006.; Chaudhary R, Garg J, Krishnamoorthy P, Shah N, Feldman BA, Martinez MW, Freudenberger R. On-X Valve: The Next Generation Aortic Valve. Cardiol Rev. 2017; 25 (2): 77–83. https://doi.org/10.1097/crd.0000000000000105.; Kondyurin A, Pecheva E, Pramatarova L. Calcium phosphate formation on plasma immersion ion implanted low density polyethylene and polytetrafluorethylene surfaces. J Mater Sci Mater Med. 2008; 19 (3): 1145–1153. https://doi.org/10.1007/s10856-0073231-2.; Grenadyorov AS, Solovyev AA, Oskomov KV, Onischenko SA, Chernyavskiy AM, Zhulkov MO, Kaichev VV. Modifying the surface of a titanium alloy with an electron beam and a-C:H:SiOx coating deposition to reduce hemolysis in cardiac assist devices. Surf Coatings Technol. 2020; 381: 125113. https://doi.org/10.1016/j.surfcoat.2019.125113.; Grenadyorov AS, Solovyev AA, Ivanova NM, Zhulkov MO, Chernyavskiy AM, Malashchenko VV, Khlusov IA. Enhancement of the adhesive strength of antithrombogenic and hemocompatible a-C:H:SiOx films to polypropylene. Surf Coatings Technol. 2020; 399: 126132. https://doi.org/10.1016/j.surfcoat.2020.126132.; Жульков МО, Гренадеров АС, Корнеев ДС, Агаева ХА, Чернявский АМ, Хлусов ИА. Исследование реакции тромбоцитов на a-C:H:SiOx покрытие, полученное методом плазмохимического осаждения с использованием импульсного биполярного смещения. Бюллетень сибирской медицины. 2020; 19 (3): 15–21. https://doi.org/10.20538/1682-0363-2020-3-15-21.; Dion I, Roques X, Baquey C, Baudet E, Basse Cathalinat B, More N. Hemocompatibility of diamond-like carbon coating. Biomed Mater Eng. 1993 Spring; 3 (1): 51–55. PubMed [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/8490535/ (accessed: 15.11.2022).; Bociaga D, Sobczyk-Guzenda A, Komorowski P, Balcerzak J, Jastrzebski K, Przybyszewska K, Kaczmarek A. Surface characteristics and biological evaluation of Si-DLC coatings fabricated using magnetron sputtering method on Ti6Al7Nb substrate. Nanomaterials (Basel). 2019; 9 (6): 812. https://doi.org/10.3390/nano9060812.; Khandwekar AP, Patil DP, Shouche Y, Doble M. Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility. J Biomater Appl. 2011; 26 (2): 227–252. https://doi.org/10.1177/0885328210367442.; Grenadyorov AS, Solovyev AA, Oskomov KV, Semenov VA, Zhulkov MO, Sirota DA et al. Morphofunctional reaction of leukocytes and platelets in in vitro contact with a-C:H:SiOx-coated Ti-6Al-4V substrate. J Biomed Mater Res A. 2023 Mar; 111 (3): 309–321. https://doi.org/10.1002/jbm.a.37470.; Grenadyorov AS, Solovyev AA, Oskomov KV, Yakovlev EV, Zhulkov MO. AISI 316L stainless steel modification by surface alloy and aC:H:SiOx coating synthesis. Vacuum. 2022; 204: 111369. https://doi.org/10.1016/j.vacuum.2022.111369.; Grenadyorov AS, Zhulkov MO, Solovyev AA, Oskomov KV, Semenov VA, Chernyavskiy AM et al. Surface characterization and biological assessment of corrosion-resistant a-C:H:SiOx PACVD coating for Ti-6Al-4V alloy. Mater Sci Eng C Mater Biol Appl. 2021; 123:112002. https://doi.org/10.1016/j.msec.2021.112002.; https://journal.transpl.ru/vtio/article/view/1709

  3. 3
  4. 4
  5. 5
    Academic Journal

    Πηγή: Лекарства Украины; № 1(257) (2022); 37-44
    Medicine of Ukraine; No. 1(257) (2022); 37-44
    Ліки України; № 1(257) (2022); 37-44

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://lu-journal.com.ua/article/view/264302

  6. 6
    Academic Journal

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 10, № 2 (2021): приложение; 99-103 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 10, № 2 (2021): приложение; 99-103 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/934/589; Бокерия Л.А., Аронов Д.М. Коронарное шунтирование больных ИБС: реабилитация и вторичная профилактика. Российские клинические рекомендации. М; 2016.; Кардиоваскулярная профилактика 2017. Российские национальные рекомендации. Российский кардиологический журнал. 2018;23(6):7-122. doi:10.15829/1560-4071-2018-6-7-122; Baumgartner H., Falk V., Bax J.J., De Bonis M., Hamm C., Holm P.J., Iung B., Lancellotti P., Lansac E., Rodriguez Muñoz D., Rosenhek R., Sjögren J., Tornos Mas P., Vahanian A., Walther T., Wendler O., Windecker S., Zamorano J.L.; ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017 ;38(36):2739-2791. doi:10.1093/eurheartj/ehx391.; Otto C.M., Nishimura R.A., Bonow R.O., Carabello B.A., Erwin J.P., Gentile F., Jneid H., Krieger E.V., Mack M., McLeod C., O'Gara P.T., Rigolin V.H., Sundt T.M., Thompson A., Toly C. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021 2;143(5):e35-e71. doi:10.1161/CIR.0000000000000932.; Иноземцева А.А., Аргунова Ю.А., Помешкина С.А., Евтушенко В.В., Барбараш О.Л. Эффективность и безопасность ранних физических тренировок в реабилитации пациентов после коронарного шунтирования. Сибирское медицинское обозрение. 2018;(6):33-42.DOI:10.20333/2500136-2018-6-33 42.; Таран И. Н., Помешкина С. А., Аргунова Ю. А., Барбараш О.Л. Безопасность и эффективность аэробных нагрузок в ранней реабилитации пациентов после операции на сердце. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(3):30-39. DOI:10.17802/2306-1278-2020-9-3-30-39; Meurin P., Iliou M.C., Ben Driss A., Pierre B., Corone S., Cristofini P., Tabet J.Y.; Working Group of Cardiac Rehabilitation of the French Society of Cardiology. Early exercise training after mitral valve repair: a multicentric prospective French study. Chest. 2005;128(3):1638-44. doi:10.1378/chest.128.3.1638.; Tabet J.Y., Meurin P., Ben Driss A., Weber H., Dumaine R., Renaud N., Grosdemouge A., Defrance C., Peyrot S., Debauchez M., Lansac E. Early exercise training feasibility after aortic valve repair: A multicentre prospective French survey on behalf of the Aortic Valve repair International Registry (AVIATOR). Arch Cardiovasc Dis. 2020;113(3):168-175. doi:10.1016/j.acvd.2019.11.006.

  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Medical Visualization; № 2 (2018); 25-46 ; Медицинская визуализация; № 2 (2018); 25-46 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/542/465; Практическая эхокардиография: Руководство по эхокардиографической диагностике; Под ред. Флакскампфа Ф.А.: Пер. с нем. под ред. Сандрикова В.А. Второе изд. М.: МЕДпресс-информ, 2013. 872 с.; Транспищеводная эхокардиография: Практическое руководство; Под ред. Перрино А.С. мл., Ривза С.Т.: Пер. с англ. Хоменко Е.А., науч. ред. Новиков В.И. М.: Медицинское информационное агентство, 2013. 509 с.; Вилкенсхоф У., Крук И., Мюр-Вилкенсхоф Ф. Справ очник по эхокардиографии; Под ред. Кушнерова А.И. Второе изд., перераб. и доп. М.: Медицинская литература, 2014. 304 с.; Side C.G., Gosling R.G. Non-surgical assessment of cardiac function. Nature. 1971; 232: 335.; Olsom R.M., Shelton D.K. A nondestructive technique to measure wall displacement in the thoracic aorta. J. Appl. Physiol. 1972; 32: 147–151.; Саидова М.А. Чреспищеводная эхокардиография: показания, техника проведения. Болезни сердца и сосудов. 2007; 4: 73–78.; Hisanaga K., Hisanaga A., Nagata K., Ichie Y. Transesophageal cross-sectional echocardiography. Am. Heart J. 1980; 100 (5): 605–609.; Matsumoto M., Oka Y., Strom J., Frishman W., Kadish A., Becker R.M., Frater R.W., Sonnenblick E.H. Application of transesophageal echocardiography to continuous intraoperative monitoring of left ventricular performance. Am. J. Cardiol. 1980; 46 (1): 95–105.; Merz E. Schallkopfhygiene – ein untershätztes Thema? Ultrashall Med. 2005; 26: 7–8.; Stoddard M.F., Liddel N.E., Longaker R.A., Dawkins P.R. Transesophageal echocardiography: Normal variants and mimickers. Am. Heart J. 1992; 124: 1587–1598.; Cohen G.I., White M., Sochowski R.A., Klein A.L., Bridge P.D., Stewart W.J., Chan K.-L. Reference values for normal adult transesophageal echocardiographyc measure ments. J. Am. Soc. Echocardiogr. 1995; 8: 221–230. DOI:10.1016/S0894-7317(05)80031-8.; Sloth E., Hasenkam J.M., Sørensen K.E., Pedersen J., Olsen K.H., Hansen O.K., Egeblad H. Pediatric multiplane transesophageal echocardiography in congenital heart disease: new possibilities with a miniaturized probe. J. Am. Soc. Echocardiogr. 1996; 9: 622–628.; Lam J., Neirotti R.A., Hardjiwijono R., Blom-Muilwjk C.M., Schuller J.L., Visser C.A. Transesophageal Echocardiography with the use of a four-millimeter probe. J. Am. Soc. Echocardiogr. 1997; 10: 499–504.; Курс эхокардиографии; Под ред. Флакскампфа Ф.А.: Пер. с нем. Халатова В.Ю., под ред. Сандрикова В.А. М.: МЕДпресс-информ, 2016. 328 с.; Lambertz H., Kreis A., Trümper H., Hanrath P. Simultaneous Trans-esophageal two-dimensional echocardiography: A new method of stress echocardiography. J. Am. Coll. Cardiol. 1990; 16, 5: 1143–1453.; Smith J.S., Cahalan M.K., Benefiel D.J., Byrd B.F., Lurz F.W., Shapiro W.A., Roizen M.F., Bouchard A., Schiller N.B. Intraoperative detection of myocardial ischemia in high-risk patients: electrocardiography versus two-dimensional transesophageal echocardiography. Circulation. 1985: 72 (5): 1015–1021.; Oxon D.C., Otto C.M. Intraoperative and Interventional Echocardiography. Atlas of Transesophageal Imaging. Second ed. Philadelphia, PA: Elsevier, 2018. 543 p.; Козлов И.А., Кричевский Л.А., Дзыбинская Е.В. Чреспищеводная эхокардиография как метод анестезиологического мониторинга при кардиохирурги ческих операциях и трансплантации сердца. Вестник трансплантологии и искусственных органов. 2006; 4: 47–51.; Козлов И.А., Кричевский Л.А., Дзыбинская Е.В. Десять лет чреспищеводной эхокардиографии в отечественной кардиоанестезиологии. Патология кровообращения и кардиохирургия. 2014; 3: 76–81.; Дзыбинская Е.В., Кричевский Л.А., Харламова И.Е., Козлов И.А. Чреспищеводная эхокардиография в оценке показаний и противопоказаний к ранней активизации после реваскуляризации миокарда. Общая реаниматология. 2011; 7 (1): 42–47.; Rasmussen C., Thiis J.J., Clemmensen P., Efsen F., Arendrup H.C., Saunamäki K., Madsen J.K., Pettersson G. Significance and management of early graft failure after coronary artery bypass grafting, feasibility and results of acute angiography and re-re-vascularization. Eur. J. Cardiothorac. Surg. 1997; 12 (6): 847–852.; London M.J., Mittnacht A.J., Kaplan J.A. Anesthesia for myocardial revascularization. In: Kaplan's cardiac anesthes ia. Kaplan J.A., Reich D.L., Lake C.L., Konstadt S.N. (eds.). 5th ed. Philadelphia: Saunders Elsevier, 2006: 585–644.; Zietkiewicz M., Drwila R., Maciejewska M.S., Moncznik P., Stapor M., Zajdel W., Zmudka K., Sadowski J., Andres J. Immediate angiography in perioperative myocardial infarction after coronary surgery. EJA. 2007; 24 (41): 3–4.; Binder Th. Three-Dimensional Echocardiography – Principles and Promises. J. Clin. Basic Cardiol. 2002; 5: 149–152.; Машина Т.В., Джанкетова В.С., Шамсиев Г.А., Голухова Е.З., Бокерия Л.А. Интраоперационная чреспищеводная трехмерная эхокардиография: клинический случай и литературная справка. Креативная кардиология. 2013; 1: 88–93.; Буравихина Т.А., Федулова С.В., Кузнецова Л.М., Каршиева А.Р., Дзеранова А.Н. Трехмерная интраоперационная чреспищеводная эхокардиография. Ультраз вуковая и функциональная диагностика. 2013; 2: 43–47.; Ткачев И.В., Кадрабулатова С.С., Тарасов Д.Г. Роль трехмерной чреспищеводной эхокардиографии в преоперационной оценке дефектов межпредсердной перег ородки. Патология кровообращения и кардиохирургия. 2014; 1: 58–61.; Бокерия Л.А., Машина Т.В., Джанкетова В.С., Голухова Е.З. Ультразвуковая анатомия и чреспищеводная трехмерная эхокардиография в хирургии митрального клапана (обзор литературы). Креативная кардиология. 2014; 4: 65–75.; Carpentier A.F., Lessana A., Relland J.Y., Belli E., Mihaileanu S., Berrebi A.J., Palsky E., Loulmet D.F. The “physio-ring”: an advanced concept in mitral valve annuloplasty. Ann. Thorac Surg. 1995; 60 (5): 1177–1185. DOI:10.1016/0003-4975(95)00753-8/; Hamer J.P.M. Biplane Transesophageal Echocardiography. Netherlands, Groningen: Boehringer Ingelheim International GmbH, 1991. 249 p.; Ports T.A., Silverman N.H., Schiller N.B. Two-dimensional echocardiographic assessment of Ebstein`s anomaly. Circulation. 1978; 58: 336.; Mensel T., Lambertz H. Partielle Lungen venenfehlkonnektion – Nachwies einer isolierten fehleinmündenden rechten oberen Lungenvene in die Vena cava superior mittels biplane transösophagealer Echokardiographie. Z. Kardiol. 1994; 83: 306–310.; Икоркин М.Р., Жаринов О.И., Левчук Н.П., Дынник О.Б., Бобров В.А. Диагностические возможности чреспищеводной эхокардиографии у больных с фибрилляцией предсердий. Украинский кардіологический журнал. 2008; 3: 102–110.; Шевелёв В.И., Канорский С.Г., Поморцев А.В. Эхокардиографические предикторы тромбоэмболических осложнений у больных с фибрилляцией предсердий пожилого возраста. Кубанский научный медицинский вестник. 2009; 9: 152–155.; Сычев О.С., Бородай А.О., Романова Е.Н., Деяк С.И., Бородай Э.С. Оценка признаков тромбообразования у больных с длительным пароксизмом фибрилляции предсердий методом чреспищеводной эхокардиографии. Украинский кардіологический журнал. 2010; 2: 54–59.; Зинченко Ю.В., Икоркин М.Р., Роль чреспищеводной эхокардиографии при проведении кардиоверсии у больных с трепетанием предсердий. Украинский кардіологический журнал. 2011; 5: 27–34.; Сычев О.С., Бородай А.А., Гетьман Т.В. Определение дисфункции ушка левого предсердия у больных с фибр илляцией предсердий неклапанной этиологии. Украинский кардіологический журнал. 2014; 2: 81–85.; Recchia D., Wickline S.A. Ultrasonic tissue characterization of blood during stasis and thrombus with a real-time linear-array backscatter imaging system. Coron. Artery Dis. 1993; 4: 987–994.; DeBakey M.E., Henly W.S., Cooley D.A., Morris G.C. Jr., Crawford E.S., Beall A.C. Jr. Surgical management of dissecting aneurysms of the aorta. J. Thorac. Cardiovasc. Surg. 1965; 49: 130–149.; Larson E.W., Edwards W.D. Risk factors for aortic dissection: A necropsy study of 161 cases. Am. J. Cardiol. 1984; 53: 849–855.; Roberts C.S., Roberts W.C. Dissection of the aorta associated with congenital malformation of the aortic valve. J. Am. Coll. Cardiol. 1991; 17: 712–716.; Pieters F.A.A., Widdershove J.W., Gerardy A., Geskes G., Cheriex E.C., Wellens H.J. Risk of aortic dissection after aortic valve replacement. Am. J. Cardiol. 1993; 72: 1043–1047.; Epperlein S., Mohr-Kahaly S., Erbel R., Kearney P., Meyer J. Aorta and aortic valve morphologies predisposing to aortic dissection. Eur. Heart J. 1994; 15: 1520–1527.; Давыдова Л.А., Полипчук Н.В. Осложнения аневризмы аорты при атеросклерозе и синдроме Марфана. Medicine. 2017; 42 (176): 63–71.; Erbel R., Börner N., Steller D., Brunier J., Thelen M., Pfeiffer C., Mohr-Kahaly S., Iversen S., Oelert H., Meyer J. Detection of aortic dissection by transesophageal echocardiography. Br. Heart J. 1987; 58: 45–51.; Erbel R., Engberding R., Daniel W., Roelandt J., Visser C., Rennollet H. Echocardiography in diagnosis of aortic dissection. Lancet. 1989; 1: 457–461.; Silvey S.V., Stoughton T.L., Pearl W., Collazo W.A., Belbel R.J. Rupture of the outer partition of aortic dissection during transesophageal echocardiography. Am. J. Cardiol. 1991; 68: 286–287.; Mohr-Kahaly S., Erbel R., Steller D., Börner N., Drexler M., Meyer J. Aortic dissection detected by transesophageal echocardiography. Int. J. Card. Imag. 1986; 2: 31–35.; Erbel R., Oelert H., Meyer J., Puth M., Mohr-Katoly S., Hausmann D., Daniel W., Maffei S., Caruso A., Covino F.E, Effect of medical and surgical therapy on aortic dissection evaluated by transesophageal echocardiography. Implications for prognosis and therapy. The European Cooperative Study Group on Echocardiography. Circulation. 1993; 87: 1604–1615. DOI:10.1161/01.CIR.87.5.1604.; Nienaber C.A., von Kodolitsch Y., Nicolas V., Siglow V., Piepho A., Brockhoff C., Koschyk D.H., Spielmann R.P. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N. Engl. J. Med. 1993; 328: 1–8. DOI:10.1056/NEJM199301073280101.; Rizzo R.J., Aranki S.F., Aklog L., Couper G.S., Adams D.H., Collins J.J,. Kinchla N.M., Allred E.N., Cohn L.H. Rapid noninvasive diagnosis and surgical repair of acute ascending aortic dissection. J. Trorac. Cardiovasc. Surg. 1994; 108: 567–575.; Banning A.P., Masani N.D., Ikram S., Fraser A.G., Hall R.J.C. Transesophageal echocardiography as the sole diagnostic investigation in patients with suspected thoracic aortic dissection. Br. Heart J. 1994; 72: 461–465.; Chirillo F., Cavallini C., Longhini C., Ius P., Totis O., Cavarzerani A., Bruni A., Valfré C., Stritoni P. Comparative diagnostic value of transesophageal echocardiography and retrograde aortography in the evaluation of thoracic aortic dissection. Am. J. Cardiol. 1994; 74: 590–595.; Keren A., Kim C.B., Hu B.S., Eyngorina I., Billingham M.E., Mitchell R.S., Miller D.C., Popp R.L., Schnittger I. Accuracy of biplane and multiplane transesophageal echocardiography in diagnosis of typical acute aortic dissection and intramural hematoma. J. Am. Coll. Cardiol. 1996; 28: 627–636.; Почепцова Е.Г. Острый аортальный синдром: диссекция аорты. Лiки Украïни. 2017; 2 (208): 38–46.; Mohr-Kahaly S., Erbel R., Kearney P., Puth M., Meyer J. Aortic intramural hemorrhage visualized by transesophageal echocardiography: Findings and prognostic implications. J. Am. Coll. Cardiol. 1994; 23: 658–664.; Vilacosta I., San Román J.A., Ferreiròs J., Aragoncillo P., Méndez R., Castillo J.A., Rollán M.J., Batlle E., Peral V., Sánchez-Harguindey L. Natural history and serial morphology of aortic intramural hematoma: A novel variant of aortic dissection. Am. Heart J. 1997; 134: 495–507.; Smith M.D., Cassidy J.M., Souther S., Morris E.J., Sapin P.M., Johnson S.B., Kearney P.A. Transesophageal echocardiography in the diagnosis of traumatic rupture of the aorta. N. Engl. J. Med. 1995; 332: 356–362.; Vignon P., Guéret P., Vedrinne J.M., Lagrange P., Cornu E., Abrieu O., Gastinne H., Bensaid J., Lang R.M.: Role of transesophageal echocardiography in the diagnosis and management of traumatic aortic disruption. Circulation. 1995; 92: 2959–2968.; Таричко Ю.В., Родионова Л.В., Веретник Г.И., Стефанов С.А., Дандарова Ж.Б. Применение чресп ищеводной эхокардиографии в профилактике воздуш ной эмболии в кардиологической практике. Ультраз вук овая и функциональная диагностика. 2006; 4: 96–101.; Berman N.O. Intraoperative echocardiography in the detection of entrapped intracardiac air. Clin. Res. 1980; 28 (2): 157.; Duff H.J., Buda A.J., Kramer R., Strauss H.D., David T.E., Berman N.D. Detection of entrapped intracardiac air with intraoperative echocardiography. Аm. J. Cardiol. 1980; 46 (2): 255–260.; Hughes D. Air embolism during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 1981; 82 (4): 639–648.; Roe B.B. Air embolism prevention. Ann. Thorac. Surg. 1987; 44 (2): 212–213.; https://medvis.vidar.ru/jour/article/view/542

  10. 10
    Academic Journal

    Πηγή: Medical Visualization; № 4 (2018); 32-39 ; Медицинская визуализация; № 4 (2018); 32-39 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/604/491; Азизов В.А., Султанова М.Д., Улудаг К. Оценка распространенности и характера атеросклеротических бляшек коронарных артерий у больных сахарным диабетом при помощи мультиспиральной компьютер-ной томографии. Кардиология в Беларуси. 2014; 4 (35): 58–64.; Hu X.H., Zheng W.L., Wang D., Xie S.S., Wu R., Zhang S.Z. Accuracy of high-pitch prospectively ECG-triggering CT coronary angiography for assessment of stenosis in 103 patients: comparison with invasive coronary angiography. Clin. Radiol. 2012; 67: 1083–1088. DOI:10.1016/j.crad.2012.03.016/; Wang R., Liu X., Wang C., Ye X., Xu X., Yang C. Higher coronary artery calcification score is associated with adverse prognosis in patients with stable angina pectoris. J. Thorac. Dis.2017; 9 (3): 582–589. DOI:10.21037/jtd.2017.02.84.; De Graaf F.R., van Velzen J.E., de Boer S.M., van Werkhoven J.M., Kroft L.I., de Roos A., Sieders A., de Grooth G.I., Jukema J.W., Schuift J.D., Bax J.J., Schalji M.J., van der Wall E.E. . Noninvasive computed tomography coronary angiography as a gatekeeper for invasive coronary angiography. Int. J. Cardiovasc. Imaging. 2013; 29: 221–228. DOI:10.1007/s10554-012-0059-8.; Sabarudin A., Sun Z. Coronary CT angiography: Diagnostic value and clinical challenges. Wld J. Cardiol. 2013; 26 (5): 473–483. DOI:10.4330/wjc.v5.i12.473.; Belgrano M., Bregant P., Djoguela M., Toscano W., Marchese E., Cova M.A. 256-slice CT coronary angiography: in vivo dosimetry and technique optimization. Radiol. Med. 2014; 119 (4): 249–256. DOI:10.1007/s11547-013-0334-3.; Klass O., Walker M.J., Olszewski M.E., Bahner J., Feuerlein S., Hoffmann M.H., Lang A. Quantification of aortic valve area at 256-slice computed tomography: comparison with transesophageal echocardiography and cardiac catheterization in subjects with high-grade aortic valve stenosis prior to percutaneous valve replacement. Eur. J. Radiol. 2011; 80 (1): 151–157. DOI:10.1016/j.ejrad.2010.07.015.; Sun Z. Cardiac CT imaging in coronary artery disease: Current status and future directions. Quant. Imaging Med. Surg. 2012; 2: 98–105. DOI:10.3978/j.issn.2223-4292.2012.05.02.; Di Cesare E., Gennarelli A., Di Sibio A., Felli V, Splendiani A, Gravina GL, Barile A, Masciocchi C. Assessment of dose exposure and image quality in coronary angiography performed by 640-sliceCT: a comparison between adaptive iterative and filtered back-projection algorithm by propensity analysis. Radiol. Med. 2014; 119 (8): 642–649. DOI:10.1007/s11547-014-0382-3.; Di Cesare E., Gennarelli A., Di Sibio A., Felli V, Splendiani A, Gravina GL, Masciocchi C. Image quality and radiation dose of single heartbeat 640-slice coronary CT angiography: a comparison between patients with chronic atrial fibrillation and subjects in normal sinus rhythm by propensity analysis. Eur. J. Radiol. 2015; 84 (4): 631–636. DOI:10.1016/j.ejrad.2014.11.035.; Hou Y., Ma Y., Fan W., Wang Y., Yu M., Vembar M., Guo O. Diagnostic accuracy of low-dose 256-slice multi-detector coronary CT angiography using iterative reconstruction in patients with suspected coronary artery disease. Eur. Radiol. 2014; 24: 3–11. DOI:10.1007/s00330-013-2969-9.; https://medvis.vidar.ru/jour/article/view/604

  11. 11
  12. 12
    Academic Journal

    Πηγή: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 12, № 4 (2015); 8-14 ; Вестник анестезиологии и реаниматологии; Том 12, № 4 (2015); 8-14 ; 2541-8653 ; 2078-5658

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/35/98; Ленькин А. И., Захаров В. И., Смёткин А. А. и др. Влияние температурного режима перфузии на транспорт кислорода и церебральную оксигенацию при комплексных вмешательствах на клапанах сердца // Вестн. анестезиол. и реаниматол. - 2012. - № 5. - С. 8-15.; Agrafiotis M., Sileli M., Ampatzidou F. et al. The base excess gap is not valid tool for the quantification of unmeasured ions in cardiac surgical patients: a retrospective observational study // Eur. J. Anaesthesiol. - 2013. - Vol. 30, № 11. - P. 678-684.; Alstor R. P., Cormack L., Collinson C. Metabolic acidosis developing during cardiopulmonary bypass is related to a decrease in strong ion difference // Perfusion. - 2004. - Vol. 19, № 3. - P. 145-152.; Birdi I., Caputo M., Underwood M. et al. The effects of cardiopulmonary bypass temperature on inflammatory response following cardiopulmonary bypass // Eur. J. Cardiothorac. Surg. - 1999. - Vol. 16, № 5. - P. 540-545.; Birdi I., Regragui I. A., Izzat M. B. et al. Effects of cardiopulmonary bypass temperature on pulmonary gas exchange after coronary artery operations // Ann. Thorac. Surg. - 1996. - Vol. 61, № 1. - P. 118-123.; Boodhwani M., Rubens F., Wozny D. et al. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study // J. Thorac. Cardiovasc. Surg. - 2007. - Vol. 134, № 6. - P. 1443-1450.; Boodhwani M., Rubens F. D., Wozny D. et al. Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting // Ann. Thorac. Surg. - 2009. - Vol. 87, № 2. - P. 489-495.; de Paulis R., Penta de Peppo A., Colagrande L. et al. Troponin I release after CABG surgery using two different strategies of myocardial protection and systemic perfusion // J. Cardiovasc. Surg. - 2002. - Vol. 43, № 2. - Р. 153-159.; Ho K. M., Tan J. A. Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: a systematic review // Cardiovasc. Ther. - 2011. - Vol. 29, № 4. - Р. 260-279.; Honore P. M., Jacquet L. M., Beale R. J. et al. Effects of normothermia versus hypothermia on extravascular lung water and serum cytokines during cardiopulmonary bypass: a randomized, controlled trial // Crit. Care Med. - 2001. - Vol. 29, № 10. - P. 1903-1909.; Lazzeri C., Valente S., Chiostri M. et al. Evaluation of acid-base balance in ST-elevation myocardial infarction in the early phase: a prognostic tool? // Coron. Artery Dis. - 2010. - Vol. 21, № 5. - P. 266-272.; Luz H. L., Auler Junior J. O. Temperature and acid-base balance in coronary bypass grafting with cardiopulmonary bypass, under hypothermia and normothermia // Rev. Bras. Anestesiol. - 2002. - Vol. 52, № 2. - P. 197-208.; Nathan H. J., Lavallee G. The management of temperature during hypothermic cardiopulmonary bypass: I - Canadian Survey // Can. J. Anaesth. - 1995. - Vol. 42, № 8. - P. 669-671.; Tosson R., Buchwald D., Klak K. et al. The impact of normothermia on the outcome of aortic valve surgery // Perfusion. - 2001. - Vol. 16, № 4. - P. 319-324.

  13. 13
    Academic Journal

    Πηγή: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 14, № 1 (2017); 14-23 ; Вестник анестезиологии и реаниматологии; Том 14, № 1 (2017); 14-23 ; 2541-8653 ; 2078-5658

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/73/74; Ленькин А. И., Захаров В. И., Смёткин А. А. Влияние температурного режима перфузии на транспорт кислорода и церебральную оксигенацию при комплексных вмешательствах на клапанах сердца//Вестник анестезиол. и реаниматол. -2012. -№ 5. -С. 8-15.; Birdi I., Caputo M., Underwood M. et al. Influence of normothermic systemic perfusion temperature on cold myocardial protection during coronary artery bypass surgery//Cardiovasc. Surg. -1999. -Vol. 7, № 3. -P. 369-374.; Birdi I., Caputo M., Underwood M. et al. The effects of cardiopulmonary bypass temperature on inflammatory response following cardiopulmonary bypass//Eur. J. Cardiothorac. Surg. -1999. -Vol. 16, № 5. -P. 540-545.; Birdi I., Regragui I. A., Izzat M. B. et al. Effects of cardiopulmonary bypass temperature on pulmonary gas exchange after coronary artery operations//Ann. Thorac Surg. -1996. -Vol. 61, № 1. -P. 118-123.; Birdi I., Regragui I., Izzat M. B. et al. Influence of normothermic systemic perfusion during coronary artery bypass operations: a randomized prospective study//J. Thorac. Cardiovasc. Surg. -1997. -Vol. 114, № 3. -P. 475-481.; Boodhwani M., Rubens F., Wozny D. et al. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study//J. Thorac. Cardiovasc. Surg. -2007. -Vol. 134, № 6. -P. 1443-1450.; Boodhwani M., Rubens F. D., Wozny D. et al. Effects of mild hypothermia and rewarming on renal function after coronary artery bypass grafting//Ann. Thorac. Surg. -2009. -Vol. 87, № 2. -P. 489-495.; Castedo E., Castejon R., Monguio E. et al. Influence of hypothermia on right atrial cardiomyocyte apoptosis in patients undergoing aortic valve replacement//J. Cardiothor. Surgery. -2007. -Vol. 2, № 7. -P. 7.; Crescenzi G., Landoni G., Bignami E. et al. N-Terminal B-Natriuretic peptide after coronary artery bypass graft surgery//J. Cardiothorac. Vasc. Anesth. -2009. -Vol. 23. -P. 147-150.; de Paulis R., Penta de Peppo A., Colagrande L. et al. Troponin I release after CABG surgery using two different strategies of myocardial protection and systemic perfusion//J. Cardiovasc. Surg. -2002. -Vol. 43, № 2. -P. 153-159.; Dearani J. A., Axford T. C., Patel M. A. et al. Role of myocardial temperature measurement in monitoring the adequacy of myocardial protection during cardiac surgery//Ann. Thorac. Surg. -2001. -Vol. 72, № 6. -P. 2235-2244.; Fellahi J. L., Daccache G., Makroum Y. et al. The prognostic value of B-Type Natriuretic Petide after cardiac surgery: A comparative study between coronary artery bypass graft surgery and aortic valve replacement//J. Cardiothorac. Vasc. Anesth. -2012. -Vol. 26. -P. 624-630.; Gaudino M., Zamparelli R., Andreotti F. et al. Normothermia does not improve postoperative hemostasis nor does it reduce inflammatory activation in patients undergoing primary isolated coronary artery bypass//J. Thorac. Cardiovasc. Surg. -2002. -Vol. 123, № 6. -P. 1092-1100.; Grigore A. M., Mathew J., Grocott H. P. et al. Prospective randomized trial of normothermic versus hypothermic cardiopulmonary bypass on cognitive function after coronary artery bypass graft surgery//Anesthesiology. -2001. -Vol. 95, № 5. -P. 1110-1119.; Ho K. M., Tan J. A. Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: a systematic review//Cardiovasc Ther Aug. -2011. -Vol. 29, № 4. -P. 260-279.; Honore P. M., Jacquet L. M., Beale R. J. et al. Effects of normothermia versus hypothermia on extravascular lung water and serum cytokines during cardiopulmonary bypass: a randomized, controlled trial//Crit. Care Med. -2001. -Vol. 29, № 10. -P. 1903-1909.; Hutfless R., Kazanegra R., Madani M. et al. Utility of B-type natriuretic peptide in predicting postoperative complications and outcomes in patients undergoing heart surgery//J. Am. Coll. Cardiol. -2004. -Vol. 43. -P. 1873-1879.; Insler S. R., Sessler D. I. Perioperative thermoregulation and temperature monitoring//Anesthesiol. Clin. -2006. -Vol. 24, № 4. -P. 823-837.; Maisel A. S., Krishnaswamy P., Nowak R. M. et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure//N. En. J. Med. -2002. -Vol. 347. -P. 161-167.; Mills G. H., Khan Z. P., Moxham J. et al. Effects of temperature on phrenic nerve and diaphragmatic function during cardiac surgery//Br. J. Anaesth. -1997. -Vol. 79, № 6. -P. 726-732.; Mora C. T., Henson M. B., Weintraub W. S. et al. The effect of temperature management during cardiopulmonary bypass on neurologic and neuropsychologic outcomes in patients undergoing coronary revascularization//J. Thorac. Cardiovasc. Surg. -1996. -Vol. 112, № 2. -P. 514-522.; Nathan H. J., Lavallee G. The management of temperature during hypothermic cardiopulmonary bypass: I -Canadian Survey//Can. J. Anaesth. -1995. -Vol. 42, № 8. -P. 669-671.; Newman M. F., Wolman R., Kanchunger M. et al. Multicenter preoperative stroke risk index for patients undergoing coronary artery bypass graft surgery. Multicenter Study of Perioperative Ischemia (McSPI) Research Group//Circulation. -1996. -Vol. 94, № 9. -P. 74-80.; Ning X. H., Xu C. S., Song Y. C. et al. Hypothermia preserves function and signaling for mitochondrial biogenesis during subsequent ischemia in isolated rabbit heart//Am. J. Heart Circ. Physiol. -1998. -Vol. 274, № 3. -P. 786-793.; Nozohoor S., Nilsson J., Lührs C. et al. B-Type natriuretic peptide as a predictor of postoperative heart failure after aortic valve replacement//J. Cardiothorac. Vasc. Anesth. -2009. -Vol. 23, № 2. -P. 161-165.; Provenchere S., Berroeta C., Reynaud C. et al. Plasma brain natriuretic peptide and cardiac troponin I concentrations after adult cardiac surgery: Association with postoperative cardiac dysfunction and 1-year mortality//Crit. Care Med. -2006. -Vol. 34. -P. 995-1000.; Qing M., Vasquez-Jimenez J. F., Klosterhalfen B. et al. Influence of temperature during cardiopulmonary bypass on leukocyte activation, cytokine balance, and post-operative organ damage//Shock. -2001. -Vol. 15, № 5. -P. 372-377.; Qing M., Vazquez-Jimenez J. F., Schumacher K. et al. Moderate hypothermia during cardiopulmonary bypass increases intramyocradial synthesis of heat shock protein 72//J. Thorac. Cardiovasc. Surg. -2002. -Vol. 124, № 4. -P. 724-731.; Rasmussen B. S., Sollid J., Rees S. E. et al. Oxygenation within the first 120 h following coronary artery bypass grafting. Influence of systemic hypothermia (32 degrees C) or normothermia (36 degrees C) during the cardiopulmonary bypass: a randomized clinical trial//Acta Anaesthesiol Scand. -2006. -Vol. 50, № 1. -P. 64-71.; Rothenburger M., Stypmann J., Bruch C. et al. Aminoterminal B-type pro-natriuretic peptide as a marker of recovery after high-risk coronary artery bypass grafting in patients with ischemic heart disease and severe impaired left ventricular function//J. Heart Lung Transplant. -2006. -Vol. 25. -P. 596-602.; Rushkoaho H. Cardiac hormones as diagnostic tools in heart failure//Endocr. Rev. -2003. -Vol. 24. -P. 341-356.; Speziale G., Ferroni P., Ruvolo G. et al. Effect of normothermic versus hypothermic cardiopulmonary bypass on cytokine production and platelet function//J. Сardiovasc. Surg. -2000. -Vol. 41, № 6. -P. 819-827.; Tönz M., Mihaljevic T., von Segesser L. K. et al. Normothermia versus hypothermia during cardiopulmonary bypass: A randomized, controlled trial//Ann. Thorac. Surg. -1995. -Vol. 59, № 1. -P. 137-143.; Tosson R., Buchwald D., Klak K. et al. The impact of normothermia on the outcome of aortic valve surgery//Perfusion. -2001. -Vol. 16, № 4. -P. 319-324.; Varquez-Jimenez J. F., Qing M., Hermanns B. et al. Moderate hypothermia during cardiopulmonary bypass reduces myocardial cell damage and myocardial cell death related to cardiac surgery//J. Am. Coll Cardiol. -2001. -Vol. 38, № 4. -P. 1216-1223.

  14. 14
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 31, № 1 (2016); 42-46 ; Сибирский журнал клинической и экспериментальной медицины; Том 31, № 1 (2016); 42-46 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2016-31-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/9/10; Арутюнов Г.П., Костюкевич О.И, Былова Н.А. Распространен¬ность, клиническая значимость гипотрофии и эффектив¬ ность нутритивной поддержки у пациентов, страдающих хронической сердечной недостаточностью // Эксперимен¬тальная и клиническая гастроэнтерология. – 2009. – № 2. – С. 22–33.; Ефремов С.М., Дерягин М.Н., Шмырев В.А. и др. Возможность раннего энтерального питания в кардиохирургии // Пато¬логия кровообращения и кардиохирургия. – 2014. – № 3. – С. 27–33.; Косинец В.А. Нутритивная поддержка организма в услови¬ях критических состояний // Новости хирургии. – 2013. – Т. 21, № 2. – С. 100–104.; Лейдерман И.Н. Современная концепция нутритивной под¬держки при критических состояниях. 5 ключевых проблем // Интенсивная терапия. – 2005. – № 1. – С. 44–49.; Лейдерман И.Н., Хачатуров С.А., Левит А.Л. Особенности нутритивной поддержки в кардиологии и кардиохирургии: современное состояние проблемы // Тихоокеанский меди-цинский журнал. – 2007. – № 2. – С. 28–33.; Ломиворотов В.В., Ефремов С.М., Бобошко В.А. и др. Про¬ гностическое значение абсолютного количества лимфоци¬тов у кардиохирургических пациентов // Патология кро¬вообращения и кардиохирургия. – 2013. – № 2. – С. 41–45.; Шутов Е.В. Нутритивный статус у больных с хронической почечной недостаточностью (Обзор литературы) // Нефро¬ логия и диализ. – 2008. – Т. 10, № 3¬4. – С. 199–208.; Belohlavek J., Dytrych V., Linhart A. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism // Experimental Clinical Cardiology. – 2013. – Vol. 18, No. 2. – P. 129–138.; Clerico A., Edmin M. Diagnostic accuracy and prognostic relevance of the measurement of cardiac Natriuretic peptides: a review // Clinical Chemistry. – 2004. – No. 50. – P. 33–50.; Horwich T., Fonarow G., Hamilton M. et al. The relationship between obesity and mortality in patients with heart failure // J. Am. Coll. Cardiology. – 2001. – No. 38. – P. 789–795.; Jo J., Lee M., Lee J. Leukocytes and systemic inflammatory response syndrome as prognostic factors in pulmonary embolism patients // Pulmonary Medicine. – 2013. – No. 13. – P. 74.; Kalantar¬Zadeh K., Block G., Humphreys M.H. et al. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients // Kidney Int. – 2003. – No. 63. – P. 793–808.; Kenchaiah S., Evans J., Levy D. et al. Obesity and the risk of heart failure // The New England Journal of Medicine. – 2002. – No. 347. – P. 305–213.; McCullough P., Sandberg K.R. Sorting out the evidence on natriuretic peptides // Reviews in Cardiovascular Medicine. – 2003. – No. 4. – P. 13–19.; Rudiger A., Buckhard O., Haspes P. et al. The relative lymphocyte count on hospital admission is a risk factor for long¬term mortality in patients with acute heart failure // American Journal of Emergency Medicine. – 2006. – Vol. 24. – P. 451–454.; Vuilleumier N., Le Gal G., Verschuren E.F. et al. Cardiac biomarkers for risk stratification in non-massive pulmonary embolism: a multicenter prospective study // Journal of Thrombosis and Haemostasis. – 2008. – Vol. 7. – P. 391–398.; https://www.sibjcem.ru/jour/article/view/9

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20