Εμφανίζονται 1 - 20 Αποτελέσματα από 66 για την αναζήτηση '"ПРЕОБРАЗОВАНИЕ МЕЛЛИНА"', χρόνος αναζήτησης: 1,74δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: This work was supported by the In ternational Program of Cooperation between the Repub lic of Belarus and JINR. The author expresses his gratitude to O. P. Solovtsova and L. P. Kaptari for the discussion and valuable comments., Работа выполнена при поддержке Международной программы сотрудничества между Республикой Беларусь и ОИЯИ. Автор выражает благодарность О. П. Соловцовой и Л. П. Каптарю за ценные замечания, высказанные в ходе обсуждения работы.

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 61, № 2 (2025); 118-127 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 61, № 2 (2025); 118-127 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2025-61-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/837/638; Dirac, P. A. M. The quantum theory of the electron / P. A. M. Dirac // Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. – 1928. – Vol. 117, № 778. – P. 610–624. https://doi.org/10.1098/rspa.1928.0023; Determination of the fine-structure constant with an accuracy of 81 parts per trillion / L. Morel, Z. Yao, P. Cladé, S. Guellati-Khélifa // Nature. – 2020. – Vol. 588. – P. 61–65. https://doi.org/10.1038/s41586-020-2964-7; Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm / D. P. Aguillard, T. Albahri, D. Allspach [et al.]; Muon g – 2 Collaboration // Physical Review Letters. – 2023. – Vol. 131. – Art. ID 161802. https://doi.org/10.1103/physrevlett.131.161802; Laporta, S. High­precision calculation of the 4­loop QED contribution to the slope of the Dirac form factor / S. La­porta // Physics Letters B. – 2020. – Vol. 800. – Art. ID 135137. https://doi.org/10.1016/j.physletb.2019.135137; Volkov, S. Calculation of the total 10-th order QED contribution to the lepton magnetic moments / S. Volkov // Arxiv [Preprint]. – 2024. – Mode of access: https://arXiv:2404.00649 [hep-ph]; https://doi.org/10.48550/arXiv.2404.00649; Volkov, S. Calculation of lepton magnetic moments in quantumelectrodynamics: A justification of the flexible divergence elimination method / S. Volkov // Physical Review D. – 2024. – Vol. 109. – Art. ID 036012. https://doi.org/10.1103/PhysRevD.109.036012; Solovtsova, O. P. Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation / O. P. Solovtsova, V. I. Lashkevich, L. P. Kaptari // European Physical Journal Plus. – 2023. – Vol. 138. – Art. ID 212. https://doi.org/10.1140/epjp/s13360-023-03834-4; Solovtsova, O. P. Contributions of QED diagrams with vacuum polarization insertions to the lepton anomaly within the Mellin–Barnes representation / O. P. Solovtsova, V. I. Lashkevich, L. P. Kaptari // Physics of Particles and Nuclei. – 2024. – Vol. 55. – P. 725–730. https://doi.org/10.1134/S1063779624700072; Solovtsova, O. P. Analytical calculations of the tenth order QED radiative corrections to leptonanomalies within the Mellin–Barnes representation / O. P. Solovtsova, V. I. Lashkevich, L. P. Kaptari // Journal of Physics G: Nuclear and Particle Physics. – 2024. – Vol. 51. – Art. ID 055001. https://doi.org/10.1088/1361-6471/ad2e32; Laporta, S. The analytical contribution of the sixth order graphs with vacuum polarization insertions to the muon (g-2) in QED / S. Laporta // Il Nuovo Cimento A. – 1993. – Vol. 106. – P. 675–683. https://doi.org/10.1007/bf02787236; Lautrup, B. E. Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron / B. E. Lautrup, E. de Rafael // Physical Review. – 1968. – Vol. 174. – P. 1835–1842. https://doi.org/10.1103/PhysRev.174.1835; Migraco, J. A. Fourth-order vacuum polarization contribution to the sixth-order electron magnetic moment / J. A. Mig raco, E. Remiddi // Il Nuovo Cimento A. – 1969. – Vol. 60. – P. 519–529. https://doi.org/10.1007/bf02757285; CODATA recommended values of the fundamental physical constants: 2018 / E. Tiesinga, P. J. Mohr, D. B. Newell, B. N. Tay lor // Reviews of Modern Physics. – 2021.– Vol. 93, № 2. – Art. ID 025010. https://doi.org/10.1103/RevModPhys.93.025010; https://vestifm.belnauka.by/jour/article/view/837

  2. 2
    Academic Journal

    Συνεισφορές: This work was supported by the International Program of Cooperation between the Republic of Belarus and JINR., Работа выполнена при поддержке Международной программы сотрудничества между Республикой Беларусь и ОИЯИ.

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 59, № 4 (2023); 338-351 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 59, № 4 (2023); 338-351 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2023-59-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/748/588; Dirac, P. A. M. The quantum theory of the electron / P. A. M. Dirac // Proc. R. Soc. London, Ser. A. – 1928. – Vol. 117, № 778. – P. 610–624. https://doi.org/10.1098/rspa.1928.0023; Jegerlehner, F. The Anomalous Magnetic Moment of the Muon / F. Jegerlehner. – Springer Cham, 2017. – 693 p. – (Springer Tracts in Modern Physics). https://doi.org/10.1007/978-3-319-63577-4; The anomalous magnetic moment of the muon in the Standard Model / T. Aoyama [et al.] // Phys. Rep. – 2020. – Vol. 887. – P. 1–166. https://doi.org/10.1016/j.physrep.2020.07.006; Measurement of the fine-structure constant as a test of the Standard Model / R. H. Parker [et al.] // Science. – 2018. – Vol. 360, № 6385. – P. 191–195. https://doi.org/10.1126/science.aap7706; Determination of the fine-structure constant with an accuracy of 81 parts per trillion / L. Morel [et al.] // Nature. – 2020. – Vol. 588. – P. 61–65. https://doi.org/10.1038/s41586-020-2964-7; Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. / B. Abi [et al.]; (Muon g – 2 Collaboration) // Phys. Rev. Lett. – 2021. – Vol. 126. – ID 141801. – 11 p. https://doi.org/10.1103/PhysRevLett.126.141801; Schwinger, J. S. Quantum electrodynamics. III: The electromagnetic properties of the electron: radiative corrections to scattering / J. S. Schwinger // Phys. Rev. – 1949. – Vol. 76. – P. 790–817. https://doi.org/10.1103/PhysRev.76.790; Petermann, A. Fourth order magnetic moment of the electron / A. Petermann // Nucl. Phys. – 1958. – Vol. 5. – P. 667– 683. https://doi.org/10.1016/0029-5582(58)90065-8; Sommerfield, C. M. Magnetic dipole moment of the electron / C. M. Sommerfield // Phys. Rev. – 1957. – Vol. 107, № 1. – P. 328–329. https://doi.org/10.1103/PhysRev.107.328; Laporta, S. High-precision calculation of the 4-loop contribution to the electron g − 2 in QED / S. Laporta // Phys. Lett. – 2017. – Vol. 772. – P. 232–238. https://doi.org/10.1016/j.physletb.2017.06.056; Laporta, S. High-precision calculation of the 4-loop QED contribution to the slope of the Dirac form factor / S. Laporta // Phys. Lett. B. – 2020. – Vol. 800. – Art. ID 135137. https://doi.org/10.1016/j.physletb.2019.135137; Laporta, S. The analytical contribution of the sixth order graphs with vacuum polarization insertions to the muon (g–2) in QED / S. Laporta // Il Nuovo Cim. A. – 1993. – Vol. 106. – P. 675–683. https://doi.org/10.1007/bf02787236; Laporta, S. The analytical contribution of some eighth order graphs containing vacuum polarization insertions to the muon (g−2) in QED / S. Laporta // Phys. Lett. B. – 1993. – Vol. 312, № 4. – P. 495–500. https://doi.org/10.1016/03702693(93)90988-T; Friot, S. Asymptotics of Feynman diagrams and the Mellin-Barnes representation / S. Friot, D. Greynat, E. de Rafael // Phys. Lett. B. – 2005. – Vol. 628, № 1–2. – P. 73–84. https://doi.org/10.1016/j.physletb.2005.08.126; Aguilar, J. P. Muon anomaly from lepton vacuum polarization and the Mellin-Barnes representation. / J. P. Aguilar, D. Greynat, E. Rafael // Phys. Rev. D. – 2008. – Vol. 77, № 9. – Art. ID 093010. https://doi.org/10.1103/physrevd.77.093010; Solovtsova, O. P. Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation / O. P. Solovtsova, V. I. Lashkevich, L. P. Kaptari // Eur. Phys. J. Plus. – 2023. – Vol. 138. – Art. ID 212. https://doi.org/10.1140/epjp/s13360-023-03834-4; Lautrup, B. On high order estimates in QED / B. Lautrup // Phys. Lett. B. – 1977. – Vol. 69, № 1. – P. 109–111. https://doi.org/10.1016/0370-2693(77)90145-9; Berestetskii, V. B. Concerning the radiative corrections to the mu-meson magnetic moment / V. B. Berestetskii, O. N. Krohnin, A. K. Khlebnikov // J. Exp. Theor. Phys. – 1956. – Vol. 30, № 5. – P. 761–762.; Brodsky, S. J. Suggested boson-lepton pair coupling and the anamalous magnetic moment of the muon / S. J. Brodsky, E. de Rafael, // Phys. Rev. – 1968. – Vol. 168. – P. 1620–1622. https://doi.org/10.1103/PhysRev.168.1620; Dubovyk, I. Mellin-Barnes Integrals: A Primer on Particle Physics Applications / I. Dubovyk, J. Gluza, G. Somogyi. – Springer Cham, 2022. – 266 p. – (Springer Nature Switzerland AG). https://doi.org/10.1007/978-3-031-14272-7; Smirnov, V. A. Analytic Tools for Feynman Integrals / V. A. Smirnov. – Berlin; Heidelberg: Springer, 2012. – 298 p. – (Springer Tracts Mod. Phys.). https://doi.org/10.1007/978-3-642-34886-0; Boos, E. E. A method of evaluation massive Feynman diagrams / E. E. Boos, A. I. Davydychev // Theor. Math. Phys. – 1991. – Vol. 89. – P. 1052–1064. https://doi.org/10.1007/bf01016805; Lautrup, B. E. Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron / B. E. Lautrup, E. de Rafael // Phys. Rev. – 1968. – Vol. 174. – P. 1835–1842. https://doi.org/10.1103/PhysRev.174.1835; Laursen, M. L. The n-bubble diagram contribution to g-2 / M. L. Laursen, M. A. Samuel // J. Math. Phys. – 1981. – Vol. 22, № 5. – P. 1114–1126. https://doi.org/10.1063/1.524995; Лашкевич, В. И. О вкладах высших порядков в аномальные магнитные моменты лептонов от поляризации вакуума лептонными петлями / В. И. Лашкевич, О. П. Соловцова, О. В. Теряев // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2022. – Т. 58, № 4. – С. 412–423. https://doi.org/10.29235/1561-2430-2022-58-4-412-423; CODATA recommended values of the fundamental physical constants: 2018 / E. Tiesinga [et al.] // Rev. Mod. Phys. – 2021. – Vol. 93, № 2. – Art. ID 025010. https://doi.org/10.1103/RevModPhys.93.025010; Laporta, S. Analytical and numerical contributions of some tenth-order graphs containing vacuum polarization insertions to the muon (g−2) in QED / S. Laporta // Phys. Lett. B. – 1994. – Vol. 328, № 3–4. – P. 522–527. https://doi.org/10.1016/0370-2693(94)91513-x; https://vestifm.belnauka.by/jour/article/view/748

  3. 3
  4. 4
  5. 5
    Academic Journal

    Συγγραφείς: N. Belevtsov S., Н. Белевцов С.

    Πηγή: Mathematics and Mathematical Modeling; № 6 (2020); 13-27 ; Математика и математическое моделирование; № 6 (2020); 13-27 ; 2412-5911

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mathmelpub.ru/jour/article/view/228/190; Fractional dynamics: recent advances / Ed. by J. Klafter, S.C. Lim, R. Metzler. New Jersey: World Scientific, 2012. 515 p. DOI:10.1142/8087; Uchaikin V.V., Sibatov R. Fractional kinetics in solids: anomalous charge transport in semiconductors, dielectrics and nanosystems. New Jersey: World Scientific, 2013. 257 p. DOI:10.1142/8185; Caffarelli L., Vazquez J.L. Nonlinear porous medium flow with fractional potential pressure // Archive for Rational Mechanics and Analysis. 2011. Vol. 202. No. 2. Pp. 537-565. DOI:10.1007/s00205-011-0420-4; Biler P., Imbert C., Karch G. Barenblatt profiles for a nonlocal porous medium equation // Comptes Rendus Mathematique. 2011. Vol. 349. No. 11-12. Pp. 641-645. DOI:10.1016/j.crma.2011.06.003; Albinali A., Ozkan E. Anomalous diffusion approach and field application for fractured nano-porous reservoirs // SPE Annual technical conf. and exhibition (Dubai, UAE, September 26-28, 2016): Papers. Houston, TX: Soc. of Petroleum Engineers, 2016. Paper number SPE-181255-MS. DOI:10.2118/181255-MS; Raghavan R., Chen C., DaCunha J.J. Nonlocal diffusion in fractured rocks // SPE Reservoir Evaluation & Engineering. 2017. Vol. 20. No. 2. Pp. 383-393. DOI:10.2118/184404-PA; Yamazaki K. Remarks on the method of modulus of continuity and the modified dissipative Porous Media Equation // J. of Differential Equations. 2011. Vol. 250. No. 4. Pp. 1909-1923. DOI:10.1016/j.jde.2010.11.007; Arbogast T., Douglas J. Jr., Hornung U. Derivation of the double porosity model of single phase flow via homogenization theory // SIAM J. on Mathematical Analysis. 1990. Vol. 21. No. 4. Pp. 823-836. DOI:10.1137/0521046; Samko S.G., Kilbas A.A, Marichev O.I. Fractional integrals and derivatives: theory and applications. Phil.: Gordon and Breach Science Publ., 1993. 976 p.; Zhangxin Chen. Formulations and numerical methods of the black oil model in porous media // SIAM J. on Numerical Analysis. 2000. Vol. 38. No. 2. Pp. 489-514. DOI:10.1137/S0036142999304263; Advanced petroleum reservoir simulation: towards developing reservoir emulators / M.R. Islam a.o. 2nd ed. Hoboken: Wiley, 2016. 572 p.; Kilbas A.A., Saigo M. H-transforms: theory and applications. Boca Raton, FL: Chapman & Hall / CRC, 2004. 389 p.; Belevtsov N.S., Lukashchuk S.Yu. Lie group analysis of 2‐dimensional space‐fractional model for flow in porous media // Mathematical Methods in the Applied Sciences. 2018. Vol. 41. No. 18. Pp. 9123-9133. DOI:10.1002/mma.5078; Belevtsov N.S., Lukashchuk S.Yu. Symmetry group classification and conservation laws of the nonlinear fractional diffusion equation with the Riesz potential // Symmetry. 2020. Vol. 12. No. 1. Pp. 178-194. DOI:10.3390/sym12010178; Рубин Б.С. Одномерное представление, обращение и некоторые свойства потенциалов Рисса от радиальных функций // Математические заметки. 1983. Т. 34. №. 4. С. 521-533.; Tables of integral transforms / Based and compiled by H. Bateman. In 2 vols. N.Y.: McGraw-Hill, 1954.; Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amst.; Boston: Elsevier, 2006. 523 p.; https://www.mathmelpub.ru/jour/article/view/228

  6. 6
  7. 7
  8. 8
    Academic Journal

    Relation: Веснік Полацкага дзяржаўнага ўніверсітэта. Серыя C, Фундаментальныя навукі; Herald of Polotsk State University. Series C, Fundamental sciences; Вестник Полоцкого государственного университета. Серия C, Фундаментальные науки; Серия C, Фундаментальные науки;2019. - № 4; https://elib.psu.by/handle/123456789/23751; 517.983

    Διαθεσιμότητα: https://elib.psu.by/handle/123456789/23751

  9. 9
  10. 10
    Book

    Συνεισφορές: Сибирский федеральный университет, Институт космических и информационных технологий, Антипова, Ирина Августовна

    Σύνδεσμος πρόσβασης: https://openrepository.ru/article?id=455349

  11. 11
  12. 12
  13. 13
    Academic Journal

    Συγγραφείς: Скоромник, О. В.

    Relation: Веснік Полацкага дзяржаўнага ўніверсітэта. Серыя C, Фундаментальныя навукі; Herald of Polotsk State University. Series C, Fundamental sciences; Вестник Полоцкого государственного университета. Серия C, Фундаментальные науки; Серия C, Фундаментальные науки;2018. - № 4; https://elib.psu.by/handle/123456789/22240; 517.983

    Διαθεσιμότητα: https://elib.psu.by/handle/123456789/22240

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Συγγραφείς: E. A. Timofeev, Е. А. Tимофеев

    Πηγή: Modeling and Analysis of Information Systems; Том 23, № 2 (2016); 185-194 ; Моделирование и анализ информационных систем; Том 23, № 2 (2016); 185-194 ; 2313-5417 ; 1818-1015

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mais-journal.ru/jour/article/view/328/319; Bari N.K., Trigonometric Series, Holt, Rinehart and Winston, New York, 1967.; Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008.; Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58.; Erd ̈os P., “On a Family of Symmetric Bernoulli Convolutions”, American Journal of Mathematics, 61:4 (1995), 974–976.; Erd ̈os P., “On the Smoothness Properties of a Family of Bernoulli Convolutions”, American Journal of Mathematics, 62:1 (1940), 180–186.; Garsia A.M., “Arithmetic Properties of Bernoulli Convolutions”, Transactions of the American Mathematical Society, 102:3 (1962), 409–432.; Jessen B., Wintner A., “Distribution Functions and the Riemann Zeta Function”, Transactions of the American Mathematical Society, 38:1 (1935), 48–88.; Peres Y., Schlag W., and Solomyak B., “Sixty years of Bernoulli convolutions”, Fractals and Stochastics II (C. Bandt, S. Graf and M. Zaehle, eds.), Birkhauser, 2000, 39–65.; Salem R., “Sets of Uniqueness and Sets of Multiplicity”, Transactions of the American Mathematical Society, 54:2 (1943), 218–228.; Salem R., “Sets of Uniqueness and Sets of Multiplicity. II”, Transactions of the American Mathematical Society, 56:1 (1944), 32–49.; Salem R., “Rectifications to the Papers Sets of Uniqueness and Sets of Multiplicity, I and II”, Transactions of the American Mathematical Society, 63:3 (1948), 595–598.; Solomyak B., “On the Random Series ±λn (an Erdos Problem)”, The Annals of Mathematics 2nd Ser., 142:3 (1995), 611–625.; Wintner A., “On Convergent Poisson Convolutions”, American Journal of Mathematics, 57:4 (1935), 827–838.; Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley & Sons, New York, 2001.; Gradstein I.S., Ryzhik I.M., Table of integrals, Series, and Products, Academic Press, 1994.

  19. 19
    Academic Journal

    Συγγραφείς: E. A. Timofeev, Е. А. Tимофеев

    Πηγή: Modeling and Analysis of Information Systems; Том 23, № 5 (2016); 595-602 ; Моделирование и анализ информационных систем; Том 23, № 5 (2016); 595-602 ; 2313-5417 ; 1818-1015

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mais-journal.ru/jour/article/view/393/358; Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008.; Lomnicki Z., Ulam S. E., “Sur la theorie de la mesure dans les espaces combinatoires et son application au calcul des probabilites. I. Variables independantes”, Fundamenta Mathematicae, 23:1 (1934), 237–278.; NIST Handbook of Mathematical Functions, ed. Olver F.W.J., Cambridge University Press, 2010.; Salem R., “On some singular monotonic functions which are strictly increasing,”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439.; De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298.; Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58.; Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley & Sons, New York, 2001.; Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994.; Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, More Special Functions, 3, Gordon & Breach Sci., New York, 1990.; Timofeev E. A., “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269.; Тимофеев Е. А., “Асимптотика моментов сингулярной функции Лебега”, Моделирование и анализ информационных систем, 22:5 (2015), 723–730.

  20. 20
    Academic Journal

    Συγγραφείς: E. A. Timofeev, Е. А. Tимофеев

    Πηγή: Modeling and Analysis of Information Systems; Том 23, № 1 (2016); 5-11 ; Моделирование и анализ информационных систем; Том 23, № 1 (2016); 5-11 ; 2313-5417 ; 1818-1015

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mais-journal.ru/jour/article/view/302/307; Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008.; Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58.; Jeffrey C. Lagarias, “The Takagi function and its properties”, RIMS Koˆkyuˆroku Bessatsu, B34 (2012), 153–189.; Pieter C. Allaart, Kiko Kawamura, “The Takagi Function: a Survey”, Real Anal. Exchange, 37:1 (2011), 1–54.; De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298.; Kairies H.-H., Darsow W. F., Frank M. J., “Functional equations for a function of van der Waerden type”, Rad. Mat., 4:2 (1988), 361–374.; Oberhettinger F., Tables of Mellin Transforms, Springer–Verlag, New York, 1974.; Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley & Sons, New York, 2001.; Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994.