Showing 1 - 20 results of 26 for search '"ПРЕНАТАЛЬНОЕ ВОЗДЕЙСТВИЕ"', query time: 0.64s Refine Results
  1. 1
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания № 075-01393-23-04 Минобрнауки России.

    Source: Medical Immunology (Russia); Том 27, № 1 (2025); 75-86 ; Медицинская иммунология; Том 27, № 1 (2025); 75-86 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2935/2071; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13177; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13178; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13179; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13180; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13181; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13182; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13183; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13208; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13209; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13210; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13211; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13212; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13749; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13750; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13826; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13873; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13874; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2935/13899; Айрапетянц М.Г. Последствия алкогольной интоксикации для потомства. M.: Наука, 1989. 124 с.; Айрапетов М.И., Ереско С.О., Бычков Е.Р., Лебедев А.А., Шабанов П.Д. Экспрессия гена Hmgb1 изменяется в стриатуме и амигдале мозга крыс при длительной алкоголизации и отмене этанола // Биомедицинская химия, 2021. Т. 67, № 1. С. 95-99.; Айрапетов М.И., Ереско С.О., Лебедев А.А., Бычков Е.Р., Шабанов П.Д. Роль TOLL-подобных рецепторов в нейроиммунологии алкоголизма // Биомедицинская химия, 2020. Т. 66, № 3. С. 208-215.; Айрапетов М.И., Ереско С.О., Бычков Е.Р., Лебедев А.А., Шабанов П.Д. Уровень экспрессии Tollподобных рецепторов изменяется в эмоциогенных структурах мозга крыс в условиях длительной алкоголизации и при отмене этанола // Медицинская иммунология, 2020. Т. 22, № 1. С. 77-86. doi:10.15789/1563-0625-EOT-1836.; Айрапетов М.И., Ереско С.О., Кочкин Д.В., Бычков Е.Р., Лебедев А.А., Шабанов П.Д. Гинзенозиды влияют на систему Toll-подобных рецепторов в структурах головного мозга крыс в условиях отмены длительной алкоголизации // Биомедицинская химия, 2022. Т. 68, № 6. С. 459-469.; Airapetov M., Eresko S., Ignatova P., Lebedev A., Bychkov E., Shabanov P. Effect of rifampicin on TLR4- signaling pathways in the nucleus accumbens of the rat brain during abstinence of long-term alcohol treatment. Alcohol. Alcohol., 2024, Vol. 59, no. 3, agae016. doi:10.1093/alcalc/agae016.; Alfonso-Loeches S., Pascual-Lucas M., Blanco A.M., Sanchez-Vera I., Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J. Neurosci., 2010, Vol. 30, no. 24, pp. 8285-8295.; Ali A.E., Mahdy H.M., Elsherbiny D.M., Azab S.S. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem. Pharmacol., 2018, Vol. 156, pp. 431-443.; Bell R.L., Hauser S.R., McClintick J., Rahman S., Edenberg H.J., Szumlinski K.K., McBride W.J. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings. Prog. Mol. Biol. Transl. Sci., 2016, Vol. 137, pp. 41-85.; Bi W., Cheng X., Zeng Z., Zhou R., Luo R., Zhang J., Zhu L. Rifampicin ameliorates lipopolysaccharideinduced cognitive and motor impairments via inhibition of the TLR4/MyD88/NF-B signaling pathway in mice. Neurol. Res., 2021, Vol. 43, no. 5, pp. 358-371.; Bi W., Zhu L., Jing X., Zeng Z., Liang Y., Xu A., Liu J., Xiao S., Yang L., Shi Q., Guo L., Tao E. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Mol. Med. Rep., 2014, Vol. 10, no. 4, pp. 1793-1799.; Blednov Y.A., Ponomarev I., Geil C., Bergeson S., Koob G.F., Harris R.A. Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict. Biol., 2012, Vol. 17, no. 1, pp. 108-120.; Bodnar T.S., Raineki C., Wertelecki W., Yevtushok L., Plotka L., Zymak-Zakutnya N., Honerkamp-Smith G., Wells A., Rolland M., Woodward T.S., Coles C.D., Kable J.A., Chambers C.D., Weinberg J. Altered maternal immune networks are associated with adverse child neurodevelopment: Impact of alcohol consumption during pregnancy. Brain Behav. Immun., 2018, Vol. 73, pp. 205-215.; Caraci F., Gulisano W., Guida C.A., Impellizzeri A.A.R., Drago F., Puzzo D., Palmeri A.A. Key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci. Rep., 2015, Vol. 5, 11252. doi:10.1038/srep11252.; Chen T., Chen C., Zhang Z., Zou Y., Peng M., Wang Y. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice. Brain Behav. Immun., 2016, Vol. 56, pp. 42-55.; Chin P.Y., Dorian C., Sharkey D.J., Hutchinson M.R., Rice K.C., Moldenhauer L.M., Robertson S.A. Tolllike receptor-4 antagonist (+)-naloxone confers sexually dimorphic protection from inflammation-induced fetal programming in mice. Endocrinology, 2019, Vol. 160, no. 11, pp. 2646-2662.; Clabough E., Ingersoll J., Reekes T., Gleichsner A., Ryan A. Acute ethanol exposure during synaptogenesis rapidly alters medium spiny neuron morphology and synaptic protein expression in the dorsal striatum. Int. J. Mol. Sci., 2021, Vol. 23, no. 1, pp. 290.; Coleman L.G. Jr, Zou J., Crews F.T. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanolinduced neurotoxicity via TLR7. J. Neuroinflammation, 2017, Vol. 14, no. 1, 22. doi:10.1186/s12974-017-0799-4.; Couch A.C.M., Berger T., Hanger B., Matuleviciute R., Srivastava D.P., Thuret S., Vernon A.C. Maternal immune activation primes deficiencies in adult hippocampal neurogenesis. Brain Behav. Immun., 2021, Vol. 97, pp. 410-422.; Darbinian N., Darbinyan A., Merabova N., Bajwa A., Tatevosian G., Martirosyan D., Zhao H., Selzer M.E., Goetzl L. Ethanol-mediated alterations in oligodendrocyte differentiation in the developing brain. Neurobiol. Dis., 2021, Vol. 148, 105181. doi:10.1016/j.nbd.2020.105181.; Donzis E.J., Tronson N.C. Modulation of learning and memory by cytokines: Signaling mechanisms and long-term consequences. Neurobiol. Learn. Mem., 2014, Vol. 115, pp. 68-77.; Ferguson C., McKay M., Harris R.A., Homanics G.E. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation. Alcohol, 2013, Vol. 47, no. 8, pp. 595-599.; Gano A., Lebonville C.L., Becker H.C. TLR3 activation with poly I:C exacerbates escalated alcohol consumption in dependent male C57BL/6J mice. Am. J. Drug Alcohol Abuse, 2023, Vol. 49, pp. 290-301.; Holmes V.A., Wallace J.M., Gilmore W.S., McFaul P., Alexander H.D. Plasma levels of the immunomodulatory cytokine interleukin-10 during normal human pregnancy: a longitudinal study. Cytokine, 2003, Vol. 21, pp. 265-269.; Hong A.R., Jang J.G., Chung Y.C., Won S.Y., Jin B.K. Interleukin 13 on Microglia is Neurotoxic in Lipopolysaccharide-injected Striatum in vivo. Exp. Neurobiol., 2022, Vol. 31, no. 1, pp. 42-53.; Kaul D., Habbel P., Derkow K., Krüger C., Franzoni E., Wulczyn F.G., Bereswill S., Nitsch R., Schott E., Veh R., Naumann T., Lehnardt S. Expression of Toll-like receptors in the developing brain. PLoS One, 2012, Vol. 7, no. 5, e37767. doi:10.1371/journal.pone.0037767.; Lawrimore C.J., Coleman L.G., Crews F.T. Ethanol induces interferon expression in neurons via TRAIL: role of astrocyte-to-neuron signaling. Psychopharmacology (Berl.), 2019, Vol. 236, no. 10, pp. 2881-2897.; Lawrimore C.J., Coleman L.G., Zou J., Crews F.T. Ethanol induction of innate immune signals across BV2 microglia and SH-SY5Y neuroblastoma involves induction of IL-4 and IL-13. Brain Sci., 2019, Vol. 9, no. 9, 228. doi:10.3390/brainsci9090228.; Li Q., Liu D., Pan F., Ho C.S.H., Ho R.C.M. Ethanol exposure induces microglia activation and neuroinflammation through TLR4 activation and SENP6 modulation in the adolescent rat hippocampus. Neural Plast., 2019, Vol. 2019, 1648736. doi:10.1155/2019/1648736.; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods., 2001, Vol. 25, no. 4, pp. 402-408.; Lobo-Silva D., Carriche G.M., Gil Castro A., Roque S., Saraiva M. Balancing the immune response in the brain: IL-10 and its regulation. J. Neuroinflammation, 2016, Vol. 13, 2081. doi:10.1186/s12974-016-0763-8.; MacDowell K.S., Munarriz-Cuezva E., Caso J.R., Madrigal J.L., Zabala A., Meana J.J., García-Bueno B., Leza J.C. Paliperidone reverts Toll-like receptor 3 signaling pathway activation and cognitive deficits in a maternal immune activation mouse model of schizophrenia. Neuropharmacology, 2017, Vol. 116, pp. 196-207.; Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, Vol. 25, pp. 677-686.; Maroso M., Balosso S., Ravizza T., Liu J., Bianchi M.E., Vezzani A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J. Intern. Med., 2011, Vol. 270, no. 4, pp. 319-326.; Mattson S.N., Bernes G.A., Doyle L.R. Fetal alcohol spectrum disorders: a review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol Clin. Exp. Res., 2019, Vol. 43, no. 6, pp. 1046-1062.; Meyer U., Murray P.J., Urwyler A., Yee B.K., Schedlowski M., Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated antiinflammatory signaling. Mol. Psychiatry, 2008, Vol. 13, pp. 208-221.; Mori S., Sugama S., Nguyen W., Michel T., Sanna M.G., Sanchez-Alavez M., Cintron-Colon R., Moroncini G., Kakinuma Y., Maher P., Conti B. Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress. J. Neuroinflammation, 2017, Vol. 14, 88. doi:10.1186/s12974-017-0862-1; Mousa A., Seiger A., Kjaeldgaard A., Bakhiet M. Human first trimester forebrain cells express genes for inflammatory and anti-inflammatory cytokines. Cytokine, 1999, Vol. 11, pp. 55–60.; Nolvi S., Merz E.C., Kataja E.L., Parsons C.E. Prenatal Stress and the Developing Brain: Postnatal Environments Promoting Resilience. Biol. Psychiatry, 2023, Vol. 93, no. 10, pp. 942-952.; Ochoa-Repáraz J., Rynda A., Ascón M.A., Yang X., Kochetkova I., Riccardi C., Callis G., Trunkle T., Pascual D.W. IL-13 production by regulatory T cells protects against experimental autoimmune encephalomyelitis independently of autoantigen. J. Immunol., 2008, Vol. 181, pp. 954-968.; O’Loughlin E., Pakan J.M.P., Yilmazer-Hanke D., McDermott K.W. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J. Neuroinflammation, 2017, Vol. 14, no. 1, 212. doi:10.1186/s12974-017-0981-8.; Qin L., Zou J., Barnett A., Vetreno R.P., Crews F.T., Coleman L.G.Jr. TRAIL mediates neuronal death in AUD: a link between neuroinflammation and neurodegeneration. Int. J. Mol. Sci., 2021, Vol. 22, no. 5, 2547. doi:10.3390/ijms22052547.; Riley E.P., Infante M.A., Warren K.R. Fetal alcohol spectrum disorders: an overview. Neuropsychol. Rev., 2011, Vol. 21, pp. 73-78.; Rizzo M.D., Crawford R.B., Bach A., Sermet S., Amalfitano A., Kaminski N.E. Imiquimod and interferonalpha augment monocyte-mediated astrocyte secretion of MCP-1, IL-6 and IP-10 in a human co-culture system. J. Neuroimmunol., 2019, Vol. 333, 576969. doi:10.1016/j.jneuroim.2019.576969.; Shenoda B.B. An overview of the mechanisms of abnormal GABAergic interneuronal cortical migration associated with prenatal ethanol exposure. Neurochem. Res., 2017, Vol. 42, no. 5, pp. 1279-1287.; Shin W.H., Lee D.Y., Park K.W., Kim S.U., Yang M.S., Joe E.H., Jin B.K. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia, 2004, Vol. 46, no. 2, pp. 142-152.; Shukla P.K., Meena A.S., Rao R., Rao R. Deletion of TLR-4 attenuates fetal alcohol exposure-induced gene expression and social interaction deficits. Alcohol, 2018, Vol. 73, pp. 73-78.; Siegel A., Zalcman S.S. The neuroimmunological basis of behavior and mental disorders. New York: Springer, 2008. 454 p.; Sowell K.D., Uriu-Adams J.Y., Van de Water J., Chambers C.D., Coles C.D., Kable J.A., Yevtushok L., Zymak-Zakutnya N., Wertelecki W., Keen C.L. Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). Implications of altered maternal cytokine concentrations on infant outcomes in children with prenatal alcohol exposure. Alcohol, 2018, Vol. 68, pp. 49-58.; Usui N., Kobayashi H., Shimada S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int. J. Mol. Sci., 2023, Vol. 24, no. 6, 5487.; Vetreno R.P., Crews F.T. Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and toll-like receptors in the adult prefrontal cortex. Neuroscience, 2012, Vol. 226, pp. 475-488.; Vivien D., Ali C. Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev., 2006, Vol. 17, pp. 121-128.; Vizuete A.F.K., Mussulini B.H., Zenki K.C., Baggio S., Pasqualotto A., Rosemberg D.B., Bogo M.R., Oliveira D.L., Rico E.P. Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain. Neurotoxicology, 2021, Vol. 88, pp. 57-64.; Wang P., Liu B.Y., Wu M.M., Wei X.Y., Sheng S., You S.W., Shang L.X., Kuang F. Moderate prenatal alcohol exposure suppresses the TLR4-mediated innate immune response in the hippocampus of young rats. Neurosci. Lett., 2019, Vol. 699, pp. 77-83.; Wang X., Grace P.M., Pham M.N., Cheng K., Strand K.A., Smith C., Li J., Watkins L.R., Yin H. Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J., 2013, Vol. 27, no. 7, pp. 2713-2722.; Woods R.M., Lorusso J.M., Potter H.G., Neill J.C., Glazier J.D., Hager R. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neurosci. Biobehav. Rev., 2021, Vol. 129, pp. 389-421.; Zahednasab H., Firouzi M., Kaboudanian-Ardestani S., Mojallal-Tabatabaei Z., Karampour S., Keyvani H. The protective effect of rifampicin on behavioral deficits, biochemical, and neuropathological changes in a cuprizone model of demyelination. Cytokine, 2019, Vol. 113, pp. 417-426.; Zhou X., Spittau B., Krieglstein K. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J. Neuroinflammation, 2012, Vol. 9, 210.; https://www.mimmun.ru/mimmun/article/view/2935

  2. 2
    Academic Journal

    Source: Pharmacokinetics and Pharmacodynamics; № 2 (2024); 34-42 ; Фармакокинетика и Фармакодинамика; № 2 (2024); 34-42 ; 2686-8830 ; 2587-7836

    File Description: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/417/374; Rogge N., Janssen J. The economic costs of autism spectrum disorder: A literature review. J Autism Dev Disord. 2019;49(7):2873-2900. doi:10.1007/s10803-019-04014-z.; Levy S.E., Mandell D.S., Schultz R.T. Autism. Lancet Lond Engl. 2009;374(9701):1627-1638. doi:10.1016/S0140-6736(09)61376-3.; Hossain M.M., Khan N., Sultana A., et al. Prevalence of comorbid psychiatric disorders among people with autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Psychiatry Res. 2020;287:112922. doi:10.1016/j.psychres.2020.112922.; Reynolds S., Millette A., Devine D.P. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev Neurosci. 2012;34(2-3):258-267. doi:10.1159/000336646.; Mirza R., Sharma B. Benefits of Fenofibrate in prenatal valproic acid- induced autism spectrum disorder related phenotype in rats. Brain Res Bull. 2019;147:36-46. doi:10.1016/j.brainresbull.2019.02.003.; Nucera B., Brigo F., Trinka E., Kalss G. Treatment and care of women with epilepsy before, during, and after pregnancy: a practical guide. Ther Adv Neurol Disord. 2022; 15:17562864221101687. doi:10.1177/17562864221101687.; Roullet F.I., Lai J.K.Y., Foster J.A. In utero exposure to valproic acid and autism--a current review of clinical and animal studies. Neurotoxicol Teratol. 2013;36:47-56. doi:10.1016/j.ntt.2013.01.004.; Kini U. Fetal valproate syndrome: A review. Paediatr Perinat Drug Ther. 2006;7:123-130. doi:10.1185/146300906X112908.; Balmer N.V., Weng M.K., Zimmer B., et al. Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet. 2012;21(18):4104- 4114. doi:10.1093/hmg/dds239.; Vasilyeva T.A., Voskresenskaya A.A., Pozdeyeva R., et al. Pax6 gene characteristic and causative role of pax6 mutations in inherited eye patologies. Russian Journal of Genetics. 2018;54(9):995-1002. doi:10.1134/S1022795418090156.; Дмитренко Д.В., Шнайдер Н.А., Строцкая И.Г. и др. Механизмы вальпроат-индуцированного тератогенеза. Неврология, нейропси- хиатрия, психосоматика. 2017;(спецвыпуск 1):89-96. doi:10.14412/2074-2711-2017-1S-89-96.; Rahman M., Awosika A.O., Nguyen H. Valproic acid. In: StatPearls. 2023 [cited 2023 Oct 12]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK559112/.; Pohl-Guimaraes F., Krahe T.E., Medina A.E. Early valproic acid exposure alters functional organization in the primary visual cortex. Exp Neurol. 2011;228(1):138-148. doi:10.1016/j.expneurol.2010.12.025.; DiLiberti J.H., Farndon P.A., Dennis N.R., Curry C.J. The fetal valproate syndrome. Am J Med Genet. 1984 Nov;19(3):473-81. doi:10.1002/ajmg.1320190308.; Rodier P.M., Ingram J.L., Tisdale B., et al. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol. 1996 Jun 24;370(2):247-61. doi:10.1002/(SICI)1096- 9861(19960624)370:23.0.CO;2-2.; Clancy B., Finlay B.L., Darlington R.B., Anand K. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007; 28(5):10.1016/j.neuro.2007.01.014. doi:10.1016/j.neuro.2007.01.014.; Fereshetyan K., Chavushyan V., Danielyan M., Yenkoyan K. Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep. 2021 Dec 6;11(1):23471. doi:10.1038/s41598-021-02994-6.; Kim K.C., Kim P., Go H.S., et al. The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett. 2011;201(2):137-142. doi:10.1016/j.toxlet.2010.12.018.; Oguchi-Katayama A., Monma A., Sekino Y., et al. Comparative gene expression analysis of the amygdala in autistic rat models produced by pre- and post-natal exposures to valproic acid. J Toxicol Sci. 2013;38(3):391-402. doi:10.2131/jts.38.391.; Wagner G.C., Reuhl K.R., Cheh M., et al. A new neurobehavioral model of autism in mice: Pre- and postnatal exposure to sodium valproate. J Autism Dev Disord. 2006;36(6):779-793. doi:10.1007/s10803-006-0117-y.; Yusuf S., Adelaiye A., Abdulkarim A. Effect of Ziziphus mauritiana (L.) seed extracts on spatial recognition memory of rats as measured by the Y-maze test. J Nat Prod. 2009;2.; Hacquemand R., Choffat N., Jacquot L., Brand G. Comparison between low doses of TMT and cat odor exposure in anxiety- and fear-related behaviors in mice. Behav Brain Res. 2013;238:227-31. doi:10.1016/j.bbr.2012.10.014.; Kaidanovich-Beilin O., Lipina T., Vukobradovic I., et al. Assessment of social interaction behaviors. J Vis Exp JoVE. 2011;(48):2473. doi:10.3791/2473.; Elnahas E.M., Abuelezz S.A., Mohamad M.I., et al. Validation of prenatal versus postnatal valproic acid rat models of autism: A behavioral and neurobiological study. Prog Neuropsychopharmacol Biol Psychiatry. 2021;108:110185. doi:10.1016/j.pnpbp.2020.110185.; Gąssowska-Dobrowolska M., Cieślik M., Czapski G.A., et al. Prenatal exposure to valproic acid affects microglia and synaptic ultrastructure in a brain-region-specific manner in young-adult male rats: relevance to autism spectrum disorders. Int J Mol Sci. 2020;21(10):3576. doi:10.3390/ijms21103576.; Mohammadi S., Asadi-Shekaari M., Basiri M., et al. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology (Berl). 2020;237(1):199-208. doi:10.1007/s00213-019-05357-2.; Varghese M., Keshav N., Jacot-Descombes S., et al. Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathol (Berl). 2017;134(4):537-566. doi:10.1007/s00401-017-1736-4.; Morakotsriwan N., Wattanathorn J., Kirisattayakul W., Chaisiwamongkol K. Autistic-like behaviors, oxidative stress status, and histopathological changes in cerebellum of valproic acid rat model of autism are improved by the combined extract of purple rice and silkworm pupae. Oxid Med Cell Longev. 2016;2016:3206561. doi:10.1155/2016/3206561.; Olexová L., Štefánik P., Kršková L. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats — An animal model of autism. Neurosci Lett. 2016;629:9-14. doi:10.1016/j.neulet.2016.06.035.; Brusque A.M., Mello C.F., Buchanan D.N., et al. Effect of chemically induced propionic acidemia on neurobehavioral development of rats. Pharmacol Biochem Behav. 1999;64(3):529-534. doi:10.1016/s0091-3057(99)00127-6.; Montanari M/, Martella G/, Bonsi P/, Meringolo M. Autism spectrum disorder: Focus on glutamatergic neurotransmission. Int J Mol Sci. 2022;23(7):3861. doi:10.3390/ijms23073861.; Zohny S.M., Habib M.Z., Mohamad M.I., et al. Memantine/Aripiprazole Combination Alleviates Cognitive Dysfunction in Valproic Acid Rat Model of Autism: Hippocampal CREB/BDNF Signaling and Glutamate Homeostasis. Neurotherapeutics. 2023 Mar;20(2):464-483. doi:10.1007/s13311-023-01360-w.; Russo A., Albert M., Judith B. Decreased phosphorylated CREB and AKT in individuals with autism normalized after zinc therapy. Acad J Pediatr Neonatol. 2017;5(3):1-4. doi:10.19080/AJPN.2017.05.555721.; Baquet Z.C., Gorski J.A., Jones K.R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci. 2004 Apr 28;24(17):4250-8. doi:10.1523/JNEUROSCI.3920-03.2004.; Barbosa A.G., Pratesi R., Paz G.S.C., et al. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci Rep. 2020 Oct 15;10(1):17348. doi:10.1038/s41598-020-74239-x.; Spratt E.G., Granholm A.C., Carpenter L.A., et al. Pilot Study and Review: Physiological Differences in BDNF, a Potential Biomarker in Males and Females with Autistic Disorder. Int Neuropsychiatr Dis J. 2015;3(1): 19-26. doi:10.9734/INDJ/2015/12118.; Bittigau P., Sifringer M., Ikonomidou C. Antiepileptic drugs and apoptosis in the developing brain. Ann N Y Acad Sci. 2003;993:103-14; discussion 123-4. doi:10.1111/j.1749-6632.2003.tb07517.x.; Fukuchi M., Nii T., Ishimaru N., et al. Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res. 2009;65(1):35-43. doi:10.1016/j.neures.2009.05.002.; Bennett G.D., Wlodarczyk B., Calvin J.A., et al. Valproic acid-induced alterations in growth and neurotrophic factor gene expression in murine embryos [corrected]. Reprod Toxicol Elmsford N. 2000;14(1):1-11. doi:10.1016/s0890-6238(99)00064-7.; Shi X.Y., Wang J.W., Cui H., et al. Effects of antiepileptic drugs on mRNA levels of BDNF and NT-3 and cell neogenesis in the developing rat brain. Brain Dev. 2010;32(3):229-235. doi:10.1016/j.braindev.2009.03.012.; https://www.pharmacokinetica.ru/jour/article/view/417

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20