Showing 1 - 20 results of 191 for search '"ПРЕЖДЕВРЕМЕННОЕ СТАРЕНИЕ"', query time: 0.86s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Medicine in Kuzbass; Том 23, № 1 (2024): март; 28-34 ; Медицина в Кузбассе; Том 23, № 1 (2024): март; 28-34 ; 2588-0411 ; 1819-0901

    File Description: application/pdf; text/html

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Contributors: The authors are grateful to the Multi-Access Center “Bioinformatics” for access to computing resources under Project FWNR2022-0020 and the Multi-Access Center “Conventional Animal Facility” for access to animals under Projects FWNR-2022-0019 and FWNR-2022-0015.

    Source: Vavilov Journal of Genetics and Breeding; Том 27, № 7 (2023); 794-806 ; Вавиловский журнал генетики и селекции; Том 27, № 7 (2023); 794-806 ; 2500-3259 ; 10.18699/VJGB-23-83

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3979/1766; Aikawa H., Nonaka I., Woo M., Tsugane T., Esaki K. Shaking rat Kawasaki (SRK): a new neurological mutant rat in the Wistar strain. Acta Neuropathol. 1988;76:366-372. DOI 10.1007/BF00686973; Albert F.W., Somel M., Carneiro M., Aximu-Petri A., Halbwax M., Thalmann O., Blanco-Aguiar J.A., Plyusnina I.Z., Trut L., Villafuerte R., Ferrand N., Kaiser S., Jensen P., Paabo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet. 2012;8(9):e1002962. DOI 10.1371/journal.pgen.1002962; Ashraf U.M., Mell B., Jose P.A., Kumarasamy S. Deep transcriptomic profiling of Dahl salt-sensitive rat kidneys with mutant form of Resp18. Biochem. Biophys. Res. Commun. 2021;572:35-40. DOI 10.1016/j.bbrc.2021.07.071; Barykina N.N., Chepkasov I.L., Alekhina T.A., Kolpakov V.G. Selection of Wistar rats for predisposition to catalepsy. Genetika. 1983; 19(12):2014­2021; Bay V., Happ D.F., Ardalan M., Quist A., Oggiano F., Chumak T., Hansen K., Ding M., Mallard C., Tasker R.A., Wegener G. Flinders sensitive line rats are resistant to infarction following transient occlusion of the middle cerebral artery. Brain Res. 2020;1737:146797. DOI 10.1016/j.brainres.2020.146797; Belyaev D.K., Borodin P.M. The influence of stress on variation and its role in evolution. Biologisches Zentralblatt. 1982;101(6):705-714; Bi J., Huang Y., Liu Y. Effect of NOP2 knockdown on colon cancer cell proliferation, migration, and invasion. Transl. Cancer Res. 2019; 8(6):2274-2283. DOI 10.21037/tcr.2019.09.46; Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55(4):611-622. DOI 10.1373/clinchem.2008.112797; Carter C.S., Richardson A., Huffman D.M., Austad S. Bring back the rat! J. Gerontol. A Biol. Sci. Med. Sci. 2020;75(3):405-415. DOI 10.1093/gerona/glz298; Chadaeva I.V., Ponomarenko M.P., Rasskazov D.A., Sharypova E.B., Kashina E.V., Matveeva M.Y., Arshinova T.V., Ponomarenko P.M., Arkova O.V., Bondar N.P., Savinkova L.K., Kolchanov N.A. Candidate SNP markers of aggressiveness­related complications and co­ morbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2016;17(Suppl.14):995. DOI 10.1186/s12864-016-3353­3; Chadaeva I., Ponomarenko P., Rasskazov D., Sharypova E., Kashina E., Kleshchev M., Ponomarenko M., Naumenko V., Savinkova L., Kolchanov N., Osadchuk L., Osadchuk A. Natural selection equally supports the human tendencies in subordination and domination: a genome­wide study with in silico confirmation and in vivo validation in mice. Front. Genet. 2019;10:73. DOI 10.3389/fgene.2019.00073; Chadaeva I., Ponomarenko P., Kozhemyakina R., Suslov V., Bogomolov A., Klimova N., Shikhevich S., Savinkova L., Oshchepkov D., Kolchanov N., Markel A., Ponomarenko M. Domestication explains two-thirds of differential-gene-expression variance between domestic and wild animals; the remaining one-third reflects intraspecific and interspecific variation. Animals. 2021;11(9):2667. DOI 10.3390/ani11092667; Choi J., Lee S., Won J., Jin Y., Hong Y., Hur T.Y., Kim J.H., Lee S.R., Hong Y. Pathophysiological and neurobehavioral characteristics of a propionic acid­mediated autism­like rat model. PLoS One. 2018; 13(2):e0192925. DOI 10.1371/journal.pone.0192925; Cucielo M.S., Cesario R.C., Silveira H.S., Gaiotte L.B., Dos Santos S.A.A., de Campos Zuccari D.A.P., Seiva F.R.F., Reiter R.J., de Almeida Chuffa L.G. Melatonin reverses the warburg-type metabolism and reduces mitochondrial membrane potential of ovarian cancer cells independent of MT1 receptor activation. Molecules. 2022;27(14):4350. DOI 10.3390/molecules27144350; Du H., Xiao G., Xue Z., Li Z., He S., Du X., Zhou Z., Cao L., Wang Y., Yang J., Wang X., Zhu Y. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt­sensitive rats. Biomed. Pharmacother. 2021;141: 111941. DOI 10.1016/j.biopha.2021.111941; Fedoseeva L.A., Dymshits G.M., Markel A.L., Jakobson G.S. Renin system of the kidney in ISIAH rats with inherited stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2009;147(2):177-180. DOI; 1007/s10517-009-0465-7; Fedoseeva L.A., Riazanova M.A., Antonov E.V., Dymshits G.M., Markel A.L. Expression of the renin angiotensin system genes in the kidney and heart of ISIAH hypertensive rats. Biochem. Moscow Suppl. Ser. B. 2011;5(1):37-43. DOI 10.1134/s1990750811010069; Fedoseeva L.A., Klimov L.O., Ershov N.I., Alexandrovich Y.V., Efimov V.M., Markel A.L., Redina O.E. Molecular determinants of the adrenal gland functioning related to stress­sensitive hypertension in ISIAH rats. BMC Genomics. 2016a;17(Suppl.14):989. DOI 10.1186/s12864-016-3354-2; Fedoseeva L.A., Ryazanova M.A., Ershov N.I., Markel A.L., Redina O.E. Comparative transcriptional profiling of renal cortex in rats with inherited stress­induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 2016b;17(Suppl.1):12. DOI 10.1186/s12863-015-0306-9; Fedoseeva L.A., Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Orlov Y.L., Redina O.E. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics. 2019;20(Suppl.3):297. DOI 10.1186/s12864-019-5540­5; Gaitanis J., Nie D., Hou T., Frye R. Developmental regression followed by epilepsy and aggression: a new syndrome in autism spectrum disorder? J. Pers. Med. 2023;13(7):1049. DOI 10.3390/jpm 13071049; Gayday E.A., Gayday D.S. Genetic diversity of experimental mice and rats: history of origin, methods of production and check. Laboratornye Zhivotnye Dlya Nauchnykh Issledovaniy = Laboratory Ani­ mals for Scientific Research. 2019;4:78-85. DOI 10.29296/2618723X-2019-04-09 (in Russian); Gholami K., Loh S.Y., Salleh N., Lam S.K., Hoe S.Z. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence. PLoS One. 2017;12(6): e0176368. DOI 10.1371/journal.pone.0176368; Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M., Soder­ gren E.J., Scherer S., Scott G., Steffen D., Worley K.C., Burch P.E., … Peterson J., Guyer M., Felsenfeld A., Old S., Mockrin S., Collins F; Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493-521. DOI 10.1038/nature02426; Gonzalez-Arto M., Hamilton T.R., Gallego M., Gaspar-Torrubia E., Aguilar D., Serrano-Blesa E., Abecia J.A., Perez-Pe R., MuinoBlanco T., Cebrian-Perez J.A., Casao A. Evidence of melatonin synthesis in the ram reproductive tract. Andrology. 2016;4(1):163-171. DOI 10.1111/andr.12117; Govindarajulu M., Patel M.Y., Wilder D.M., Long J.B., Arun P. Blast exposure dysregulates nighttime melatonin synthesis and signaling in the pineal gland: a potential mechanism of blast­induced sleep disruptions. Brain Sci. 2022;12(10):1340. DOI 10.3390/brainsci12101340; Greenhouse D.D., Festing M.F.W., Hasan S., Cohen A.L. Inbred strains of rats and mutants. In: Hedrich H.J. (Ed.) Genetic Monitoring of Inbred Strains of Rats. Stuttgart: Gustav Fischer Verlag, 1990; 410­480; Gryksa K., Schmidtner A.K., Masís-Calvo M., Rodríguez-Villagra O.A., Havasi A., Wirobski G., Maloumby R., Jägle H., Bosch O.J., Slattery D.A., Neumann I.D. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: a unique model for comorbid depression and social dysfunctions. Neurosci. Biobehav. Rev. 2023;152:105292. DOI 10.1016/j.neubiorev.2023.105292; Gulevich R., Kozhemyakina R., Shikhevich S., Konoshenko M., Herbeck Y. Aggressive behavior and stress response after oxytocin administration in male Norway rats selected for different attitudes to humans. Physiol. Behav. 2019;199:210-218. DOI 10.1016/j.physbeh.2018.11.030; Herbeck Yu.E., Os’kina I.N., Gulevich R.G., Plyusnina I.Z. Effects of maternal methyl­supplemented diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior. Cytol. Genet. (Moscow.). 2010;44(2):108-113. DOI 10.3103/S0095452710020064; Ideno J., Mizukami H., Honda K., Okada T., Hanazono Y., Kume A., Saito T., Ishibashi S., Ozawa K. Persistent phenotypic correction of central diabetes insipidus using adeno-associated virus vector expressing arginine­vasopressin in Brattleboro rats. Mol. Ther. 2003; 8(6):895-902. DOI 10.1016/j.ymthe.2003.08.019; Ilchibaeva T.V., Kondaurova E.M., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression. Behav. Brain Res. 2015;290:45-50. DOI 10.1016/j.bbr.2015.04.041; Ilchibaeva T.V., Tsybko A.S., Kozhemyakina R.V., Naumenko V.S. Expression of apoptosis genes in the brain of rats with genetically defined fear-induced aggression. Mol. Biol. (Moscow). 2016;50(5): 814-820. DOI 10.7868/S0026898416030071; Kang S., Gair S.L., Paton M.J., Harvey E.A. Racial and ethnic differences in the relation between parenting and preschoolers’ externalizing behaviors. Early Educ. Dev. 2023;34(4):823-841. DOI 10.1080/10409289.2022.2074202; Klimov L.O., Fedoseeva L.A., Ryazanova M.A., Dymshits G.M., Markel A.L. Expression of renin-angiotensin system genes in brain structures of ISIAH rats with stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2013;154(3):357-660. DOI 10.1007/s10517-013-1950-6; Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. Genome­wide transcriptome analysis of hypothalamus in rats with inherited stress­induced arterial hypertension. BMC Genet. 2016; 17(Suppl.1):13. DOI 10.1186/s12863-015-0307-8; Klimov L.O., Ryazanova M.A., Fedoseeva L.A., Markel A.L. Effects of brain renin-angiotensin system inhibition in ISIAH rats with inherited stress­induced arterial hypertension. Vavilovskii Zhur nal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017; 21(6):735-741. DOI 10.18699/VJ17.29-o (in Russian); Klimova N.V., Chadaeva I.V., Shichevich S.G., Kozhemyakina R.V. Differential expression of 10 genes in the hypothalamus of two generations of rats selected for a reaction to humans. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(2):208-215. DOI 10.18699/VJ21.50-o; Kolosova N.G., Stefanova N.A., Korbolina E.E., Fursova A.Z., Kozhevnikova O.S. Senescence-accelerated OXYS rats: a genetic mo del of premature aging and age­related diseases. Adv. Gerontol. 2014;4:294-298. DOI 10.1134/S2079057014040146; Kolpakov V.G., Kulikov A.V., Alekhina T.A., Chuguy V.F., Petrenko O.I., Barykina N.N. Catatonia or depression: the GC rat strain as an animal model of psychopathology. Russ. J. Genet. 2004;40(6): 672-678. DOI 10.1023/B:RUGE.0000033315.79449.d4; Kondaurova E.M., Ilchibaeva T.V., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. 5-HT1A receptor gene silencers Freud-1 and Freud-2 are differently expressed in the brain of rats with genetically determined high level of fear­induced aggression or its absence. Behav. Brain Res. 2016;310:20-25. DOI 10.1016/j.bbr.2016.04.050; Kozhevnikova O.S., Korbolina E.E., Ershov N.I., Kolosova N.G. Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 2013;12(11):1745-1761. DOI 10.4161/cc.24825; Lau Y.F., Zhang J. Expression analysis of thirty one Y chromosome genes in human prostate cancer. Mol. Carcinog. 2000;27(4):308­321. DOI 10.1002/(sici)1098-2744(200004)27:43.0.co;2-r; Li G., Lv D., Yao Y., Wu H., Wang J., Deng S., Song Y., Guan S., Wang L., Ma W., Yang H., Yan L., Zhang J., Ji P., Zhang L., Lian Z., Liu G. Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota. FASEB J. 2021;35(9):e21783. DOI 10.1096/fj.202100651r; Li W., Wang X., Fan W., Zhao P., Chan Y.C., Chen S., Zhang S., Guo X., Zhang Y., Li Y., Cai J., Qin D., Li X., Yang J., Peng T., Zychlinski D., Hoffmann D., Zhang R., Deng K., Ng K.M., Menten B., Zhong M., Wu J., Li Z., Chen Y., Schambach A., Tse H.F., Pei D., Esteban M.A. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes. Hum. Mol. Genet. 2012;21(1):32-45. DOI 10.1093/hmg/ddr435; Liddelow S.A., Dziegielewska K.M., Ek C.J., Habgood M.D., Bauer H., Bauer H.C., Lindsay H., Wakefield M.J., Strazielle N., Kratzer I., Mollgard K., Ghersi-Egea J.F., Saunders N.R. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One. 2013;8(7):e65629. DOI 10.1371/journal.pone.0065629; Liu W., Huang Z., Xia J., Cui Z., Li L., Qi Z., Liu W. Gene expression profile associated with Asmt knockout-induced depression-like behaviors and exercise effects in mouse hypothalamus. Biosci. Rep. 2022;42(7):bsr20220800. DOI 10.1042/bsr20220800; Liu X., Zhan Y., Xu W., Liu L., Liu X., Da J., Zhang K., Zhang X., Wang J., Liu Z., Jin H., Zhang B., Li Y. Characterization of transcriptional landscape in bone marrow­derived mesenchymal stromal cells treated with aspirin by RNA­seq. PeerJ. 2022;10:e12819. DOI 10.7717/peerj.12819; Liu Y., Xiang J., Liao Y., Peng G., Shen C. Identification of tryptophan metabolic gene­related subtypes, development of prognostic models, and characterization of tumor microenvironment infiltration in gliomas. Front. Mol. Neurosci. 2022;15:1037835. DOI 10.3389/fnmol.2022.1037835; Lu Z. PubMed and Beyond: A Survey of Web Tools for Searching Biomedical Literature. Database (Oxford). 2011;2011:baq036. DOI 10.1093/database/baq036; Lv J.W., Zheng Z.Q., Wang Z.X., Zhou G.Q., Chen L., Mao Y.P., Lin A.H., Reiter R.J., Ma J., Chen Y.P., Sun Y. Pan-cancer genomic analyses reveal prognostic and immunogenic features of the tumor melatonergic microenvironment across 14 solid cancer types. J. Pi­ neal Res. 2019;66(3):e12557. DOI 10.1111/jpi.12557; Markel A.L. Development of a new strain of rats with inherited stressinduced arterial hypertension. In: Sassard J. (Ed.) Genetic Hypertension. London: John Libbey Eurotext Ltd., 1992;218:405-407; Markel A.L., Maslova L.N., Shishkina G.T., Mahanova N.A., Jacobson G.S. Developmental influences on blood pressure regulation in ISIAH rats. In: McCarty R., Blizard D.A., Chevalier R.L. (Eds.) Development of the Hypertensive Phenotype: Basic and Clinical Studies. In the series Handbook of Hypertension. Amsterdam: Elsevier, 1999;493-526; Martín-Carro B., Donate-Correa J., Fernández-Villabrille S., MartínVírgala J., Panizo S., Carrillo-López N., Martínez-Arias L., Navarro-González J.F., Naves-Díaz M., Fernández-Martín J.L., Alonso-Montes C., Cannata-Andía J.B. Experimental models to study diabetes mellitus and its complications: limitations and new opportunities. Int. J. Mol. Sci. 2023;24(12):10309. DOI 10.3390/ijms 241210309; Melke J., Goubran Botros H., Chaste P., Betancur C., Nygren G., Anckar säter H., Rastam M., Ståhlberg O., Gillberg I.C., Delorme R., Chabane N., Mouren­Simeoni M.C., Fauchereau F., Durand C.M., Chevalier F., Drouot X., Collet C., Launay J.M., Leboyer M., Gillberg C., Bourgeron T. Abnormal melatonin synthesis in autism spectrum disorders. Mol. Psychiatry. 2008;13(1):90-98. DOI 10.1038/sj.mp.4002016; Modlinska K., Pisula W. The Norway rat, from an obnoxious pest to a laboratory pet. eLife. 2020;9:e50651. DOI 10.7554/eLife.50651; Moskaliuk V.S., Kozhemyakina R.V., Bazovkina D.V., Terenina E., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V., Naumenko V.S., Kulikova E. On an association between fear-induced aggression and striatal­enriched protein tyrosine phosphatase (STEP) in the brain of Norway rats. Biomed. Pharmacother. 2022; 147:112667. DOI 10.1016/j.biopha.2022.112667; Moskaliuk V.S., Kozhemyakina R.V., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V., Naumenko V.S., Kulikova E.A. On associations between fear-induced aggression, Bdnf transcripts, and serotonin receptors in the brains of Norway rats: an influence of antiaggressive drug TC­2153. Int. J. Mol. Sci. 2023;24(2):983. DOI 10.3390/ijms24020983; Naumenko V.S., Kozhemjakina R.V., Plyusnina I.Z., Popova N.K. Expression of serotonin transporter gene and startle response in rats with genetically determined fear­induced aggression. Bull. Exp. Biol. Med. 2009;147(1):81-83. DOI 10.1007/s10517-009-0441-2; Oshchepkov D., Ponomarenko M., Klimova N., Chadaeva I., Bragin A., Sharypova E., Shikhevich S., Kozhemyakina R. A rat model of human behavior provides evidence of natural selection against underexpression of aggressiveness-related genes in humans. Front. Genet. 2019;10:1267. DOI 10.3389/fgene.2019.01267; Oshchepkov D., Chadaeva I., Kozhemyakina R., Zolotareva K., Khandaev B., Sharypova E., Ponomarenko P., Bogomolov A., Klimova N.V., Shikhevich S., Redina O., Kolosova N.G., Nazarenko M., Kolchanov N.A., Markel A., Ponomarenko M. Stress reactivity, susceptibility to hypertension, and differential expression of genes in hypertensive compared to normotensive patients. Int. J. Mol. Sci. 2022a;23(5):2835. DOI 10.3390/ijms23052835; Oshchepkov D., Chadaeva I., Kozhemyakina R., Shikhevich S., Sharypova E., Savinkova L., Klimova N.V., Tsukanov A., Levitsky V.G., Markel A.L. Transcription factors as important regulators of changes in behavior through domestication of gray rats: quantitative data from RNA sequencing. Int. J. Mol. Sci. 2022b;23(20):12269. DOI 10.3390/ijms232012269; Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. London: Acad. Press, Elsevier Inc., 2013. Penning L.C., Vrieling H.E., Brinkhof B., Riemers F.M., Rothuizen J., Rutteman G.R., Hazewinkel H.A. A validation of 10 feline reference genes for gene expression measurements in snap-frozen tissues. Vet. Immunol. Immunopathol. 2007;120(3-4):212-222. DOI 10.1016/j.vetimm.2007.08.006; Perepechaeva M.L., Grishanova A.Y., Rudnitskaya E.A., Kolosova N.G. The mitochondria-targeted antioxidant SkQ1 downregulates aryl hydrocarbon receptor-dependent genes in the retina of OXYS rats with AMD­like retinopathy. J. Ophthalmol. 2014;2014:530943. DOI 10.1155/2014/530943; Popova N.K., Naumenko V.S., Plyusnina I.Z. Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci. Behav. Physiol. 2007;37(6):631-635. DOI; Plekanchuk V.S., Ryazanova M.A. Expression of glutamate receptor genes in the hippocampus and frontal cortex in GC rat strain with genetic catatonia. J. Evol. Biochem. Phys. 2021;57(1):156-163. DOI 10.1134/S0022093021010154; Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385. DOI 10.1016/S0031-9384(96)00445-310.1007/s11055-007-0062-z; Popova N.K., Naumenko V.S., Kozhemyakina R.V., Plyusnina I.Z. Functional characteristics of serotonin 5-HT2A and 5-HT2C receptors in the brain and the expression of the 5-HT2A and 5-HT2C receptor genes in aggressive and non­aggressive rats. Neurosci. Behav. Physiol. 2010;40(4):357-361. DOI 10.1007/s11055-010-9264-x; Ryazanova M.A., Fedoseeva L.A., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hyperten sion. BMC Genet. 2016;17(Suppl.3):151. DOI 10.1186/s12863-016-0462-6; Ryazanova M.A., Prokudina O.I., Plekanchuk V.S., Alekhina T.A. Expression of catecholaminergic genes in the midbrain and prepulse inhibition in rats with a genetic catatonia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(7): 798-803. DOI 10.18699/VJ17.296 (in Russian); Ryazanova M.A., Plekanchuk V.S., Prokudina O.I., Makovka Y.V., Alekhina T.A., Redina O.E., Markel A.L. Animal models of hypertension (ISIAH rats), catatonia (GC rats), and audiogenic epilepsy (PM rats) developed by breeding. Biomedicines. 2023;11(7):1814. DOI 10.3390/biomedicines11071814; Sengupta P. The laboratory rat: relating its age with human’s. Int. J. Prev. Med. 2013;4(6):624-630; Schmidt I. Metabolic diseases: the environment determines the odds, even for genes. News Physiol. Sci. 2002;17:115-121. DOI 10.1152/nips.01380.2001; Shikhevich S., Chadaeva I., Khandaev B., Kozhemyakina R., Zolotareva K., Kazachek A., Oshchepkov D., Bogomolov A., Klimova N.V., Ivanisenko V.A., Demenkov P., Mustafin Z., Markel A., Savinkova L., Kolchanov N.A., Kozlov V., Ponomarenko M. Differentially expressed genes and molecular susceptibility to human agerelated diseases. Int. J. Mol. Sci. 2023;24(4):3996. DOI 10.3390/ijms24043996; Singh G., Bhat B., Jayadev M.S.K., Madhusudhan C., Singh A. mutTCPdb: a comprehensive database for genomic variants of a tropical country neglected disease-tropical calcific pancreatitis. Database (Oxford ). 2018;2018:bay043. DOI 10.1093/database/bay043; Stefanova N.A., Kolosova N.G. The rat brain transcriptome: from infancy to aging and sporadic Alzheimer’s disease­like pathology. Int. J. Mol. Sci. 2023;24(2):1462. DOI 10.3390/ijms24021462; Stefanova N.A., Maksimova K.Y., Rudnitskaya E.A., Muraleva N.A., Kolosova N.G. Association of cerebrovascular dysfunction with the development of Alzheimer’s disease-like pathology in OXYS rats. BMC Genomics. 2018;19(Suppl.3):75. DOI 10.1186/s12864-0184480­9; Stefanova N.A., Ershov N.I., Maksimova K.Y., Muraleva N.A., Tyumentsev M.A., Kolosova N.G. The rat prefrontal-cortex transcriptome: effects of aging and sporadic Alzheimer’s disease-like pathology. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74(1):33-43. DOI 10.1093/gerona/gly198; Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., Guan-Golan Y., Kohn A., Rappaport N., Safran M., Lancet D. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016;54:1.30.1-1.30.33. DOI 10.1002/cpbi.5; Stenson P.D., Mort M., Ball E.V., Shaw K., Phillips A., Cooper D.N. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014;133(1):1­9. DOI 10.1007/s00439-013-1358-4; Sun S., Wang Y., Maslov A.Y., Dong X., Vijg J. SomaMutDB: a database of somatic mutations in normal human tissues. Nucleic Acids Res. 2022;50(D1):D1100-D1108. DOI 10.1093/nar/gkab914; Suzuki H., Han S.D., Lucas L.R. Increased 5-HT1B receptor density in the basolateral amygdala of passive observer rats exposed to aggression. Brain Res. Bull. 2010;83(1-2):38-43. DOI 10.1016/j.brainresbull.2010.06.007; Tain Y.L., Huang L.T., Chan J.Y., Lee C.T. Transcriptome analysis in rat kidneys: importance of genes involved in programmed hypertension. Int. J. Mol. Sci. 2015;16(3):4744-4758. DOI 10.3390/ijms16034744; Talarowska M., Szemraj J., Zajączkowska M., Galecki P. ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med. Sci. Monit. 2014;20:905-912. DOI 10.12659/MSM.890160; Taylor J.R., Morshed S.A., Parveen S., Mercadante M.T., Scahill L., Peterson B.S., King R.A., Leckman J.F., Lombroso P.J. An animal model of Tourette’s syndrome. Am. J. Psychiatry. 2002;159(4):657-660. DOI 10.1176/appi.ajp; Tharmalingam S., Khurana S., Murray A., Lamothe J., Tai T.C. Whole transcriptome analysis of adrenal glands from prenatal glucocorticoid programmed hypertensive rodents. Sci. Rep. 2020;10(1): 18755. DOI 10.1038/s41598-020-75652-y; Trent S., Dean R., Veit B., Cassano T., Bedse G., Ojarikre O.A., Humby T., Davies W. Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder. Psychoneuroendocrinology. 2013; 38(8):1370-1380. DOI 10.1016/j.psyneuen.2012.12.002; Wall V.L., Fischer E.K., Bland S.T. Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol. Behav. 2012;107(3):440-450. DOI 10.1016/j.physbeh.2012.09.002; Watanabe Y., Yoshida M., Yamanishi K., Yamamoto H., Okuzaki D., No jima H., Yasunaga T., Okamura H., Matsunaga H., Yamanishi H. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the kidneys. Int. J. Mol. Med. 2015;36(3):712-724. DOI 10.3892/ijmm.2015. 2281; Wu H.M., Zhao C.C., Xie Q.M., Xu J., Fei G.H. TLR2-melatonin feedback loop regulates the activation of NLRP3 inflammasome in murine allergic airway inflammation. Front. Immunol. 2020;11:172.; Xiao G., Wang T., Zhuang W., Ye C., Luo L., Wang H., Lian G., Xie L. RNA sequencing analysis of monocrotaline-induced PAH reveals dysregulated chemokine and neuroactive ligand receptor pathways. Aging (Albany NY ). 2020;12(6):4953-4969. DOI 10.18632/aging.102922; Xie F., Wang L., Liu Y., Liu Z., Zhang Z., Pei J., Wu Z., Zhai M., Cao Y. ASMT regulates tumor metastasis through the circadian clock system in triple­negative breast cancer. Front. Oncol. 2020;10:537247. DOI 10.3389/fonc.2020.537247; Yang H., Zhang Z., Ding X., Jiang X., Tan L., Lin C., Xu L., Li G., Lu L., Qin Z., Feng X., Li M. RP58 knockdown contributes to hypoxia-ischemia-induced pineal dysfunction and circadian rhythm disruption in neonatal rats. J. Pineal Res. 2023;75(1):e12885. DOI 10.1111/jpi.12885; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. DOI 10.1186/1471-2105-13-134; Yoshida M., Watanabe Y., Yamanishi K., Yamashita A., Yamamoto H., Okuzaki D., Shimada K., Nojima H., Yasunaga T., Okamura H., Matsunaga H., Yamanishi H. Analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the brain. Int. J. Mol. Med. 2014;33(4):887-896. DOI 10.3892/ijmm.2014.1631; Yuan X., Wu Q., Liu X., Zhang H., Xiu R. Transcriptomic profile analysis of brain microvascular pericytes in spontaneously hypertensive rats by RNA­Seq. Am. J. Transl. Res. 2018;10(8):2372-2386. PMID 30210677; Zhang H.F., Wang J.H., Wang Y.L., Gao C., Gu Y.T., Huang J., Wang J.H., Zhang Z. Salvianolic acid A protects the kidney against oxidative stress by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway in 5/6 nephrectomized rats. Oxid. Med. Cell. Longev. 2019;2019:2853534. DOI 10.1155/2019/2853534; Zhang Z., Silveyra E., Jin N., Ribelayga C.P. A congenic line of the C57BL/6J mouse strain that is proficient in melatonin synthesis. J. Pineal Res. 2018;65(3):e12509. DOI 10.1111/jpi.12509; https://vavilov.elpub.ru/jour/article/view/3979

  10. 10
  11. 11
  12. 12
    Academic Journal

    Contributors: The preparation of manuscript materials was carried out with the financial support of the Ministry of Science and Higher Education of Russian Federation (Agreement № 07515-2022-301, 20.04.2022), Подготовка материалов рукописи выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Соглашение № 075-15-2022-301 от 20.04.2022)

    Source: Current Pediatrics; Том 21, № 3 (2022); 253-264 ; Вопросы современной педиатрии; Том 21, № 3 (2022); 253-264 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/2954/1195; Agarwal US, Sitaraman S, Mehta S, Panse G. HutchinsonGilford progeria syndrome. Indian J Dermatol Venereol Leprol. 2010;76(5):591. doi: https://doi.org/10.4103/0378-6323.69094; The Progeria Handbook. A guide for families and health providers of children with progeria. Gordon LB, ed. The Progeria Research Foundation; 2010. Available online: https://progeriaresearch.org/assets/files/PRFhandbook_0410.pdf. Accessed on July 01, 2022.; Hutchinson J. Case of congenital absence of hair, with atrophic condition of the skin and its appendages, in a boy whose motherhad been almost wholly bald from alopecia areata from the age of six. Lancet. 1886;1:923.; Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev. 2017;33:18–29. doi: https://doi.org/10.1016/j.arr.2016.06.007; Gordon LB, Brown WT, Collins FS. Hutchinson-Gilford progeria syndrome. 2003 Dec 12 [Updated 2019 Jan 17]. In: GeneReviews [Internet]. Adam MP, Ardinger HH, Pafon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2020.; Gonzalo S, Coll-Bonfill N, Genomic instability and innate immune responses to self-DNA in progeria. Geroscience. 2019;41(3):255– 266. doi: https://doi.org/10.1007/s11357-019-00082-2; Фофанова О.В. Синдром Гетчинсона-Гилфорда (прогерия) // Проблемы эндокринологии. — 1995. — Т. 41. — № 4. — С. 24–26. — doi: https://doi.org/10.14341/probl11459; Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312(5776):1059–1063. doi: https://doi.org/10.1126/science.1127168; Burke B, Stewart CL. Functional architecture of the cell’s nucleus in development, aging, and disease. Curr Top Dev Biol. 2014;109:1– 52. doi: https://doi.org/10.1016/B978-0-12-397920-9.00006-8; Swift J, Ivanovska IL, Buxboim A, et al. Nuclear Lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. doi: https://doi.org/10.1126/science.1240104; Martins F, Souca J, Pereira CD, et al. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell. 2020;19(5):e13143. doi: https://doi.org/10.1111/acel.13143; Vahabikashi A, Adam SA, Medalia O, Goldman RD. Nuclear lamins: Structure and function in mechanobiology. APL Bioeng. 2022;6(1):011503. doi: https://doi.org/10.1063/5.0082656; Gordon LB, Shapell H, Massaro J, et al. Association of Lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. JAMA. 2018;319(16):1687– 1695. doi: https://doi.org/10.1001/jama.2018.3264; Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2004;101(24):8963–8968. doi: https://doi.org/10.1073/pnas.0402943101; Prokocimer M, Barkan R, Gruenbaum Y. Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell. 2013;12(4):533–543. doi: https://doi.org/10.1111/acel.12070; Hutchinson-gilford progeria syndrome; HGPS. In: OMIM® Online Mendelian Inheritance in Man® An Online Catalog of Human Genes and Genetic Disorders. Updated June 4, 2022. Available online: https://omim.org/entry/176670. Accessed on July 02, 2022.; Merideth MA, Gordon LB, Clauss S, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008;358(6):592– 604. doi: https://doi.org/10.1056/NEJMoa0706898; Sevenants L, Wouters C, De Sandre-Giovannoli A, et al. Tight skin and limited joint movements as early presentation of HutchinsonGilford progeria in a 7-week-old infant. Eur J Pediatr. 2005;164(5):283– 286. doi: https://doi.org/10.1007/s00431-005-1635-x; Zhang J, Lian Q, Zhu G, et al. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell. 2011;8(1):31–45. doi: https://doi.org/10.1016/j.stem.2010.12.002; Rork JF, Huang JT, Gordon LB, et al. Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome. Pediatr Dermatol. 2014;31(2):196–202. doi: https://doi.org/10.1111/pde.12284; Huang S, Liang Y, Wu W, et al. Analysis of a case with typical Hutchinson-Gilford progeria syndrome with scleroderma-like skin changes and review of literature. Zhonghua Er Ke Za Zhi. 2014;52(2):112–116.; Erdem N, Güneş AT, Avci O, Osma E. A case of HutchinsonGilford progeria syndrome mimicking scleroderma in early infancy. Dermatology. 1994;188(4):318–321. doi: https://doi.org/10.1159/000247175; Stevens AM, Torok KS, Li SC, et al. From immunopathogenesis of juvenile systemic sclerosis. Front Immunol. 2019;10:1352. doi: https://doi.org/10.3389/fimmu.2019.01352; Gordon CM, Gordon LB, Snyder BD, et al. Hutchinson-Gilford progeria is a skeletal dysplasia. J Bone Miner Res. 2011;26(7):1670– 1679. doi: https://doi.org/10.1002/jbmr.392; Ullrich NJ, Gordon LB. Chapter 18 — Hutchinson-Gilford progeria syndrome. Handb Clin Neurol. 2015;132:249–264. doi: https://doi.org/10.1016/B978-0-444-62702-5.00018-4; Domingo DL, Trujillo MI, Council SE, et al. Hutchinson-Gilford progeria syndrome: oral and craniofacial phenotype. Oral Dis. 2009;15(3):187– 195. doi: https://doi.org/10.1111/j.1601-0825.2009.01521.x; Guardiani E, Zalewski C, Brewer C, et al. Otologic and audiologic manifestations of Hutchinson-Gilford progeria syndrome. Laryngoscope. 2011;121(10):2250–2255. doi: https://doi.org/10.1002/lary.22151; Gordon LB, Massaro J, D’Agostino RB Sr, et al. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation. 2014;130(1):27–34. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.008285; Cleveland RH, Gordon LB, Kleinman ME, et al. A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome. Pediatr Radiol. 2012;42(9):1089–1098. doi: https://doi.org/10.1007/s00247-012-2423-1; Gordon LB, Harten IA, Patti ME, Lichtenstein AH. Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in HutchinsonGilford progeria syndrome. J Pediatr. 2005;146(3):336–341. doi: https://doi.org/10.1016/j.jpeds.2004.10.064; Prakash A, Gordon LB, Kleinmann M, et al. Cardiac abnormalities in patients with Hutchinson-Gilford progeria syndrome. JAMA Cardiol. 2018;3(4):326–334. doi: https://doi.org/10.1001/jamacardio.2017.5235; Silvera VM, Gordon LB, Orbach DB, et al. Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome. Am J Neuroradiol. 2013;34(5):1091–1097. doi: https://doi.org/10.3174/ajnr.A3341; Jung HL, Coffinier C, Choe Y, et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci USA. 2012;109(7):E423–E431. doi: https://doi.org/10.1073/pnas.1111780109; Gordon CM, Cleveland RH, Baltrusaitis K, et al. Extraskeletal Calcifications in Hutchinson-Gilford Progeria Syndrome. Bone. 2019;125:103–111. doi: https://doi.org/10.1016/j.bone.2019.05.008; Varela I, Pereira S, Ugalde AP, et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med. 2008;14(7):767–772. doi: https://doi.org/10.1038/nm1786; Gordon LB, Kleinman ME, Miller DT, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109(41):16666– 16671. doi: https://doi.org/10.1073/pnas.1202529109; Study of Zoledronic Acid, Pravastatin, and Lonafarnib for Patients With Progeria. In: U.S. National Library of Medicine. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/show/NCT00916747. Accessed on July 02, 2022.; Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in mouse model of progeria. Science. 2006;311(5767):1621–1623. doi: https://doi.org/10.1126/science.1124875; Yang SH, Meta M, Qiao X, et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J Clin Invest. 2006;116(8):2115– 2121. doi: https://doi.org/10.1172/JCI28968; Gordon LB, Kleinman ME, Massaro J, et al. Clinical trial of protein farnesylation inhibitors lonafarnib, pravastatin and zolendronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation. 2016;134(2):114–125. doi: https://doi.org/10.1161/CIRCULATIONAHA.116.022188; Bikkul MU, Clements CS, Godwin LS, et al. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organization and decrease DNA damage respectively in Hutchinson-Gilford progeria syndrome fibroblasts. Biogerontology. 2018;19(6):579–602. doi: https://doi.org/10.1007/s10522-018-9758-4; Cao K, Graziotto JJ, Blair CD, et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in HutchinsonGilford progeria syndrome cells. Sci Trancl Med. 2011;3(89):89ra58. doi: https://doi.org/10.1126/scitranslmed.3002346; Gabriel D, Roedl D, Gordon LB, Djabali K. Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Aging Cell. 2015;14(1):78–91. doi: https://doi.org/10.1111/acel.12300; Larrieu D, Britton S, Demir M, et al. Chemical inhibitor of NAT 10 corrects defects of laminopathic cells. Science. 2014;344(6183):527– 532. doi: https://doi.org/10.1126/science.1252651; Larrieu D, Vive E, Robson S, et al. Inhibition of the acetyltransferase NAT 10 normalizes progeric and aging cell by rebalancing the Transportin-1 nuclear import pathway. Sci Signal. 2018;11(537):eaar5401. doi: https://doi.org/10.1126/scisignal.aar5401; Pellegrini C, Columbaro M, Capanni C, et al. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget. 2015;6(30):29914–29928. doi: https://doi.org/10.18632/oncotarget.4939; Kubben N, Brimacombe KR, Donegan M, et al. A high-content imaging-based screening pipeline for the systematic identification of anti-progeroid compounds. Methods. 2016;96:46–58. doi: https://doi.org/10.1016/j.ymeth.2015.08.024; Kreienkamp R, Croke M, Neumann MA, et al. Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes. Oncotarget. 2016;7(21):30018–30031. doi: https://doi.org/10.18632/oncotarget.9065; Liu C, Arnold R, Henriques G, Djabali K. Inhibition of JAKSTAT signaling with Baricitinib reduces inflammation and improves cellular homeostasis in progeria cells. Cells. 2019;8(10):1276. doi: https://doi.org/10.3390/cells8101276; Aveleira CA, Ferreira-Marques M, Cortes L, et al. Neuropeptide Y enhances progerin clearance and ameliorates the senescent phenotype of human Hutchinson-Gilford progeria syndrome cells, glz280. J Gerontol A Biol Sci Med Sci. 2020;75(6):1073–1078. doi: https://doi.org/10.1093/gerona/glz280; Adrovic A, Sahin S, Barut K, Kasapcopur O. Juvenile Scleroderma-What has Changed in the Meantime? Curr Rheumatol Rev. 2018;14(3):219–225. doi: https://doi.org/10.2174/1573397114666180423105056; Squarzoni S, Schena E. Interleukin-6 neutralization ameliorates symptoms in prematurely aged mice. Aging Cell. 2021;20(1):e13285. doi: https://doi.org/10.1111/acel.13285

  13. 13
    Academic Journal

    Source: Neonatology, surgery and perinatal medicine; Том 8, № 1(27) (2018): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 81-86
    Неонатологія, хірургія та перинатальна медицина; Том 8, № 1(27) (2018): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 81-86
    Неонатология, хирургия и перинатальная медицина; Том 8, № 1(27) (2018): НЕОНАТОЛОГИЯ, ХИРУРГИЯ И ПЕРИНАТАЛЬНАЯ МЕДИЦИНА; 81-86

    File Description: application/pdf

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20