Showing 1 - 20 results of 408 for search '"ПРЕДСТАТЕЛЬНАЯ ЖЕЛЕЗА"', query time: 0.76s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Вестник Бурятской государственной сельскохозяйственной академии имени В. Р. Филиппова. :42-48

  6. 6
  7. 7
    Academic Journal

    Source: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 1017-1024 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 1017-1024 ; 2181-3469

    File Description: application/pdf

  8. 8
    Academic Journal

    Source: Cancer Urology; Том 20, № 3 (2024); 130-135 ; Онкоурология; Том 20, № 3 (2024); 130-135 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1796/1562; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1796/1489; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1796/1490; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1796/1491; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1796/1492; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1796/1493; Teras L.R., DeSantis C.E., Cerhan J.R. et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Canser J Clin 2016;66(6):443–59. DOI:10.3322/caac.21357; Armitage J.O., Longo D.L. Mantle cell lymphoma. N Engl J Med 2022;386(26):2495–506. DOI:10.1056/NEJMra2202672; Campo E., Jaffe E.S., Cook J.R. et al. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 2022;140(11):1229–53. DOI:10.1182/blood.2022015851; Alaggio R., Amador C., Anagnostopoulos I. et al. The 5th edition of the World Health Organisation Classification of hematolymphoid tumors: Lymphoid Neoplasms. Leukemia 2022;36(7):1720–48. DOI:10.1038/s41375-022-01620-2; Olweny C.L. Cotswolds modification of the Ann Arbor staging system for Hodgkin’s disease. J Clin Oncol 1990;8(9):1598.; Hoster E., Dreyling M., Klapper W. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood 2008;111(2):558–6. DOI:10.1182/blood-2007-06-095331; Воробьев В.И., Тумян Г.С. Лимфома из клеток мантии. Российские клинические рекомендации по диагностике и лечению злокачественных лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. 2020.; Doshi K., Chandran A., Li Y. et al. Mantle zone lymphoma with prostate gland enlargement: a case report. Cureus 2022;14(11):e32045. DOI:10.7759/cureus.32045; Dreyling M.M., Doorduijn J.K., Gine E. et al. Efficacy and safety of ibrutinib combined with standard first-line treatment or as substitute for autologous stem cell transplantation in younger patients with mantle cell lymphoma: results from the randomized triangle trial by the European MCL Network. Blood 2022;140(Suppl 1):1–3.; National Comprehensive Cancer Network. Available at: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf; Belkacemi Y., Sio T.T., Colson-Durand L. et al. Primary extranodal lymphoma of the glands. Literature review and options for best practice in 2019. Crit Rev Oncol Hematol 2019;135:8–19. DOI:10.1016/j.critrevonc.2019.01.005; Milburn P.A., Cable C.T., Trevathan S., El Tayeb M.M. Mantle cell lymphoma of the prostate gland treated with holmium laser enucleation. Proc (Bayl Univ Med Cent) 2017;30(3):338–9. DOI:10.1080/08998280.2017.11929640; Karademir B., Kısa E., Özbilen M.H. et al. Unexpected hematologic malignancies after prostatectomy: case report and literature review. Urologia 2021;88(4):382–5. DOI:10.1177/0391560321993596; Kumar P., Rahman K., Hussein N. et al. Primary prostatic nonHodgkin’s lymphoma presenting with features of prostatism. J Cancer Res Ther 2019;15:178–9. DOI:10.4103/jcrt.JCRT_886_16; https://oncourology.abvpress.ru/oncur/article/view/1796

  9. 9
    Academic Journal

    Contributors: Работа выполнена при финансовой поддержке Программы фундаментальных научных исследований государственных академий наук на 2022–2024 гг. «Изучение морфологических и молекулярных особенностей органопатий при изолированном и сочетанном воздействии ведущих метаболических факторов риска хронических неинфекционных заболеваний» (код темы FGMU-2022- 0030, № государственной регистрации 122032300164-6).

    Source: Acta Biomedica Scientifica; Том 9, № 6 (2024); 85-99 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5121/2936; Meccariello R, Fasano S, Pierantoni R. Kisspeptins, new local modulators of male reproduction: A comparative overview. Gen Comp Endocrinol. 2020; 299: 113618. doi:10.1016/j.ygcen.2020.113618; Zhao W, Adjei M, Zhang Z, Yuan Z, Cisang Z, Song T. The role of GnRH in Tibetan male sheep and goat reproduction. Reprod Domest Anim. 2023; 58: 1179-1187. doi:10.1111/rda.14432; Evans MC, Anderson GM. The role of RFRP neurons in the allostatic control of reproductive function. Int J Mol Sci. 2023; 24: 15851. doi:10.3390/ijms242115851; Verrotti A, Penta L, Zenzeri L, Lucchetti L, Giovenali P, De Feo P. True precocious puberty following treatment of a Leydig cell tumor: Two case reports and literature review. Front Pediatr. 2015; 3: 93. doi:10.3389/fped.2015.00093; Schagen SE, Cohen-Kettenis PT, Delemarre-van de Waal HA, Hannema SE. Efficacy and safety of gonadotropin-releasing hormone agonist treatment to suppress puberty in gender dysphoric adolescents. J Sex Med. 2016; 13: 1125-1132. doi:10.1016/j.jsxm.2016.05.004; Giannakopoulos A, Fryssira H, Tzetis M, Xaidara A, Kanaka-Gantenbein C. Central precocious puberty in a boy with 22q13 deletion syndrome and NOTCH-1 gene duplication. J Pediatr Endocrinol Metab. 2016; 29: 1307-1311. doi:10.1515/jpem-2015-0484; Pereira SA, Oliveira FCB, Naulé L, Royer C, Neves FAR, Abreu AP, et al. Mouse testicular Mkrn3 expression is primarily interstitial, increases peripubertally, and is responsive to LH/hCG. Endocrinology. 2023; 164: bqad123. doi:10.1210/endocr/bqad123; Labrie F. Combined blockade of testicular and locally made androgens in prostate cancer: A highly significant medical progress based upon intracrinology. J Steroid Biochem Mol Biol. 2015; 145: 144-156. doi:10.1016/j.jsbmb.2014.05.012; HoriJI, Koga D, Kakizaki H, Watanabe T. Differential effects of depot formulations of GnRH agonist leuprorelin and antagonist degarelix on the seminiferous epithelium of the rat testis. Biomed Res. 2018; 39: 197-214. doi:10.2220/biomedres.39.197; Demir A, Büyükgebiz A, Aydin A, Hero M. Quantification of overnight urinary gonadotropin excretion predicts imminent puberty in girls: A semi-longitudinal study. Hormones (Athens). 2023; 23(1): 141-145. doi:10.1007/s42000-023-00499-7; Moradi SV, Varamini P, Toth I. Evaluation of the biological properties and the enzymatic stability of glycosylated luteinizing hormone-releasing hormone analogs. AAPS J. 2015; 17: 1135-1143. doi:10.1208/s12248-015-9769-x; Jyrkäs J, Lassila T, Tolonen A. Extrahepatic in vitro metabolism of peptides; comparison of human kidney and intestinal S9 fraction, human plasma and proximal tubule cells, using cyclosporine A, leuprorelin, and cetrorelix as model compounds. J Pharm Biomed Anal. 2023; 225: 115219. doi:10.1016/j.jpba.2022.115219; Birrell JR, Schulman ML, Botha AE, Ganswindt A, Fosgate GT, Bertschinger HJ. Vaccination against GnRH as a prelude to surgical castration of horses. Equine Vet J. 2021; 53: 1141-1149. doi:10.1111/evj.13411; Rosenfield DA, Nichi M, Losano JDA, Kawai G, Leite RF, Acosta AJ, et al. Field-testing a single-dose immunocontraceptive in free-ranging male capybara (Hydrochoerus hydrochaeris): Evaluation of effects on reproductive physiology, secondary sexual characteristics, and agonistic behavior. Anim Reprod Sci. 2019; 209: 106148. doi:10.1016/j.anireprosci.2019.106148; Giriboni J, Lacuesta L, Santiago-Moreno J, Ungerfeld R. Chronic use of a GnRH agonist (deslorelin) or immunization against GnRH: Effects on testicular function and sperm quality of bucks. Domest Anim Endocrinol. 2020; 71: 106395. doi:10.1016/j.domaniend.2019.106395; Gautier C, Aurich J, Kaps M, Okada CTC, Wagner LH, Melchert M, et al. Re-stimulation of testicular function in GnRH-vaccinated stallions by daily GnRH agonist treatment. Theriogenology. 2022; 194: 27-34. doi:10.1016/j.theriogenology.2022.09.011; Zvereva I, Dudko G, Dikunets M. Determination of GnRH and its synthetic analogues’ abuse in doping control: Small bioactive peptide UPLC-MS/MS method extension by addition of in vitro and in vivo metabolism data; evaluation of LH and steroid profile parameter fluctuations as suitable biomarkers. Drug Test Anal. 2018; 10: 711-722. doi:10.1002/dta.2256; Prestel L, Joerling J, Failing K, Wagner H, Wehrend A. Suppression of reproductive function in juvenile rams by a slow-release gonadotropin-releasing hormone implant. Open Vet J. 2022; 12: 171-181. doi:10.5455/OVJ.2022.v12.i2.3; Yutong M, Liang Y, Chunjie S, Xiaolin G, Xiaoyan G, Lin D, et al. Pharmacological and toxicological studies of a novel goserelin acetate extended-release microspheres in rats. Front Pharmacol. 2023; 14: 1125255. doi:10.3389/fphar.2023.1125255; Huhtaniemi IT, Clayton RN, Catt KJ. Gonadotropin-releasing hormone agonist analog-induced steroidogenic lesion in the neonatal rat testis: Evidence for direct gonadal action. Endocrinology. 1984; 115: 233-238. doi:10.1210/endo-115-1-233; Hadziselimovic F, Verkauskas G, Vincel B, Stadler MB. Testicular expression of long non-coding RNAs is affected by curative GnRHa treatment of cryptorchidism. Basic Clin Androl. 2019; 29: 18. doi:10.1186/s12610-019-0097-3; Cheng PJ, Pastuszak AW, Myers JB, Goodwin IA, Hotaling JM. Fertility concerns of the transgender patient. Transl Androl Urol. 2019; 8: 209-218. doi:10.21037/tau.2019.05.09; Adeleye AJ, Stark BA, Jalalian L, Mok-Lin E, Smith JF. Evidence of spermatogenesis in the presence of hypothalamic suppression and low testosterone in an adolescent transgender female: A case report. Transgend Health. 2023; 8: 104-107. doi:10.1089/trgh.2021.0034; Peirouvi T, Salami S. GnRH agonist induces apoptosis in seminiferous tubules of immature rats: Direct gonadal action. Andrologia. 2010; 42: 231-235. doi:10.1111/j.1439-0272.2009.00982.x; Eşki F, Çetin N, Uslu S, Uslu BA, Şendağ S, Yörük M, et al. Effects of long-term release GnRH agonist “deslorelin” on testicular HSP expression, accessory sex glands and testicular functions in adult male rats. Theriogenology. 2013; 134: 104-111. doi:10.1016/j.theriogenology.2019.05.016; Goblet CC, Moresco A, Garner MM, Agnew DW, Newell-Fugate AE. Retrospective characterization of reproductive tract lesions in relation to age, parity, and contraception in captive suidae and tayassuidae. Theriogenology. 2019; 127: 137-144. doi:10.1016/j.theriogenology.2019.01.012; Driancourt MA, Briggs JR. Gonadotropin-releasing hormone (GnRH) agonist implants for male dog fertility suppression: A review of mode of action, efficacy, safety, and uses. Front Vet Sci. 2020; 7: 483. doi:10.3389/fvets.2020.00483; Stempel S, Goericke-Pesch S. GnRH-Agonisten in der Kleintierpraxis – Was wissen wir 13 Jahre nach der EU-Zulassung? [GnRH agonist implants in small animal practice – What do we know 13 years following EU registration?]. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2020; 48: 420-432. (In German). doi:10.1055/a-1274-9268; Balogh O, Somoskői B, Kollár E, Kowalewski MP, Gram A, Reichler IM, et al. Anti-Müllerian hormone, testosterone, and insulin-like peptide 3 as biomarkers of Sertoli and Leydig cell function during deslorelin-induced testicular downregulation in the dog. Theriogenology. 2021; 175: 100-110. doi:10.1016/j.theriogenology.2021.08.017; Faya M, Marchetti C, Priotto M, Grisolía M, D’Francisco F, GobelloC. Postponement of canine puberty by neonatal administration of a long term release GnRH superagonist. Theriogenology. 2018; 118: 190-195. doi:10.1016/j.theriogenology.2018.05.043; Vasetska A, Körber H, Pilgram C, Schuler G, Aslan S, Saral G, et al. The use of a 4.7 mg deslorelin slow release implant in male dogs in the field. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2023; 51: 231-241. doi:10.1055/a-2142-4194; Stempel S, Körber H, Reifarth L, Schuler G, Goericke-Pesch S. What happens in male dogs after treatment with a 4.7 mg deslorelin implant? II. Recovery of testicular function after implant removal. Animals (Basel). 2022; 12: 2545. doi:10.3390/ani12192545; Tran HD, Carroll KE, Mackiewicz AL, Ardeshir A, Stockinger D, de Lucena T, et al. Effects of deslorelin on testosterone secretion and testicular volume in male rhesus macaques (Macaca mulatta). J Am Assoc Lab Anim Sci Epub. 2023; 62(6): 525-530. doi:10.30802/AALAS-JAALAS-22-000116; Mehl NS, Khalid M, Srisuwatanasagul S, Swangchan-Uthai T, Sirivaidyapong S. GnRH-agonist implantation of prepubertal male cats affects their reproductive performance and testicular LH receptor and FSH receptor expression. Theriogenology. 2016; 85: 841-848. doi:10.1016/j.theriogenology.2015.10.031; Romagnoli S, Baldan A, Ferro S, Righetti C, Scenna L, Gabai G, et al. Length of efficacy and effect of implant location in adult tom cats treated with a 9.4 mg deslorelin subcutaneous implant. J Feline Med Surg. 2019; 21: 507-519. doi:10.1177/1098612X18788157; Novotny R, Vitasek R, Bartoskova A, Cizek P, Prinosilova P, Novakova K. Azoospermia with variable testicular histology after 7 months of treatment with a deslorelin implant in toms. Theriogenology. 2015; 83: 1188-1193. doi:10.1016/j.theriogenology.2014.12.026; Nuñez Favre R, García MF, García Mitacek MC, Rearte R, Fontaine C, de la Sota RL, et al. Reestablishment of sperm quality after long-term deslorelin suppression in tomcats. Anim Reprod Sci. 2018; 195: 302-308. doi:10.1016/j.anireprosci.2018.06.008; Bonacina E, Negri G, Mattiello S, Gabai G, Groppetti D. Deslorelin subcutaneous implants in Oryx dammah males for reproductive control. Theriogenology. 2020; 149: 72-78. doi:10.1016/j.theriogenology.2020.03.018; Gautier C, Schmidt K, Aurich J, Aurich C. Effects of implants containing the GnRH agonist deslorelin on testosterone release and semen characteristics in Shetland stallions. Anim Reprod Sci. 2018; 195: 230-241. doi:10.1016/j.anireprosci.2018.05.027; Goericke-Pesch S, Groeger G, Wehrend A. The effects of a slow release GnRH agonist implant on male rabbits. Anim Reprod Sci. 2015; 152: 83-89. doi:10.1016/j.anireprosci.2014.11.002; Fakriadis I, Zanatta EM, Fleck RPDS, Sena Mateo DL, Papadaki M, Mylonas CC. Endocrine regulation of long-term enhancement of spermiation in meagre (Argyrosomus regius) with GnRHa controlled-delivery systems. Gen Comp Endocrinol. 2020; 297: 113549. doi:10.1016/j.ygcen.2020.113549; Baş F, Abalı ZY, Toksoy G, Poyrazoğlu Ş, Bundak R, Güleç Ç, et al. Precocious or early puberty in patients with combined pituitary hormone deficiency due to POU1F1 gene mutation: Case report and review of possible mechanisms. Hormones (Athens). 2018; 17: 581-588. doi:10.1007/s42000-018-0079-4; Sansone A, Schubert M, Tüttelmann F, Krallmann C, Zitzmann M, Kliesch S, et al. Pituitary response to GnRH stimulation tests in different FSHB-211 G/T genotypes. Hum Reprod. 2021; 36: 1376-1382. doi:10.1093/humrep/deab033; Trachtenberg J. The effect of the chronic administration of a potent luteinizing hormone releasing hormone analog on the rat prostate. J Urol. 1982; 128: 1097-1100.; Lamberts SW, Uitterlinden P, de Jong FH. Rat prostatic weight regression in reaction to ketoconazole, cyproterone acetate, and RU 23908 as adjuncts to a depot formulation of gonadotropin-releasing hormone analogue. Cancer Res. 1988; 48(21): 6063-6068.; Kuber W, Treu T, Kratzik C, Girsch E, Zeillinger R, Spona J. Chemical castration using a depot LHRH-agonist as a palliative therapy concept in prostatic carcinoma – Clinical, endocrinological and experimental studies. Wien Klin Wochenschr. 1990; 102: 640-647.; Moguilewsky M, Tournemine C. The antiandrogen anandron potentiates the castrating effect of the LH-RH agonist buserelin in the rat. Am J Clin Oncol. 1988; 11(Suppl 2): S148-S151.; Séguin C, Cusan L, Bélanger A, Kelly PA, Labrie F, Raynaud JP. Additive inhibitory effects of treatment with an LHRH agonist and an antiandrogen on androgen-dependent tissues in the rat. Mol Cell Endocrinol. 1981; 21: 37-41.; Labrie F, Dupont A, Belanger A, Lefebvre FA, Cusan L, Monfette G, et al. New hormonal treatment in cancer of the prostate: Combined administration of an LHRH agonist and an antiandrogen. J Steroid Biochem. 1983; 19: 999-1007.; Maezawa H, Komatsu H, Kawaoi A, Ueno A. Potentiating effect of buserelin acetate, an LHRH agonist, on the proliferation of ventral prostatic epithelial cells in testosterone-treated castrated rats. Int J Urol. 1997; 4: 411-416.; Khadivi B, Peirouvi T, Javanmardi MZ, Rasmi Y. Shortterm buserelin administration induces apoptosis and morphological changes in adult rat testes. Acta Cir Bras. 2017; 32: 140-147. doi:10.1590/s0102-865020170206; van Steenbrugge GJ, Romijn JC, de Jong FH, Schröder FH. Unresponsiveness of the reproductive organs of the male mouse to treatment with a potent luteinizing hormone-releasing hormone agonist (ICI-118,630). Urol Res. 1984; 12: 175-178.; Dubé JY, Frenette G, Tremblay RR, Tremblay Y, Bélanger A. Involution of spontaneous benign prostatic hyperplasia in the dog under the influence of chronic treatment with a LHRH agonist. Prostate. 1984; 5: 417-423.; Damber JE, Bergh A, Widmark A. Effect of an LHRH-agonist on testicular microcirculation in hypophysectomized rats. Int J Androl. 1987; 10: 785-791.; Bergh A, Damber JE. Treatment with an LHRH agonist or hCG increases interstitial fluid volume and permeability to Evans blue in the mouse testis. Int J Androl. 1988; 11: 449-456.; Ungerfeld R, Fila D. Testicular fluid content evaluated by ultrasound image computer-assisted analysis increases with small-dose multiple GnRH injections in rams. Reprod Domest Anim. 2011; 46: 720-723. doi:10.1111/j.1439-0531.2010.01735.x; El-Shalofy AS, Hedia MG. Effects of buserelin administration on testicular blood flow and plasma concentrations of testosterone and estradiol-17β in rams. Domest Anim Endocrinol. 2021; 77: 106646. doi:10.1016/j.domaniend.2021.106646; Vencato J, Cestaro L, Vazzana I, Carrer G, Carlo E, Dara S, Stelletta C. Integrated evaluation of scrotal temperature and testosteronemia after GnRH administration in young bulls with low semen production. Reprod Domest Anim. 2014; 49: 481-486. doi:10.1111/rda.12315; Roelfsema F, Liu PY, Takahashi PY, Yang RJ, Veldhuis JD. Dynamic interactions between LH and testosterone in healthy community-dwelling men: Impact of age and body composition. J Clin Endocrinol Metab. 2020; 105: e628-e641. doi:10.1210/clinem/dgz246; Chung JY, Brown S, Chen H, Liu J, Papadopoulos V, Zirkin B. Effects of pharmacologically induced Leydig cell testosterone production on intratesticular testosterone and spermatogenesis. Biol Reprod. 2020; 102: 489-498. doi:10.1093/biolre/ioz174; Taniguchi H, Katano T, Nishida K, Kinoshita H, Matsuda T, ItoS. Elucidation of the mechanism of suppressed steroidogenesis during androgen deprivation therapy of prostate cancer patients using a mouse model. Andrology. 2016; 4: 964-971. doi:10.1111/andr.12213; Spruijt A, Kooistra H, Oei C, Vinke C, Schaefers-Okkens A, DeGier J. The function of the pituitary-testicular axis in dogs prior to and following surgical or chemical castration with the GnRHagonist deslorelin. Reprod Domest Anim. 2023; 58: 97-108. doi:10.1111/rda.14266; Gültiken N, Aslan S, Ay SS, Gülbahar MY, Thuróczy J, Koldaş E, et al. Effect of deslorelin on testicular function, serum dihydrotestosterone and oestradiol concentrations during and after suppression of sexual activity in tom cats. J Feline Med Surg. 2017; 19: 123-131. doi:10.1177/1098612X15615381; Enomoto M, Mori T, Park MK. GnRH agonist Buserelin affects colony-forming efficiency of HHUA and Jurkat cells. Biochem Biophys Res Commun. 2001; 289: 1180-1187. doi:10.1006/bbrc.2001.6131; Oduwole OO, Poliandri A, Okolo A, Rawson P, Doroszko M, Chrusciel M, et al. Follicle-stimulating hormone promotes growth of human prostate cancer cell line-derived tumor xenografts. FASEB J. 2021; 35: e21464. doi:10.1096/fj.202002168RR; Beacock CJ, Buck AC, Zwinck R, Peeling WB, Rees RW, Turkes A, et al. The treatment of metastatic prostatic cancer with the slow release LH-RH analogue Zoladex ICI 118630. Br J Urol. 1987; 59: 436-442. doi:10.1111/j.1464-410x.1987.tb04842.x; Sandow J. Clinical applications of LHRH and its analogues. Clin Endocrinol (Oxf ). 1983; 18: 571-592. doi:10.1111/j.1365-2265.1983.tb00595.x; Geldof AA, de Voogt HJ, Rao BR. Renewal timing of long-acting depot luteinizing hormone-releasing hormone agonist (Zoladex) is critical in the treatment of hormone-dependent rat prostatic carcinoma (R3327-H). Prostate. 1987; 11: 281-290. doi:10.1002/pros.2990110308; Dondi D, Limonta P, Moretti RM, Marelli MM, Garattini E, Motta M. Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen-independent prostate cancer cell line DU 145: Evidence for an autocrine-inhibitory LHRH loop. Cancer Res. 1994; 54: 4091-4095.; Labrie F, Dupont A, Belanger A, Cusan L, Lacourciere Y, Monfette G, et al. New hormonal therapy in prostatic carcinoma: Combined treatment with an LHRH agonist and an antiandrogen. Clin Invest Med. 1982; 5: 267-275.; Rousset-Jablonski C, Chevillon F, Dhedin N, Poirot C. Préservation de la fertilité chez les adolescents et jeunes adultes traités pour cancer [Fertility preservation in adolescents and young adults with cancer]. Bull Cancer. 2016; 103: 1019-1034. (In French). doi:10.1016/j.bulcan.2016.10.008; Gulino G, Distante A, Akhundov A, Bassi PF. Male infertility and urological tumors: Pathogenesis and therapeutical implications. Urologia. 2023; 90: 622-630. doi:10.1177/03915603221146147; Zachau L, Zeckey C, Schlue J, SanderJ, Meyer-Heithuis C, Winkler M, et al. Haematogenous abdominal wall metastasis of differentiated, alpha-fetoprotein-negative hepatocellular carcinoma after previous antiandrogen therapy within a site of lipoma manifestation since childhood. World J Surg Oncol. 2012; 10: 98. doi:10.1186/1477-7819-10-98; Abufaraj M, Iwata T, Kimura S, Haddad A, Al-Ani H, Abusubaih L, et al. Differential impact of gonadotropin-releasing hormone antagonist versus agonist on clinical safety and oncologic outcomes on patients with metastatic prostate cancer: A meta-analysis of randomized controlled trials. Eur Urol. 2021; 79: 44-53. doi:10.1016/j.eururo.2020.06.002; Sari Motlagh R, Abufaraj M, Mori K, Aydh A, Rajwa P, Katayama S, et al. The efficacy and safety of Relugolix compared with Degarelix in advanced prostate cancer patients: A network meta-analysis of randomized trials. Eur Urol Oncol. 2022; 5: 138-145. doi:10.1016/j.euo.2021.07.002; https://www.actabiomedica.ru/jour/article/view/5121

  10. 10
    Academic Journal

    Source: Andrology and Genital Surgery; Том 25, № 1 (2024); 40-48 ; Андрология и генитальная хирургия; Том 25, № 1 (2024); 40-48 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/734/565; Саяпина И.Ю., Целуйко С.С., Чередниченко О.А. Биологическая роль цинка в предстательной железе (молекулярные аспекты). Дальневосточный медицинский журнал. 2015;2: 137–43.; Hennigar S.R., Kelleher S.L. Zinc networks: the cell-specific compartmentalization of zinc for specialized functions. Biol Chem. 2012;393(7):565–78. DOI:10.1515/hsz-2012-0128.; Miyata S. Zinc deficiency in the elderly. Nihon Ronen Igakkai Zasshi. 2007;44(6):677–89. PMID:18200755.; Rahmati M., Safdarian F., Zakeri M., Zare S. The prevalence of zinc deficiency in 6-month to 12-year old children in Bandar Abbas in 2013. Electron Physician. 2017;9(8):5088–91. DOI:10.19082/5088.; Jung A., Spira D., Steinhagen-Thiessen E. et al. Zinc Deficiency Is associated With Depressive Symptoms-Results From the Berlin Aging Study II. J Gerontol A Biol Sci Med Sci. 2017;72(8):1149–54. DOI:10.1093/gerona/glw218.; Braun L.A., Ou R., Kure C. et al. Prevalence of Zinc Deficiency in Cardiac Surgery Patients. Heart Lung Circ. 2017 Aug 14. pii: S1443- 9506(17)31342-2. DOI:10.1016/j.hlc.2017.07.009.; Cembranel F., González-Chica D.A., d’Orsi E. Inadequate dietary micronutrient intake in men and women in southern Brazil: the EpiFloripa Adults Study, 2012. Cad Saude Publica. 2016; 32(8): e00164015. DOI:10.1590/0102-311X00164015.; Rotter I., Kosik-Bogacka D.I., Dołęgowska B. et al. Analysis of the relationship between the blood concentration of several metals, macro- and micronutrients and endocrine disorders associated with male aging. Environ Geochem Health. 2016;38(3):749–61. DOI:10.1007/s10653-015-9758-0.; Owen, D.H., Katz, D.F. A review of the physical and chemical prop-erties of human semen and the formulation of a semen simulant. J. Androl. 2005; 26: 459–69]. DOI:10.2164/jandrol.04104.; Marconi M., Pilatz A., Wagenlehner F. et al. Impact of infection on the secretory capacity of the male accessoryglands. Int. Braz. J. Urol.2009; 35: 299–308, discussion 308-309. DOI:10.1590/s1677-55382009000300006.; Costello L.C., Franklin R.B, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion. 2005; 5 (3): 143–53. DOI:10.1016/j.mito.2005.02.001.; Sorensen M.B., Stoltenberg M., Danscher G., Ernst E. Chelation of intracellular zinc ions affects human sperm cell motility. Mol Hum Reprod. 1999; 5: 338–41. DOI:10.1093/molehr/5.4.338.; Yoshida K., Kawano N., Yoshiike M. et al. Physiological roles of semenogelin I and zinc in sperm motility and semen coagulation on ejaculation in humans. Mol Hum Reprod. 2008;14: 151–6. DOI:10.1093/molehr/gan003.; Elzanaty S. Association between age and epididymal and accessory sex gland function and their relation to sperm motility. Arch Androl. 2007; 53:149–56. DOI:10.1080/01485010701225667.; Iguchi K., Morihara N., Usui S. et al. Castration- and aging-induced changes in the expression of zinс transporter and metallothionein in rat prostate. J Androl. 2011; 32(2):144–50. DOI:10.2164/jandrol.110.011205.; Guo L., Lichten L.A., Ryu M.S. et al. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci USA. 2010; 107:2818–23. DOI:10.1073/pnas.0914941107.; Chen Q.G. Zhang Z., Yang Q., et al. The role of zinc transporter ZIP 4 in prostate carcinoma. Urol. Oncol. 2012; 30 (6): 906–11. DOI:10.1016/j.urolonc.2010.11.010.; Desouki M.M., Geradts J., Milon B. et al. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol. Cancer. 2007; 6: 37. DOI:10.1186/1476-4598-6-37.; Ding W.Q., Lind S.E. Metal ionophores – an emerging class of anticancer drugs. IUBMB Life. 2009; 61: 1013–8. DOI:10.1002/iub.253.; Huang L., Kirschke C.P., Zhang Y. Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 2006; 6 (10): 1–13. DOI:10.1186/1475-2867-6-10.; Johnson L.A., Kanak M.A., Kajdacsy-Balla A. et al. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods. 2010; 52: 316–21. DOI:10.1016/j.ymeth.2010.08.004.; Iguchi K., Otsuka T., Usui S. et al. Correlation between ZIP2 messenger RNA expression and zinc level in rat lateral prostate. Biol Trace Elem Res. 2006; 112: 159–67. DOI:10.1385/BTER:112:2:159.; Franklin R.B., Feng P., Milon B. et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer. 2005; 4:32–45. DOI:10.1186/1476-4598-4-32.; Guerinot M.L. The ZIP family of metal transporters. Biochim Biophys Acta. 2000;1465 (1–2): 190–8. DOI:10.1016/s0005-2736(00)00138-3.; Kambe T., Yamaguchi-Iwai Y., Sasaki R. et al. Overview of mammalian zinc transporters. Cell. Mol. Life Sci. 2004; 61: 49–68. DOI:10.1007/s00018-003-3148- г.; Kirschke C.P., Huang L. Expression of the ZNT (SLC30) family members in the epithelium of the mouse prostate during sexual maturation. J Mol Histol. 2008; 39:359–70. DOI:10.1007/s10735-008-9174-1.; Fujimoto N., Akimoto Y., Suzuki T. et al. Identification of prostatic-secreted proteins in mice by mass spectrometric analysis and evaluation of lobe-specific and androgen-dependent mRNA expression. J Endocrinol. 2006; 190: 793–803. DOI:10.1677/joe.1.06733.; Ishihara K., Yamazaki T., Ishida Y. et al. Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J Biol Chem. 2006; 281:17743–50. DOI:10.1074/jbc.M602470200.; Ellis C.D., Macdiarmid C.W., Eide D.J. Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J Biol Chem. 2005; 280:28811–8. DOI:10.1074/jbc.M505500200.; Fukunaka A., Suzuki T., Kurokawa Y. et al. Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J Biol Chem. 2009; 284:30798–806. DOI:10.1074/jbc.M109.026435.; McCormick N., Velasquez V., Finney L. et al. X-ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland. PLoS ONE. 2010;5: e11078. DOI:10.1371/journal.pone.0011078.; Kelleher S.L., McCormick N.H., Velasquez V., Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr. 2011; 2(2):101–11. DOI:10.3945/an.110.000232.; Costello L.C., Franklin R.B. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate. 1998; 35:285–96. DOI:10.1002/(sici)1097-0045(19980601)35:43.0.co;2-f.; Costello L.C., Franklin R.B. Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert. Rev. Anticancer Ther. 2012; 12 (1): 121–8. DOI:10.1586/era.11.190.; Costello L.C., Franklin R.B. Zinc is decreased in prostate cancer: an established relationship of prostate cancer. J. Biol. Inorg. Chem. 2011;16 (1): 3–8. DOI:10.1007/s00775-010-0736-9.; Liu Y., Franklin R.B., Costello L.C. Prolactin and testosterone regulation of mitochondrial zinc in prostate epithelial cells. Prostate. 1997; 30:26–32. DOI:10.1002/(sici)1097-0045(19970101)30:13.0.co;2-j.; Kolenko V., Teper E., Kutikov A. et al. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 2013;10 (4): 219–226. DOI:10.1038/nrurol.2013.43.; Singh K.K., Desouki M.M., Franklin R.B. et al. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol. Cancer. 2006; 5: 14. DOI:10.1186/1476-4598-5-14.; Franz M.C., Anderle P., Bürzle M. et al. Zinc transporters in prostate cancer. Mol. Aspects Med. 2013; 34 (2–3):735–41. DOI:10.1016/j.mam.2012.11.007.; Golovine K., Uzzo R.G., Makhov P. Depletion of intracellular zinc increases expression of tumorigenic cytokines VEGF, IL-6 and IL-8 in prostate cancer cells via NF-kappaB-dependent pathway. Prostate. 2008; 68 (13):1443–9. DOI:10.1002/pros.20810.; Ku J.H., Seo S.Y., Kwak C. et al. The role of survivin and Bcl-2 in zinc-induced apoptosis in prostate cancer cells. Urol. Oncol. 2012;30 (5): 562–8. DOI:10.1016/j.urolonc.2010.06.001.; Zaichick V.Y., Sviridova T.V., Zaichick S.V. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997;29: 565–74. DOI:10.1007/BF02552202.; Zaichick V.Y., Sviridova T.V., Zaichick SV. Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma and cancer. Int Urol Nephrol. 1996; 28:687–94. DOI:10.1007/BF02552165.; Feng P., Li T., Guan Z. et al. The involvement of Bax in zincinduced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer. 2008;7: 25–30. DOI:10.1186/1476-4598-7-25.; Franklin R.B., Costello L.C. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys. 2007;463: 211–7. DOI:10.1016/j.abb.2007.02.033.; Bianchi-Frias D., Vakar-Lopez F., Coleman I.M. et al. The effects of aging on the molecular and cellular composition of the prostate microenvironment. PLoS ONE. 2010; 5:12501–16. DOI:10.1371/journal.pone.0012501.; Song Y., Elias V., Loban A. et al. Marginal zinc deficiency increases oxidative DNA damage in the prostate after chronic exercise. Free Radic Biol Med. 2010; 48:82–8. DOI:10.1016/j.freeradbiomed.2009.10.030.; Yan M., Song Y., Wong C.P. et al. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr. 2008;138: 667–73. DOI:10.1093/jn/138.4.667.; Golovine K., Makhov P., Uzzo R.G. et al. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-kappa B and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin. Cancer Res. 2008; 14: 5376–84. DOI:10.1158/1078-0432.CCR-08-0455.; Uzzo R.G. Diverse effects of zinc on NF-kappaB and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis. 2006; 27:1980–90. DOI:10.1093/carcin/bgl034.; Ku J.H., Seo S.Y., Kwak C. et al. The role of survivin and Bcl-2 in zinc-induced apoptosis in prostate cancer cells. Urol. Oncol. 2012; 30 (5): 562–8. DOI: doi:10.1016/j.urolonc.2010.06.001.; Zhao J., Wu Q., Hu X. et al. Comparative study of serum zinc concentrations in benign and malignant prostate disease: A Systematic Review and Meta-Analysis. Sci Rep. 2016; 6: 25778. DOI:10.1038/srep25778.; Cui D., Han G., Shang Y. et al. The effect of chronic prostatitis on zinc concentration of prostatic fluid and seminal plasma: a systematic review and meta-analysis. Curr Med Res Opin. 2015;31(9):1763–9. DOI:10.1185/03007995.2015.1072707.; Gumulec J., Masarik M., Adam V. et al. Serum and tissue zinc in epithelial malignancies: a meta-analysis. PLoS One. 2014;9(6): e99790. DOI:10.1371/journal.pone.0099790.; Mahmoud A.M., Al-Alem U, Dabbous F. et al. Zinc Intake and Risk of Prostate Cancer: Case-Control Study and Meta-Analysis. PLoS One. 2016;11(11): e0165956. DOI:10.1371/journal.pone0165956.; Fair W.R., Couch J., Wehner N. Prostatic antibacterial factor. Identity and significance. Urology. 1976; 7:169–77. DOI:10.1016/0090-4295(76)90305-8.; Mårdh P.A., Colleen S. Antimicrobial activity of human seminal fluid. Scand J Urol Nephrol. 1975;9(1):17–23. DOI:10.3109/00365597509139907.; Colleen S., Mårdh P.A., Schytz A. Magnesium and zinc in seminal fluid of healthy males and patients with non-acute prostatitis with and without gonorrhoea. Scand J Urol Nephrol. 1975;9(3):192–7. DOI:10.3109/00365597509134210.; Canale D., Bartelloni M., Negroni A. et al. Zinc in human semen. Int J Androl. 1986;9(6):477–80. DOI:10.1111/j.1365-2605.1986tb00909.x.; Neal D.E.Jr., Kaack M.B., Fussell E.N., Roberts J.A. Changes in seminal fluid zinc during experimental prostatitis. Urol Res. 1993;21(1):71–4. DOI:10.1007/BF00295197.; Mo L.J., Chen X., Wang X.M. et al. Reduced zinc concentration in expressed prostatic secretion relates to the pain symptoms of types III and IV prostatitis. Zhonghua Nan Ke Xue. 2016;22(6):496–500. PMID: 28963836.; Gómez Y., Arocha F., Espinoza F. et al. Zinc levels in prostatic fluid of patients with prostate pathologies. Invest Clin. 2007;48(3):287–94. PMID: 17853788.; Roumeguère T., Sfeir J., El Rassy E. et al. Oxidative stress and prostatic diseases. Mol Clin Oncol. 2017;7(5):723–8. DOI: 10.389/mco.2017.1413.; Kaya E., Ozgok Y., Zor M. et al. Oxidative stress parameters in patients with prostate cancer, benign prostatic hyperplasia and asymptomatic inflammatory prostatitis: A prospective controlled study. Adv Clin Exp Med. 2017;26(7):1095–9. DOI:10.17219acem/66837.; Xiong Y., Qiu X., Shi W. et al. Anti-inflammatory and antioxidant effect of modified Bazhengsan in a rat model of chronic bacterial prostatitis. J Ethnopharmacol. 2017;198:73–80. DOI: 10.101/j.jep.2016.12.039.; Hu Y., Niu X., Wang G. et al. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Androl. 2016;4(6):1209–16. DOI:10.1111/andr.12273.; Goodarzi D., Cyrus A., Baghinia M.R. et al. The efficacy of zinc for treatment of chronic prostatitis. Acta Med Indones. 2013;45(4):259–64. PMID: 24448329.; Condorelli R.A., Russo G.I., Calogero A.E. et al. Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. J Endocrinol Invest. 2017;40(11):1209–18. DOI: doi:10.1007/s40618-017-0684-0.; https://agx.abvpress.ru/jour/article/view/734

  11. 11
    Academic Journal

    Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 15, Iss 2, Pp 99-105 (2019)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; Том 15, № 2 (2019); 99-105
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 2 (2019); 99-105
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 2 (2019); 99-105

    File Description: application/pdf

  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: The study was funded by Russian Science Foundation grant 23-15-00321, Работа выполнена при финансовой поддержке РНФ (проект 23-15-00321)

    Source: Siberian journal of oncology; Том 22, № 5 (2023); 145-160 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 145-160 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2768/1165; Herbst A.L., Ulfelder H., Poskanzer D.C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971; 284(15): 878–81. doi:10.1056/NEJM197104222841604.; Attina T.M., Hauser R., Sathyanarayana S., Hunt P.A., Bourguignon J.P., Myers J.P., DiGangi J., Zoeller R.T., Trasande L. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016; 4(12): 996–1003. doi:10.1016/S2213-8587(16)30275-3.; Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7–33. doi:10.3322/caac.21708.; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49. doi:10.3322/caac.21660.; Bellanger M., Demeneix B., Grandjean P., Zoeller R.T., Trasande L. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015; 100(4): 1256–66. doi:10.1210/jc.2014-4323.; Hauser R., Skakkebaek N.E., Hass U., Toppari J., Juul A., Andersson A.M., Kortenkamp A., Heindel J.J., Trasande L. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015; 100(4): 1267–77. doi:10.1210/jc.2014-4325.; Lichtenstein P., Holm N.V., Verkasalo P.K., Iliadou A., Kaprio J., Koskenvuo M., Pukkala E., Skytthe A., Hemminki K. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343(2): 78–85. doi:10.1056/NEJM200007133430201.; Koual M., Tomkiewicz C., Cano-Sancho G., Antignac J.P., Bats A.S., Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health. 2020; 19(1): 117. doi:10.1186/s12940020-00670-2.; Balaguer P., Delfosse V., Grimaldi M., Bourguet W. Structural and Functional Evidences for the Interactions between Nuclear Hormone Receptors and Endocrine Disruptors at Low Doses. C. R. Biol. 2017; 340(9–10): 414–20, doi:10.1016/j.crvi.2017.08.002.; Gore A.C., Chappell V.A., Fenton S.E., Flaws J.A., Nadal A., Prins G.S., Toppari J., Zoeller R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015; 36(6): 1–150. doi:10.1210/er.2015-1010.; Arbo M.D., Franco M.T., Larentis E.R., Garcia S.C., Sebben V.C., Leal M.B., Dallegrave E., Limberger R.P. Screening for in vivo (anti)estrogenic activity of ephedrine and p-synephrine and their natural sources Ephedra sinica Stapf. (Ephedraceae) and Citrus aurantium L. (Rutaceae) in rats. Arch Toxicol. 2009; 83(1): 95–9. doi:10.1007/s00204-008-0324-8.; Korn S.H., Wouters E.F., Wesseling G., Arends J.W., Thunnissen F.B. Interaction between glucocorticoids and beta2-agonists: alpha and beta glucocorticoid-receptor mRNA expression in human bronchial epithelial cells. Biochem Pharmacol. 1998; 56(12): 1561–9. doi:10.1016/s0006-2952(98)00179-8.; Conolly R.B., Lutz W.K. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci. 2004; 77(1): 151–7. doi:10.1093/toxsci/kfh007. Erratum in: Toxicol Sci. 2004; 77(2): following table of contents.; Graceli J.B., Sena G.C., Lopes P.F., Zamprogno G.C., da Costa M.B., Godoi A.F., Dos Santos D.M., de Marchi M.R., Dos Santos Fernandez M.A. Organotins: a review of their reproductive toxicity, biochemistry, and environmental fate. Reprod Toxicol. 2013; 36: 40–52. doi:10.1016/j.reprotox.2012.11.008.; Oyola M.G., Handa R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017; 20(5): 476–94. doi:10.1080/10253890.2017.1369523.; Iaglov V.V. Aktualnye problemy biologII diffuznoĭ éndokrinnoĭ sistemy [Current problems of the biology of the diffuse endocrine system]. Arkh Anat Gistol Embriol. 1989; 96(1): 14–29.; Simpson E., Rubin G., Clyne C., Robertson K., O’Donnell L., Jones M., Davis S. The role of local estrogen biosynthesis in males and females. Trends Endocrinol Metab. 2000; 11(5): 184–8. doi:10.1016/s1043-2760(00)00254-x.; McNamara K.M., Sasano H. The intracrinology of breast cancer. J Steroid Biochem Mol Biol. 2015; 145: 172–8. doi:10.1016/j.jsbmb.2014.04.004.; Penning T.M., Detlefsen A.J. Intracrinology-revisited and prostate cancer. J Steroid Biochem Mol Biol. 2020; 196. doi:10.1016/j.jsbmb.2019.105499.; Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. doi:10.3322/caac.21492. Erratum in: CA Cancer J Clin. 2020; 70(4): 313.; Cohn B.A., Wolff M.S., Cirillo P.M., Sholtz R.I. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007; 115(10): 1406–14. doi:10.1289/ehp.10260.; Cohn B.A., Cirillo P.M., Terry M.B. DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows. J Natl Cancer Inst. 2019; 111(8): 803–10. doi:10.1093/jnci/djy198.; Cheong A., Johnson S.A., Howald E.C., Ellersieck M.R., Camacho L., Lewis S.M., Vanlandingham M.M., Ying J., Ho S.M., Rosenfeld C.S. Gene expression and DNA methylation changes in the hypothalamus and hippocampus of adult rats developmentally exposed to bisphenol A or ethinyl estradiol: a CLARITY-BPA consortium study. Epigenetics. 2018; 13(7): 704–20. doi:10.1080/15592294.2018.1497388.; Cao J., Mickens J.A., McCaffrey K.A., Leyrer S.M., Patisaul H.B. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology. 2012; 33(1): 23–36. doi:10.1016/j.neuro.2011.11.002.; Eckstrum K.S., Edwards W., Banerjee A., Wang W., Flaws J.A., Katzenellenbogen J.A., Kim S.H., Raetzman L.T. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology. 2018; 159(1): 119–31. doi:10.1210/en.2017-00565.; Nair V.A., Valo S., Peltomäki P., Bajbouj K., Abdel-Rahman W.M. Oncogenic Potential of Bisphenol A and Common Environmental Contaminants in Human Mammary Epithelial Cells. Int J Mol Sci. 2020; 21(10): 3735. doi:10.3390/ijms21103735.; Acevedo N., Davis B., Schaeberle C.M., Sonnenschein C., Soto A.M. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. 2013; 121(9): 1040–6. doi:10.1289/ehp.1306734.; Cockburn M., Mills P., Zhang X., Zadnick J., Goldberg D., Ritz B. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am J Epidemiol. 2011; 173(11): 1280–8. doi:10.1093/aje/kwr003.; Bleak T.C., Calaf G.M. Breast and prostate glands affected by environmental substances (Review). Oncol Rep. 2021; 45(4): 20. doi:10.3892/or.2021.7971.; Kandaraki E., Chatzigeorgiou A., Livadas S., Palioura E., Economou F., Koutsilieris M., Palimeri S., Panidis D., Diamanti-Kandarakis E. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab. 2011; 96(3): 480–4. doi:10.1210/jc.2010-1658.; Manikkam M., Tracey R., Guerrero-Bosagna C., Skinner M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013; 8(1). doi:10.1371/journal.pone.0055387.; Ho S.M., Tang W.Y., Belmonte de Frausto J., Prins G.S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006; 66(11): 5624–32. doi:10.1158/00085472.CAN-06-0516.; Khan N.G., Correia J., Adiga D., Rai P.S., Dsouza H.S., Chakrabarty S., Kabekkodu S.P. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. Environ Sci Pollut Res Int. 2021; 28(16): 19643–63. doi:10.1007/s11356-021-13071-w.; Prins G.S., Ye S.H., Birch L., Zhang X., Cheong A., Lin H., Calderon-Gierszal E., Groen J., Hu W.Y., Ho S.M., van Breemen R.B. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose-Response Analysis. Environ Health Perspect. 2017; 125(7). doi:10.1289/EHP1050.; Stapelfeld C., Dammann C., Maser E. Sex-specificity in lung cancer risk. Int J Cancer. 2020; 146(9): 2376–82. doi:10.1002/ijc.32716.; The Coronary Drug Project. Findings leading to discontinuation of the 2.5-mg day estrogen group. The coronary Drug Project Research Group. JAMA. 1973; 226(6): 652–7.; Słowikowski B.K., Jankowski M., Jagodziński P.P. The smoking estrogens – a potential synergy between estradiol and benzo(a)pyrene. Biomed Pharmacother. 2021; 139. doi:10.1016/j.biopha.2021.111658.; La Merrill M.A., Vandenberg L.N., Smith M.T., Goodson W., Browne P., Patisaul H.B., Guyton K.Z., Kortenkamp A., Cogliano V.J., Woodruff T.J., Rieswijk L., Sone H., Korach K.S., Gore A.C., Zeise L., Zoeller R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020; 16(1): 45–57. doi:10.1038/s41574-019-0273-8.; Zama A.M., Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009; 150(10): 4681–91. doi:10.1210/en.2009-0499.; Fimia G.M., Sassone-Corsi P. Cyclic AMP signalling. J Cell Sci. 2001; 114(Pt 11): 1971–2. doi:10.1242/jcs.114.11.1971.; Ye L., Guo J., Ge R.S. Environmental Pollutants and Hydroxysteroid Dehydrogenases. In Vitamins & Hormones. Elsevier. 2014; 94: 349–90. https://doi.org/10.1016/B978-0-12-800095-3.00013-4.; Amir S., Shah S.T.A., Mamoulakis C., Docea A.O., Kalantzi O.I., Zachariou A., Calina D., Carvalho F., Sofikitis N., Makrigiannakis A., Tsatsakis A. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. Int J Environ Res Public Health. 2021; 18(4): 1464. doi:10.3390/ijerph18041464.; Xin F., Jiang L., Liu X., Geng C., Wang W., Zhong L., Yang G., Chen M. Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2014; 769: 29–33. doi:10.1016/j.mrgentox.2014.04.019.; Tarnow P., Tralau T., Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol. 2019; 15(3): 219–29. doi:10.1080/17425255.2019.1569627.; Drobná Z., Henriksen A.D., Wolstenholme J.T., Montiel C., Lambeth P.S., Shang S., Harris E.P., Zhou C., Flaws J.A., Adli M., Rissman E.F. Transgenerational Effects of Bisphenol A on Gene Expression and DNA Methylation of Imprinted Genes in Brain. Endocrinology. 2018; 159(1): 132–44. doi:10.1210/en.2017-00730.; Lucaccioni L., Trevisani V., Marrozzini L., Bertoncelli N., Predieri B., Lugli L., Berardi A., Iughetti L. Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence. Int J Mol Sci. 2020; 21(6): 2078. doi:10.3390/ijms21062078.; Lampis A., Hahne J.C., Gasparini P., Cascione L., Hedayat S., Vlachogiannis G., Murgia C., Fontana E., Edwards J., Horgan P.G., Terracciano L., Sansom O.J., Martins C.D., Kramer-Marek G., Croce C.M., Braconi C., Fassan M., Valeri N. MIR21-induced loss of junctional adhesion molecule A promotes activation of oncogenic pathways, progression and metastasis in colorectal cancer. Cell Death Differ. 2021; 28(10): 2970–82. doi:10.1038/s41418-021-00820-0.; Knoll M., Lodish H.F., Sun L. Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol. 2015; 11(3): 151–60. doi:10.1038/nrendo.2014.229.; Pardini B., Calin G.A. MicroRNAs and Long Non-Coding RNAs and Their Hormone-Like Activities in Cancer. Cancers (Basel). 2019; 11(3): 378. doi:10.3390/cancers11030378.; Derghal A., Djelloul M., Trouslard J., Mounien L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front Neurosci. 2016; 10: 318. doi:10.3389/fnins.2016.00318.; Schveigert D., Krasauskas A., Didziapetriene J., Kalibatiene D., Cicenas S. Smoking, hormonal factors and molecular markers in female lung cancer. Neoplasma. 2016; 63(4): 504–9. doi:10.4149/neo_2016_402.; Meireles S.I., Esteves G.H., Hirata R. Jr., Peri S., Devarajan K., Slifker M., Mosier S.L., Peng J., Vadhanam M.V., Hurst H.E., Neves E.J., Reis L.F., Gairola C.G., Gupta R.C., Clapper M.L. Early changes in gene expression induced by tobacco smoke: Evidence for the importance of estrogen within lung tissue. Cancer Prev Res (Phila). 2010; 3(6): 707–17. doi:10.1158/1940-6207.CAPR-09-0162.; Meza R., Meernik C., Jeon J., Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010. PLoS One. 2015; 10(3). doi:10.1371/journal.pone.0121323.; Lortet-Tieulent J., Soerjomataram I., Ferlay J., Rutherford M., Weiderpass E., Bray F. International trends in lung cancer incidence by histological subtype: adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer. 2014; 84(1): 13–22. doi:10.1016/j.lungcan.2014.01.009.; Smida T., Bruno T.C., Stabile L.P. Influence of Estrogen on the NSCLC Microenvironment: A Comprehensive Picture and Clinical Implications. Front Oncol. 2020; 10: 137. doi:10.3389/fonc.2020.00137.; Hirao-Suzuki M. Estrogen Receptor β as a Possible Double-Edged Sword Molecule in Breast Cancer: A Mechanism of Alteration of Its Role by Exposure to Endocrine-Disrupting Chemicals. Biol Pharm Bull. 2021; 44(11): 1594–7. doi:10.1248/bpb.b21-00468.; Zhang C., Schilirò T., Gea M., Bianchi S., Spinello A., Magistrato A., Gilardi G., Di Nardo G. Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor. Int J Environ Res Public Health. 2020; 17(16): 5664. doi:10.3390/ijerph17165664.; Küblbeck J., Vuorio T., Niskanen J., Fortino V., Braeuning A., Abass K., Rautio A., Hakkola J., Honkakoski P., Levonen A.L. The EDCMET Project: Metabolic Effects of Endocrine Disruptors. Int J Mol Sci. 2020; 21(8): 3021. doi:10.3390/ijms21083021.; Delfosse V., Dendele B., Huet T., Grimaldi M., Boulahtouf A., Gerbal-Chaloin S., Beucher B., Roecklin D., Muller C., Rahmani R., Cavaillès V., Daujat-Chavanieu M., Vivat V., Pascussi J.M., Balaguer P., Bourguet W. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat Commun. 2015; 6: 8089. doi:10.1038/ncomms9089.; Kassotis C.D., Stapleton H.M. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front Endocrinol (Lausanne). 2019; 10: 39. doi:10.3389/fendo.2019.00039.; Safe S., Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol. 2003; 16(7): 807–16. doi:10.1021/tx034036r.; Nomiri S., Hoshyar R., Ambrosino C., Tyler C.R., Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. Environ Sci Pollut Res Int. 2019; 26(9): 8459–67. doi:10.1007/s11356-019-04228-9.; Leng Y., Ren L., Niu S., Zhang T., Zhang J. In vitro and in silico investigations of endocrine disruption induced by metabolites of plasticizers through glucocorticoid receptor. Food Chem Toxicol. 2021; 155. doi:10.1016/j.fct.2021.112413.; Atlas E., Pope L., Wade M.G., Kawata A., Boudreau A., Boucher J.G. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter. Adipocyte. 2014; 3(3): 170–9. doi:10.4161/adip.28436.; de la Rosa R., Vazquez S., Tachachartvanich P., Daniels S.I., Sillé F., Smith M.T. Cell-Based Bioassay to Screen Environmental Chemicals and Human Serum for Total Glucocorticogenic Activity. Environ Toxicol Chem. 2021; 40(1): 177–86. doi:10.1002/etc.4903.; Meakin C.J., Szilagyi J.T., Avula V., Fry R.C. Inorganic arsenic and its methylated metabolites as endocrine disruptors in the placenta: Mechanisms underpinning glucocorticoid receptor (GR) pathway perturbations. Toxicol Appl Pharmacol. 2020. doi:10.1016/j.taap.2020.115305.; Leng Y., Sun Y., Huang W., Lv C., Cui J., Li T., Wang Y. Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods. Mol Biol Rep. 2021; 48(4): 3145–54. doi:10.1007/s11033-021-06303-2.; European Parliament. Directorate General for Internal Policies of the Union. Endocrine Disruptors: From Scientific Evidence to Human Health Protection Policy. Publications Office: LU, 2019.; Kassotis C.D., Vandenberg L.N., Demeneix B.A., Porta M., Slama R., Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 2020; 8(8): 719–30. doi:10.1016/S2213-8587(20)30128-5.; Hormonally Active Agents in the Environment. Committee on Hormonally Active Agents in the Environment. National Research Council, 1999.; European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC); Andersson N., Arena M., Auteri D., Barmaz S., Grignard E., Kienzler A., Lepper P., Lostia A.M., Munn S., Parra Morte J.M., Pellizzato F., Tarazona J., Terron A., Van der Linden S. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018; 16(6). doi:10.2903/j.efsa.2018.5311.; Максимова В.П., Бугаева П.Е., Жидкова Е.М., Усалка О.Г., Лесовая Е.А., Белицкий Г.А., Якубовская М.Г., Кирсанов К.И. Современные подходы к выявлению и изучению эпигенетически активных ксенобиотиков. Успехи молекулярной онкологии. 2019; 6(3): 8–27. doi:10.17650/2313-805X-2019-6-3-8-27.; https://www.siboncoj.ru/jour/article/view/2768

  15. 15
    Academic Journal

    Source: Cancer Urology; Том 19, № 2 (2023); 94-100 ; Онкоурология; Том 19, № 2 (2023); 94-100 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1618/1462; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1618/1200; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1618/1201; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.; Aggarwal R., Zhang T., Small E.J., Armstrong A.J. Neuroendocrine prostate cancer: subtypes, biology, and clinical outcomes. J Natl Compr Canc Netw 2014;12(5):719–26. DOI:10.6004/jnccn.2014.0073; Nagtegaal I.D., Odze R.D., Klimstra D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020;76(2):182–8. DOI:10.1111/его.13975; Zhang Q., Han Y., Zhang Y. et al. Treatment-emergent neuroendocrine prostate cancer: a clinicopathological and immunohistochemical analysis of 94 cases. Front Oncol 2021;10:571308. DOI:10.3389/fonc.2020.571308; Hirano D., Okada Y., Minei S. et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004;45(5):586–92. DOI:10.1016/j.eururo.2003.11.032; Aggarwal R., Huang J., Alumkal J.J. et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol 2018;36(24):2492–503. DOI:10.1200/JCO.2017.77.6880; Abida W., Cyrta J., Heller G. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA 2019;116(23):11428–36. DOI:10.1073/pnas.1902651116; Bluemn E.G., Coleman I.M., Lucas J.M. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 2017;32(4):474–89. DOI:10.1016/j.ccell.2017.09.003; Beltran H., Prandi D., Mosquera J.M. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016;22(3):298–305. DOI:10.1038/nm.4045; Umar S.A., Maclenna G.T. Small cell carcinoma of the prostate. J Urol 2009;181(2):838–9. DOI:10.1038/nrurol.2014.21; Barcons L.A.L. Small cell neuroendocrine carcinoma of the prostate: are heterotransplants a better experimental model? Asian J Androl 2010;12(3):308–14. DOI:10.1038/aja.2009.68; Beltran H., Tagawa S.T., Park K. et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. Clin Oncol 2012;30(36):386–9. DOI:10.1200/JCO.2011.41.5166; Beltran H., Rickman D.S., Park K. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 2011;1(6):487–95. DOI:10.1158/2159-8290.CD-11-0130; Hu C.D., Choo R., Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol 2015;5:90. DOI:10.3389/fonc.2015.00090; Patel G.K., Chugh N., Tripathi M. Neuroendocrine differentiation of prostate cancer-an intriguing example of tumor evolution at play. Cancers (Basel) 2019;11(10):1405. DOI:10.3390/cancers11101405; Аничков Н.М., Плотникова Н.А. О морфологии и классификации опухолеподобных поражений и pака предстательной железы. Архив патологии 2001;(5):44–50.; Zhang Y., Zheng D., Zhou T. et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREBEZH2-TSP1 pathway in prostate cancers. Nat Commun 2018;9(1):4080. DOI:10.1038/s41467-018-06177-2; Puca L., Vlachostergios P.J., Beltran H. Neuroendocrine differentiation in prostate cancer: emerging biology, models, and therapies. Cold Spring Harb Perspect Med 2019;9(2):30593. DOI:10.1101/cshperspect.a030593; Montironi R., Cimadamore A., Lopez-Beltran A. et al. Morphologic, molecular and clinical features of aggressive variant prostate cancer. Cells 2020;9(5):1073. DOI:10.3390/cells9051073; Mahal B.A., Yang D.D., Wang N.Q. et al. Clinical and genomic characterization of low-prostate-specific antigen, high-grade prostate cancer. Eur Urol 2018;74(2):146–54. DOI:10.1016/j.eururo.2018.01.043; Wang J., Xu W., Mierxiati A. et al. Low-serum prostate-specific antigen level predicts poor outcomes in patients with primary neuroendocrine prostate cancer. Prostate 2019;79(13):1563–71. DOI:10.1002/pros.23878; Helpap B., Kollermann J., Oehler U. Neuroendocrine differentiation in prostatic carcinomas: histogenesis, biology, clinical relevance, and future therapeutical perspectives. Urol Int 1999;62:133–8. DOI:10.1159/000030376; Marcus D.M., Goodman M., Jani A.B. et al. A comprehensive review of incidence and survival in patients with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis 2012;15(3):283–8. DOI:10.1038/pcan.2012.4; Shimamura T., Kurauchi T., Sakanaka K. et al. Clinical investigation of neuroendocrine differentiation in prostate cancer. J Clin Oncol 2020;38:138. DOI:10.1200/jco.2020.38.6_suppl.138; Hvamstad T., Jordal A., Hekmat N. et al. Neuroendocrine serum tumour markers in hormone-resistant prostate cancer. Eur Urol 2003;44(2):215–6. DOI:10.1016/s0302-2838(03)00257-4; Spetsieris N., Boukovala M., Patsakis G. et al. Neuroendocrine and aggressive-variant prostate cancer. Cancers (Basel) 2020;12(12):3792. DOI:10.3390/cancers12123792; Apostolidis L., Nientiedt C., Winkler E.C. et al. Clinical characteristics, treatment outcomes and potential novel therapeutic options for patients with neuroendocrine carcinoma of the prostate. Oncotarget 2019;10(1):17–29. DOI:10.18632/oncotarget.26523; Zhu J., Liang X., Wu D. et al. Clinicopathological characteristics and survival outcomes in neuroendocrine prostate cancer: a population-based study. Medicine (Baltimore) 2021;100(15):25237. DOI:10.1097/MD.0000000000025237; Vlachostergios P.J., Papandreou C.N. Targeting neuroendocrine prostate cancer: molecular and clinical perspectives. Front Oncol 2015;5:6. DOI:10.3389/fonc.2015.00006; Papandreou C.N., Daliani D.D., Thall P.F. et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J Clin Oncol 2002;20(14):3072–80. DOI:10.1200/JCO.2002.12.065; Culine S., El Demery M., Lamy P.J. et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J Urol 2007;178:844–8. DOI:10.1016/j.juro.2007.05.044; Apostolidis L., Bergmann F., Jäger D., Winkler E.C. Efficacy of topotecan in pretreated metastatic poorly differentiated extrapulmonary neuroendocrine carcinoma. Cancer Med 2016;5(9):2261–7. DOI:10.1002/cam4.807; Antonia S.J., Lopez-Martin J.A., Bendell J. et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 2016;17(70):883–95. DOI:10.1016/S1470-2045(16)30098-5; Kaufman H.L., Russell J., Hamid O. et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 2016;17(10):1374–85. DOI:10.1016/S1470-2045(16)30364-3; Nghiem P.T., Bhatia S., Lipson E.J. et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med 2016;374(26):2542–52. DOI:10.1056/NEJMoa1603702; Ugwu J.K., Nwanyanwu C., Shelke A.R. Dramatic response of a metastatic primary small-cell carcinoma of the pancreas to a trial of immunotherapy with nivolumab: a case report. Case Rep Oncol 2017;10(2):720–5. DOI:10.1159/000479315; Paraghamian S.E., Longoria T.C., Eskander R.N. Metastatic small cell neuroendocrine carcinoma of the cervix treated with the PD-1 inhibitor, nivolumab: a case report. Gynecol Oncol Res Pract 2017;4:3. DOI:10.1186/s40661-017-0038-9; Conteduca V., Oromendia C., Eng K.W. et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer 2019;121:7–18. DOI:10.1016/j.ejca.2019.08.011; Wang Z.A., Toivanen R., Bergren S.K. et al. Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep 2014;8(5):1339–46. DOI:10.1016/j.celrep.2014.08.002; Mosca A., Berruti A., Russo L. et al. The neuroendocrine phenotype in prostate cancer: basic and clinical aspects. J Endocrinol Invest 2005;28(11 Suppl):141–5.; Komiya A., Suzuki H., Imamoto T. et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol 2009:6(2):37–44. DOI:10.1111/j.1442-2042.2008.02175.x; https://oncourology.abvpress.ru/oncur/article/view/1618

  16. 16
    Academic Journal

    Source: Andrology and Genital Surgery; Том 24, № 2 (2023); 66-76 ; Андрология и генитальная хирургия; Том 24, № 2 (2023); 66-76 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/662/522; Dale H.H. The action of extracts of the pituitary body. Biochem J 1909;4(9):427–47. DOI:10.1042/bj0040427; Du Vigneaud V., Ressler C., Trippett S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin J Biol Chem 1953;205(2):949–57. PMID: 13129273.; Циркин В.И., Трухина С.И., Трухин А.Н. Окситоцин: синтез, выделение, метаболизм и регуляция этих процессов (обзор). Журнал медико-биологических исследований 2018;6(3): 270–83. DOI:10.17238/issn2542-1298.2018.6.3.270; Чернышева М.П., Ноздрачев А.Д. Нонапептид окситоцин: соматические и висцеральные функции при некоторых психопатологиях. Психофармакология и биологическая наркология 2009;9(3–4):2574–90.; John S., Jaeggi A.V. Oxytocin levels tend to be lower in autistic children: a meta-analysis of 31 studies. Autism 2021;25(8):2152–61. DOI:10.1177/13623613211034375; Григорьева М.Е., Голубева М.Г. Окситоцин: строение, синтез, рецепторы и основные эффекты. Нейрохимия 2010;27(2):93–101.; Neumann I.D., Maloumby R., Beiderbeck D.I. et al. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 2013;38(10):1985–93. DOI:10.1016/j.psyneuen.2013.03.003; Althammer F., Eliava M., Grinevich V. Central and peripheral release of oxytocin: relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. Handb Clin Neurol 2021;180:25–44. DOI:10.1016/B978-0-12-820107-7.00003-3; Rae M., Lemos Duarte M., Gomes I. et al. Oxytocin and vasopressin: signalling, behavioural modulation and potential therapeutic effects. Br J Pharmacol 2022;179(8):1544–64. DOI:10.1111/bph.15481; Kim S.H., Bennett P.R., Terzidou V. Advances in the role of oxytocin receptors in human parturition. Mol Cell Endocrinol 2017;449:56–63. DOI:10.1016/j.mce.2017.01.034; Yao S., Kendrick K.M. Effects of intranasal administration of oxytocin and vasopressin on social cognition and potential routes and mechanisms of action. Pharmaceutics 2022;14(2):323. DOI:10.3390/pharmaceutics14020323; Kendrick K.M., Guastella A.J., Becker B. Overview of human oxytocin research. Curr Top Behav Neurosci 2018;35:321–48. DOI:10.1007/7854_2017_19; Carter C.S., Kenkel W.M., MacLean E.L. et al. Is oxytocin “nature’s medicine”? Pharmacol Rev 2020;72(4):829–61. DOI:10.1124/pr.120.019398; Caldwell H.K. Oxytocin and vasopressin: powerful regulators of social behavior. Neuroscientist 2017;23(5):517–28. DOI:10.1177/1073858417708284; Bartz J.A., Nitschke J.P., Krol S.A., Tellier P.P. Oxytocin selectively improves empathic accuracy: a replication in men and novel insights in women. Biol Psychiatry Cogn Neurosci Neuroimaging 2019;4(12):1042–8. DOI:10.1016/j.bpsc.2019.01.014; Aydogan G., Jobst A., Loy F. et al. The effect of oxytocin on group formation and strategic thinking in men. Horm Behav 2018;100: 100–6. DOI:10.1016/j.yhbeh.2018.02.003; Froemke R.C., Young L.J. Oxytocin, neural plasticity, and social behavior. Annu Rev Neurosci 2021;44:359–81. DOI:10.1146/annurev-neuro-102320-102847; Marsh N., Marsh A.A., Lee M.R., Hurlemann R. Oxytocin and the neurobiology of prosocial behavior. Neuroscientist 2021;27(6):604– 19. DOI:10.1177/1073858420960111; Xu L., Becker B., Kendrick K.M. Oxytocin facilitates social learni ng by promoting conformity to trusted individuals. Front Neurosci 2019;13:56. DOI:10.3389/fnins.2019.00056; Alaerts K., Steyaert J., Vanaudenaerde B. et al. Changes in endogenous oxytocin levels after intranasal oxytocin treatment in adult men with autism: an exploratory study with long-term follow-up. Eur Neuropsychopharmacol 2021;43:147–52. DOI:10.1016/j.euroneuro.2020.11.014; Yamasue H., Domes G. Oxytocin and Autism Spectrum Disorders. Curr Top Behav Neurosci 2018;35:449–65. DOI:10.1007/7854_2017_24; Moerkerke M., Peeters M., de Vries L. et al. Endogenous oxytocin levels in autism – a meta-analysis. Brain Sci 2021;11(11):1545. DOI:10.3390/brainsci11111545; Huang Y., Huang X., Ebstein R.P., Yu R. Intranasal oxytocin in the treatment of autism spectrum disorders: a multilevel meta-analysis. Neurosci Biobehav Rev 2021;122:18–27. DOI:10.1016/j.neubiorev.2020.12.028; Lehner M., Skórzewska A., Wisłowska-Stanek A. Sex-related predisposition to post-traumatic stress disorder development – the role of neuropeptides. Int J Environ Res Public Health 2021;19(1):314. DOI:10.3390/ijerph19010314; Carmassi C., Marazziti D., Mucci F. et al. Decreased plasma oxytocin levels in patients with PTSD. Front Psychol 2021;12:612338. DOI:10.3389/fpsyg.2021.612338; Eckstein M., Scheele D., Weber K. et al. Oxytocin facilitates the sensation of social stress. Hum Brain Mapp 2014;35(9): 4741–50. DOI:10.1002/hbm.22508; Carter C.S. Oxytocin and love: myths, metaphors and mysteries. Compr Psychoneuroendocrinol 2021;9:100107. DOI:10.1016/j.cpnec.2021.100107; Pfundmair M., Berthold V. Oxytocin makes inexperienced men more selective in their dating strategy. Compr Psychoneuroendocrinol 2020;4:100017. DOI:10.1016/j.cpnec.2020.100017; Martins D., Dipasquale O., Paloyelis Y. Oxytocin modulates local topography of human functional connectome in healthy men at rest. Commun Biol 2021;4(1):68. DOI:10.1038/s42003-020-01610-z; Flanagan J., Chatzittofis A., Boström A.D.E. et al. High plasma oxytocin levels in men with hypersexual disorder. J Clin Endocrinol Metab 2022;107(5):e1816–e22. DOI:10.1210/clinem/dgac015; Zhao W., Ma X., Le J. et al. Oxytocin biases men to be more or less tolerant of others’ dislike dependent upon their relationship status. Psychoneuroendocrinology 2018;88:167–72. DOI:10.1016/j.psyneuen.2017.12.010; Cera N., Vargas-Cáceres S., Oliveira C. et al. How relevant is the systemic oxytocin concentration for human sexual behavior? A systematic review. Sex Med 2021;9(4):100370. DOI:10.1016/j.esxm.2021.100370; Melis M.R., Argiolas A. Oxytocin, erectile function and sexual behavior: last discoveries and possible advances. Int J Mol Sci 2021;22(19):10376. DOI:10.3390/ijms221910376; Gimpl G., Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001;81(2):629–83. DOI:10.1152/physrev.2001.81.2.629; Succu S., Sanna F., Cocco C. et al. Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur J Neurosci 2008;28(4):813–21. DOI:10.1111/j.1460-9568.2008.06385.x; Baskerville T.A., Allard J., Wayman C., Douglas A.J. Dopamine oxytocin interactions in penile erection. Eur J Neurosci 2009;30(11):2151–64. DOI:10.1111/j.1460-9568.2009.06999.x; Blechman J., Amir-Zilberstein L., Gutnick A. et al. The metabolic regulator PGC-1α directly controls the expression of the hypothalamic neuropeptide oxytocin. J Neurosci 2011;31(42):14835–40. DOI:10.1523/JNEUROSCI.1798-11.2011; Kumar A., Raut S., Balasinor N.H. Endocrine regulation of sperm release. Reprod Fertil Dev 2018;30(12):1595–603. DOI:10.1071/RD18057; Ivell R., Balvers M., Rust W. et al. Oxytocin and male reproductive function. Adv Exp Med Biol 1997;424:253–64. DOI:10.1007/978-1-4615-5913-9_47; Thackare H., Nicholson H.D., Whittington K. Oxytocin – its role in male reproduction and new potential therapeutic uses. Hum Reprod Update 2006;12(4):437–48. DOI:10.1093/humupd/dmk002; Filippi S., Vignozzi L., Vannelli G.B. et al. Role of oxytocin in the ejaculatory process. J Endocrinol Invest 2003; 26(Suppl 3):82–6. PMID: 2834028.; Lui C., Cui X.G., Wang Y.X. et al. Association between neuropeptide oxytocin and male infertility. J Assist Reprod Genet 2010;27(9–10):525–31. DOI:10.1007/s10815-010-9451-2; Mostafa T., Rashed L.A., Osman I., Marawan M. Seminal plasma oxytocin and oxidative stress levels in infertile men with varicocele. Androl 2015;47(2):209–13. DOI:10.1111/and.12248; Stadler B., Whittaker M.R., Exintaris B., Middendorff R. Oxytocin in the male reproductive tract; the therapeutic potential of oxytocin-agonists and-antagonists. Front Endocrinol (Lausanne) 2020;11:565731. DOI:10.3389/fendo.2020.565731; Kerem L., Lawson E.A. The effects of oxytocin on appetite regulation, food intake and metabolism in humans. Int J Mol Sci 2021;22(14):7737. DOI:10.3390/ijms22147737; Giel K., Zipfel S., Hallschmid M. Oxytocin and eating disorders: a narrative review on emerging findings and perspectives. Curr Neuropharmacol 2018;16(8):1111–21. DOI:10.2174/1570159X15666171128143158; Ong Z.Y., Alhadeff A.L., Grill H.J. Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: the role of gastrointestinal satiation signal processing. Am J Physiol Regul Integr Comp Physiol 2015;308(9):R800–6. DOI:10.1152/ajpregu.00534.2014; Roberts Z.S., Wolden-Hanson T., Matsen M.E. et al. Chronic hindbrain administration of oxytocin is sufficient to elicit weight loss in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol 2017;313(4):R357–71. DOI:10.1152/ajpregu.00169.2017; Deblon N., Veyrat-Durebex C., Bourgoin L. et al. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One 2011;6(9):e25565. DOI:10.1371/journal.pone.0025565; Blevins J.E., Thompson B.W., Anekonda V.T. et al. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization. Am J Physiol Regul Integr Comp Physiol 2016;310(7):R640–58. DOI:10.1152/ajpregu.00220.2015; Niu J., Tong J., Blevins J.E. Oxytocin as an anti-obesity treatment. Front Neurosci 2021;15:743546. DOI:10.3389/fnins.2021.743546; Hong S.M., Ko J.K., Moon J.J., Kim Y.R. Oxytocin: a potential therapeutic for obesity. J Obes Metab Syndr 2021;30(2):115–23. DOI:10.7570/jomes20098; Breuil V., Trojani M.C., Ez-Zoubir A. Oxytocin and bone: review and perspectives. Int J Mol Sci 2021;22(16):8551. DOI:10.3390/ijms22168551; Zaidi M., New M.I., Blair H.C. et al. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018;237(3):R83–R98. DOI:10.1530/JOE-17-0680; Elabd C., Cousin W., Upadhyayula P. et al. Oxytocin is an agespecific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 2014;5:4082. DOI:10.1038/ncomms5082; Natochin Y.V., Golosova D.V., Shakhmatova E.I. A new functional role of oxytocin: participation in osmoregulation. Dokl Biol Sci 2018;479(1):60–3. DOI:10.1134/S0012496618020096; McCormack S.E., Blevins J.E., Lawson E.A. Metabolic effects of oxytocin. Endocr Rev 2020;41(2):121–45. DOI:10.1210/endrev/bnz012; Nicholson H.D. Oxytocin: a paracrine regulator of prostatic function. Rev Reprod 1996;1: 9–72. DOI:10.1530/ror.0.0010069; Bodanszky M., Sharaf H., Roy J.B., Said S.I. Contractile activity of vasotocin, oxytocin, and vasopressin on mammalian prostate. Eur J Pharmacol 1992;216(2):311–3. DOI:10.1016/0014-2999(92)90376-F; Demiselle J., Fage N., Radermacher P., Asfar P. Vasopressin and its analogues in shock states: a review. Ann Intensive Care 2020;10(1):9. DOI:10.1186/s13613-020-0628-2; Li Z., Xiao H., Wang K. et al. Upregulation of oxytocin receptor in the hyperplastic prostate. Front Endocrinol (Lausanne) 2018;9:403. DOI:10.3389/fendo.2018.00403; Assinder S.J., Nicholson H.D. Effects of steroids on oxytocin secretion by the human prostate in vitro. Int J Androl 2004;27(1):12–8. DOI:10.1111/j.1365-2605.2004.00439.x; Xu H., Fu S., Chen Y. et al. Oxytocin: its role in benign prostatic hyperplasia via the ERK pathway. Clin Sci (Lond) 2017;131(7):595–607. DOI:10.1042/CS20170030; Whittington K., Connors B., King K. et al. The effect of oxytocin on cell proliferation in the human prostate is modulated by gonadal steroids: implications for benign prostatic hyperplasia and carcinoma of the prostate. Prostate 2007;67(10):1132–42. DOI:10.1002/pros.20612; Gould M.L., Nicholson H.D. Changes in receptor location affect the ability of oxytocin to stimulate proliferative growth in prostate epithelial cells. Reprod Fertil Dev 2019;31(6):1166–79. DOI:10.1071/RD18362; Zhong M., Boseman M.L., Millena A.C., Khan S.A. Oxytocin induces the migration of prostate cancer cells: involvement of the Gi-coupled signaling pathway. Mol Cancer Res 2010;8(8):1164–72. DOI:10.1158/1541-7786.MCR-09-0329; https://agx.abvpress.ru/jour/article/view/662

  17. 17
    Academic Journal

    Source: Andrology and Genital Surgery; Том 24, № 3 (2023); 42-49 ; Андрология и генитальная хирургия; Том 24, № 3 (2023); 42-49 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/693/543; Bouiller K., Zayet S., Lalloz P.E. et al. Efficacy and safety of oral fosfomycin-trometamol in male urinary tract infections with multidrug-resistant enterobacterales. Antibiotics (Basel) 2022;11(2):198. DOI:10.3390/antibiotics11020198; Kwan A.C.F., Beahm N.P. Fosfomycin for bacterial prostatitis: a review. Int J Antimicrob Agents 2020;56(4):106106. DOI:10.1016/j.ijantimicag.2020.106106; El-Sokkary R., Uysal S., Erdem H. et al. Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: an international ID-IRI survey. Eur J Clin Microbiol Infect Dis 2021;40(11):2323–34. DOI:10.1007/s10096-021-04288-1; Marino A., Munafò A., Zagami A. et al. Ampicillin plus ceftriaxone regimen against Enterococcus faecalis endocarditis: a literature review. J Clin Med 2021;10(19):4594. DOI:10.3390/jcm10194594; Wagenlehner F.M., Pilatz A., Bschleipfer T. et al. Bacterial prostatitis. World J Urol 2013;31(4):711–6. DOI:10.1007/s00345-013-1055-x; Bonkat G., Bartoletti R., Bruyere F. et al. EAU Guidelines on urological infections. European association of Urology, 2022. Available at: https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAUGuidelines-on-Urological-Infections-2022.pdf. Accessed: 24.11.2022.; Rees J., Abrahams M., Doble A., Cooper A. Prostatitis expert reference group (PERG). Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: a consensus guideline. BJU Int 2015;116(4):509–25. DOI:10.1111/bju.13101; Sharp V.J., Takacs E.B., Powell C.R. Prostatitis: diagnosis and treatment. Am Fam Physician 2010;82(4):397–406. PMID: 20704171.; Lipsky B.A., Byren I., Hoey C.T. Treatment of bacterial prostatitis. Clin Infect Dis 2010;50(12):1641–52. DOI:10.1086/652861; Perletti G., Marras E., Wagenlehner F.M., Magri V. Antimicrobial therapy for chronic bacterial prostatitis. Cochrane Database Syst Rev 2013;(8):CD009071. DOI:10.1002/14651858.CD009071.pub2; Gajdács M., Ábrók M., Lázár A., Burián K. Epidemiology and antibiotic resistance profile of bacterial uropathogens in male patients: a 10-year retrospective study. Farmacia 2021;69(3):530–9. DOI:10.31925/farmacia.2021.3.16; Bartsch S.M., McKinnell J.A., Mueller L.E. et al. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin Microbiol Infect 2017;23(1):48. e9–48.e16. DOI:10.1016/j.cmi.2016.09.003; Trad M.A., Zhong L.H., Llorin R.M. et al. Ertapenem in outpatient parenteral antimicrobial therapy for complicated urinary tract infections. J Chemother 2017;29(1):25–9. DOI:10.1080/1120009X.2016.1158937; Marino A., Stracquadanio S., Bellanca C.M. et al. Oral fosfomycin formulation in bacterial prostatitis: new role for an old molecule-brief literature review and clinical considerations. Infect Dis Rep 2022;14(4):621–34. DOI:10.3390/idr14040067; Gardiner B.J., Mahony A.A., Ellis A.G. et al. Is Fosfomycin a potential treatment alternative for multidrug-resistant gram-negative prostatitis? Clin Infect Dis 2014;58(4):e101–5. DOI:10.1093/cid/cit704; López-Montesinos I., Horcajada J.P. Oral and intravenous fosfomycin in complicated urinary tract infections. Rev Esp Quimioter 2019;32 Suppl 1(Suppl 1):37–44. PMID: 31131591.; Falagas M.E., Vouloumanou E.K., Samonis G., Vardakas K.Z. Fosfomycin. Clin Microbiol Rev 2016;29(2):321–47. DOI:10.1128/CMR.00068-15; Reeves D.S. Fosfomycin trometamol. J Antimicrob Chemother 1994;34(6):853–8. DOI:10.1093/jac/34.6.853; Vardakas K.Z., Legakis N.J., Triarides N., Falagas M.E. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents 2016;47(4):269– 85. DOI:10.1016/j.ijantimicag.2016.02.001; Karlowsky J.A., Denisuik A.J., Lagacé-Wiens P.R. et al. In Vitro activity of fosfomycin against Escherichia coli isolated from patients with urinary tract infections in Canada as part of the CANWARD surveillance study. Antimicrob Agents Chemother 2014;58(2):1252–6. DOI:10.1128/AAC.02399-13; Mezzatesta M.L, La Rosa G., Maugeri G. et al. In vitro activity of fosfomycin trometamol and other oral antibiotics against multidrug-resistant uropathogens. Int J Antimicrob Agents 2017;49(6):763–6. DOI:10.1016/j.ijantimicag.2017.01.020; Sahni R.D., Balaji V., Varghese R. et al. Evaluation of fosfomycin activity against uropathogens in a fosfomycin-naive population in South India: a prospective study. Future Microbiol 2013;8(5): 675–80. DOI:10.2217/fmb.13.31; Lee S.Y., Park Y.J., Yu J.K. et al. Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J Antimicrob Chemother 2012;67(12):2843–7. DOI:10.1093/jac/dks319; Liu H.Y., Lin H.C, Lin Y.C. et al. Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J Microbiol Immunol Infect 2011;44(5):364–8. DOI:10.1016/j.jmii.2010.08.012; Butcu M., Akcay S.S., Inan A.S. et al. In vitro susceptibility of enterococci strains isolated from urine samples to fosfomycin and other antibiotics. J Infect Chemother 2011;17(4):575–8. DOI:10.1007/s10156-011-0212-7; Karageorgopoulos D.E., Wang R., Yu X.H., Falagas M.E. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 2012;67(2):255–68. DOI:10.1093/jac/dkr466; McCoy A.J., Sandlin R.C., Maurelli A.T. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 2003;185(4):1218–28. DOI:10.1128/JB.185.4.1218-1228.2003; Gisin J., Schneider A., Nägele B. et al. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol 2013;9(8):491–3. DOI:10.1038/nchembio.1289; Xu S., Fu Z., Zhou Y. et al. Mutations of the transporter proteins GlpT and UhpT confer fosfomycin resistance in Staphylococcus aureus. Front Microbiol 2017;8:914. DOI:10.3389/fmicb.2017.00914; Zhanel G.G., Zhanel M.A., Karlowsky J.A. Oral Fosfomycin for the treatment of acute and chronic bacterial prostatitis caused by multidrug-resistant Escherichia coli. Can J Infect Dis Med Microbiol 2018;2018:1404813. DOI:10.1155/2018/1404813; Michalopoulos A.S., Livaditis I.G., Gougoutas V. The revival of fosfomycin. Int J Infect Dis 2011;15(11):e732–9. DOI:10.1016/j.ijid.2011.07.007; Charalabopoulos K., Karachalios G., Baltogiannis D. et al. Penetration of antimicrobial agents into the prostate. Chemotherapy 2003;49(6):269–79. DOI:10.1159/000074526; Cunha B.A., Gran A., Raza M. Persistent extended-spectrum β-lactamase-positive Escherichia coli chronic prostatitis successfully treated with a combination of fosfomycin and doxycycline. Int J Antimicrob Agents 2015;45(4):427–9. DOI:10.1016/j.ijantimicag.2014.12.019; Fan L., Shang X., Zhu J. et al. Pharmacodynamic and pharmacokinetic studies and prostatic tissue distribution of fosfomycin tromethamine in bacterial prostatitis or normal rats. Andrologia 2018;50(6):e13021. DOI:10.1111/and.13021; Cai W.W., Mo D.S., Fan M. et al. [Fosfomycin tromethamine inhibits the expressions of TNF-α, IL-8 and IL-6 in the prostate tissue of rats with chronic bacterial prostatitis (In Chinese)]. Zhonghua Nan Ke Xue 2018;24(6):491–8. PMID: 30173452.; EUCAST. MIC distributions for Fosfomycin, 2022-11-24. Available at: https://mic.eucast.org/search/?search%5Bmethod%5D=mic&search%5Bantibiotic%5D=100&search%5Bspecies%5D=-1&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50. (accessed on November 24, 2022).; Tosto F., Marino A., Moscatt V. et al. Methicillin-sensitive Staphylococcus aureus prosthetic vascular graft infection after a Fontan procedure in an adult patient: a case report. World Acad Sci J 2022;4(3):19. DOI:10.3892/wasj.2022.154; Rhodes N.J., Gardiner B.J., Neely M.N. et al. Optimal timing of oral fosfomycin administration for pre-prostate biopsy prophylaxis. J Antimicrob Chemother 2015;70(7):2068–73. DOI:10.1093/jac/dkv067; Denes E. Prolonged course of Fosfomycin-Trometamol for chronic prostatitis: an unknown good option. Scand J Urol 2021;55(4):344–5. DOI:10.1080/21681805.2021.1933170; Almeida F., Santos Silva A., Silva Pinto A., Sarmento A. Chronic prostatitis caused by extended-spectrum β-lactamase-producing Escherichia coli managed using oral fosfomycin-A case report. IDCases. 2019;15:e00493. DOI:10.1016/j.idcr.2019.e00493; Grayson M.L., Macesic N., Trevillyan J. et al. Fosfomycin for treatment of prostatitis: new tricks for old dogs. Clin Infect Dis 2015;61(7):1141–3. DOI:10.1093/cid/civ436; Los-Arcos I., Pigrau C., Rodríguez-Pardo D. et al. Long-term fosfomycin-tromethamine oral therapy for difficult-to-treat chronic bacterial prostatitis. Antimicrob Agents Chemother 2015;60(3):1854–8. DOI:10.1128/AAC.02611-15; Karaiskos I., Galani L., Sakka V. et al. Oral Fosfomycin for the treatment of chronic bacterial prostatitis. J Antimicrob Chemother 2019;74(5):1430–7. DOI:10.1093/jac/dkz015; Hendlin D., Stapley E.O., Jackson M. et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 1969;166(3901):122–3. DOI:10.1126/science.166.3901.122; Sorlozano A., Jimenez-Pacheco A., de Dios Luna Del Castillo J. et al. Evolution of the resistance to antibiotics of bacteria involved in urinary tract infections: a 7-year surveillance study. Am J Infect Control 2014;42(10):1033–8. DOI:10.1016/j.ajic.2014.06.013; https://agx.abvpress.ru/jour/article/view/693

  18. 18
    Academic Journal

    Source: Andrology and Genital Surgery; Том 24, № 3 (2023); 33-41 ; Андрология и генитальная хирургия; Том 24, № 3 (2023); 33-41 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/692/542; Phillipps H.R., Yip S.H., Grattan D.R. Patterns of prolactin secretion. Mol Cell Endocrinol 2020;502:10679. DOI:10.1016/j.mce.2019.110679; Rohn R.D. Galactorrhea in the adolescent. J Adolesc Health Care 1984;5(1):37–49. DOI:10.1016/s0197-0070(84)80244-2; Cabrera-Reyes E.A., Limón-Morales O., Rivero-Segura N.A. et al. Prolactin function and putative expression in the brain. Endocrinology 2017;57(2):199–213. DOI:10.1007/s12020-017-1346-x; Paragliola R.M., Binart N., Salvatori R. Prolactin. In: The Pituitary. Ed. by S. Melmed. 5th edn. Academic Press, 2022. P. 131–172. DOI:10.1016/B978-0-323-99899-4.00025-1; Macotela Y., Ruiz-Herrera X., Vázquez-Carrillo D.I. et al. The beneficial metabolic actions of prolactin. Front Endocrinol (Lausanne) 2022;13:1001703. DOI:10.3389/fendo.2022.1001703; Lopez-Vicchi F., De Winne C., Brie B. et al. Metabolic functions of prolactin: Physiological and pathological aspects. Neuroendocrinol 2020;32(11):e12888. DOI:10.1111/jne.12888; Адамян Л.В., Ярмолинская М.И., Суслова Е.В. Синдром гиперпролактинемии: от теории к практике. Проблемы репродукции 2020;26(2):27–33. DOI:10.17116/repro20202602127; Bernard V., Young J., Binart N. Prolactin – a pleiotropic factor in health and disease. Nat Rev Endocrinol 2019;15(6):356–65. DOI:10.1038/s41574-019-0194-6; Pirchio R., Graziadio C., Colao A. et al. Metabolic effects of prolactin. Front Endocrinol (Lausanne) 2022;13:1015520. DOI:10.3389/fendo.2022.1015520; Rastrelli G., Corona G., Maggi M. The role of prolactin in andrology: what is new? Rev Endocr Metab Disord 2015;16(3):233–48. DOI:10.1007/s11154-015-9322-3; Al-Karagholi M.A., Kalatharan V., Ghanizada H. et al. Prolactin in headache and migraine: a systematic review of clinical studies. Cephalalgia 2023;43(2):3331024221136286. DOI:10.1177/03331024221136286; Grattan D.R. Coordination or coincidence? The relationship between prolactin and gonadotropin secretion. Trends Endocrinol Metab 2018;29(1):3–5. DOI:10.1016/j.tem.2017.11.004; Clarkson J., Han S.Y., Piet R. et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 2017; 114(47):E10216–23. DOI:10.1073/pnas.1713897114; Dabbous Z., Atkin S.L. Hyperprolactinaemia in male infertility: clinical case scenarios. Arab J Urol 2017;16(1):44–52. DOI:10.1016/j.aju.2017.10.002; Gonzales G.F., Velasquez G., Garcia-Hjarles M. Hypoprolactinemia as related to seminal quality and serum testosterone. Arch Androl 1989;23(3):259–65. DOI:10.3109/01485018908986849; Firdolas F., Ogras M.S., Ozan T. et al. In vitro examination of effects of hyperprolactinemia and hypoprolactinemia on seminal vesicle contractions. Urol 2013;81(3):557–61. DOI:10.1016/j.urology.2012.11.025; Sengupta P., Dutta S., Karkada I.R., Chinni S.V. Endocrinopathies and male infertility. Life (Basel) 2021;12(1):10. DOI:10.3390/life12010010; Vander B.M., Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem 2018;62:2–10. DOI:10.1016/j.clinbiochem.2018.03.012; Ambulkar S.S., Darves-Bornoz A.L., Fantus R.J. et al. Prevalence of hyperprolactinemia and clinically apparent prolactinomas in men undergoing fertility evaluation. Urology 2022;159:114–9. DOI:10.1016/j.urology.2021.03.007; Samperi I., Lithgow K., Karavitaki N. Hyperprolactinaemia. J Clin Med 2019;8(12):2203. DOI:10.3390/jcm8122203; Corona G., Isidori A.M., Aversa A. et al. Endocrinologic control of men’s sexual desire and arousal/erection. J Sex Med 2016;13(3):317–37. DOI:10.1016/j.jsxm.2016.01.007; Krysiak R., Okopień B. Sexual functioning in hyperprolactinemic patients treated with cabergoline or bromocriptine. Am J Ther 2019;26(4):e433–40. DOI:10.1097/MJT.0000000000000777; Fiala L., Lenz J., Sajdlova R. Effect of increased prolactin and psychosocial stress on erectile function. Andrologia 2021;53(4):e14009. DOI:10.1111/and.14009.; Xu Z.H., Pan D., Liu T.Y. et al. Effect of prolactin on penile erection: a cross-sectional study. Asian J Androl 2019;21(6):587–91. DOI:10.4103/aja.aja_22_19; Corona G., Mannucci E., Jannini E.A. et al. Hypoprolactinemia: a new clinical syndrome in patients with sexual dysfunction. J Sex Med 2009;6(5):1457–66. DOI:10.1111/j.1743-6109.2008.01206.x; Corona G., Rastrelli G., Comeglio P. et al. The metabolic role of prolactin: systematic review, meta-analysis and preclinical considerations. Expert Rev Endocrinol Metab 2022;17(6):533–45. DOI:10.1080/17446651.2022.2144829; Krysiak R., Kowalcze K., Okopień B. Sexual function and depressive symptoms in men with hypoprolactinaemia secondary to overtreatment of prolactin excess: a pilot study. Endocrinol Diabetes Nutr (Engl Ed) 2022:69(4):279–88. DOI:10.1016/j.endien.2021.03.004; Maurya M.R, Munshi R., Zambare S. Melanocortin receptors: emerging targets for the treatment of pigmentation, inflammation, stress, weight disorders and sexual dysfunction. Curr Drug Targets 2023;24(2):151–6. DOI:10.2174/1389450124666221108143006; Rahmani B., Ghasemi R., Dargahi L. et al. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016;225:242–50. DOI:10.1016/j.ygcen.2015.09.030; Goffin V. Prolactin receptor targeting in breast and prostate cancers: new insights into an old challenge. Pharmacol Ther 2017;179:111–26. DOI:10.1016/j.pharmthera.2017.05.009; Karayazi Atıcı Ö., Govindrajan N., Lopetegui-González I., Shemanko C.S. Prolactin: a hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2021;114:159–70. DOI:10.1016/j.semcdb.2020.10.005; Costello L.C., Franklin R.B. Testosterone and prolactin regulation of metabolic genes and citrate metabolism of prostate epithelial cells. Horm Metab Res 2002;34(8):417–24. DOI:10.1055/s-2002-33598; Camargo A.C.L., Constantino F.B., Santos S.A.A. et al. Influence of postnatal prolactin modulation on the development and maturation of ventral prostate in young rats. Reprod Fertil Dev 2018;30(7): 969–79. DOI:10.1071/RD17343; López Fontana G., Rey L., Santiano F. et al. Changes in prolactin receptor location in prostate tumors. Arch Esp Urol 2021;74(4):419–26. PMID: 33942735.; La Vignera S., Condorelli R.A., Russo G.I. et al. Endocrine control of benign prostatic hyperplasia. Andrology 2016;4(3):404–11. DOI:10.1111/andr.12186; Loutchanwoot P., Srivilai P., Jarry H. Effects of the natural endocrine disruptor equol on the pituitary function in adult male rats. Toxicol 2013;304:69–75. DOI:10.1016/j.tox.2012.11.017; Govindaraj V., Arya S.V., Rao A.J. Differential action of glycoprotein hormones: significance in cancer progression. Horm Cancer 2014;5(1):1–10. DOI:10.1007/s12672-013-0164-8; Slaunwhite W.R. Jr., Sharma M. Effects of hypophysectomy and prolactin replacement therapy on prostatic response to androgen in orchiectomized rats. Biol Reprod 1977;17(4):489–92. DOI:10.1095/biolreprod17.4.489; Rui H., Purvis K. Independent control of citrate production and ornithine decarboxylase by prolactin in the lateral lobe of the rat prostate. Mol Cell Endocrinol 1987;52(1–2):91–5. DOI:10.1016/0303-7207(87)90101-8; Zanatelli M., Colleta S.J., Guerra L.H.A. et al. Prolactin promotes a partial recovery from the atrophy of both male and female gerbil prostates caused by castration. Reprod Biol Endocrinol 2021;19(1):94. DOI:10.1186/s12958-021-00777-2; Constantino F.B., Camargo A.C.L., Santos S.A.A. et al. The prostate response to prolactin modulation in adult castrated rats subjected to testosterone replacement. J Mol Histol 2017;48(5–6): 403–15. DOI:10.1007/s10735-017-9738-z; Costello L.C., Franklin R.B. Testosterone, prolactin, and oncogenic regulation of the prostate gland. A new concept: testosterone-independent malignancy is the development of prolactin-dependent malignancy. Oncol Rev 2018;12(2):356. DOI:10.4081/oncol.2018.356; Di Zazzo E., Galasso G., Giovannelli P. et al. Estrogens and their receptors in prostate cancer: therapeutic implications. Front Oncol 2018;8:2. DOI:10.3389/fonc.2018.00002; Dobbs R.W., Malhotra N.R., Greenwald D.T. et al. Estrogens and prostate cancer. Prostate Cancer Prostatic Dis 2019;22(2):185–94. DOI:10.1038/s41391-018-0081-6; Van Coppenolle F., Slomianny C., Carpentier F. et al. Effects of hyperprolactinemia on rat prostate growth: evidence of androgeno-dependence. Am J Physiol Endocrinol Metab 2001;280(1):E120–9. DOI:10.1152/ajpendo.2001.280.1.E120; Zhang Y., Gc S., Patel S.B. et al. Growth hormone (GH) receptor (GHR)-specific inhibition of GH-Induced signaling by soluble IGF-1 receptor (sol IGF-1R). Mol Cell Endocrinol 2019;492:110445. DOI:10.1016/j.mce.2019.05.004; Kavarthapu R., Anbazhagan R., Dufau M.L. Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer. Cancers (Basel) 2021;13(18):4685. DOI:10.3390/cancers13184685; Borcherding D.C., Hugo E.R., Fox S.R. et al. Suppression of breast cancer by small molecules that block the prolactin receptor. Cancers (Basel) 2021;13(11):2662. DOI:10.3390/cancers13112662; Sackmann-Sala L., Goffin V. Prolactin-induced prostate tumorigenesis. Adv Exp Med Biol 2015;846:221–42. DOI:10.1007/978-3-319-12114-7_10; Minami H., Ando Y., Tamura K. et al. Phase I study of LFA102 in patients with advanced breast cancer or castration-resistant prostate cancer. Anticancer Res 2020;40(9):5229–35. DOI:10.21873/anticanres.14526; Agarwal N., Machiels J.P., Suárez C. et al. Phase I study of the prolactin receptor antagonist LFA102 in metastatic breast and castration-resistant prostate cancer. Oncologist 2016;21(5):535–6. DOI:10.1634/theoncologist.2015-0502; Carrasco-Ceballos J.M., Barrera-Hernández D., Locia-Espinosa J. et al. Involvement of the PRL-PAK1 pathway in cancer cell migration. Cancer Diagn Progn 2023;3(1):17–25. DOI:10.21873/cdp.10174; Standing D., Dandawate P., Anant S. Prolactin receptor signaling: a novel target for cancer treatment – exploring anti-PRLR signaling strategies. Front Endocrinol (Lausanne) 2023;13:1112987. DOI:10.3389/fendo.2022.1112987; Costello L.C. The suppression of prolactin is required for the treatment of advanced prostate cancer. Oncogen (Westerville) 2019;2(3):13. DOI:10.35702/onc.10013; Porcaro A.B., Tafuri A., Sebben M. et al. Low preoperative prolactin levels predict non-organ confined prostate cancer in clinically localized disease. Urol Int 2019;103(4):391–9. DOI:10.1159/000496833; Costello L.C., Franklin R.B. A proposed efficacious treatment with clioquinol (zinc ionophore) and cabergoline (prolactin dopamine agonist) for the treatment of terminal androgen-independent prostate cancer. Why and how? J Clin Res Oncol 2019;2(1): https://asclepiusopen.com/journal-of-clinical-research-in-оncology/ volume-2-issue-1/1.pdf. PMID: 30828702.; Yang T., Liu Y., Chen S. et al. Serum prolactin level as a predictive factor for abiraterone response in patients with metastatic castration-resistant prostate cancer. Prostate 2022;82(13):1284–92. DOI:10.1002/pros.24402; Ma J., Mo Y., Tang M. et al. Bispecific antibodies: аrom research to clinical application. Front Immunol 2021;12:626616. DOI:10.3389/fimmu.2021.626616; Anderson M.G., Zhang Q., Rodriguez L.E. et al. ABBV-176, a PRLR antibody drug conjugate with a potent DNA damaging PBD cytotoxin and enhanced activity with PARP inhibition. BMC Cancer 2021;21(1):681. DOI:10.1186/s12885-021-08403-5; Lemech C., Woodward N., Chan N. et al. A first-in-human, phase 1, dose-escalation study of ABBV-176, an antibodydrug conjugate targeting the prolactin receptor, in patients with advanced solid tumors. Invest New Drugs 2020;38(6):1815–25. DOI:10.1007/s10637-020-00960-z; https://agx.abvpress.ru/jour/article/view/692

  19. 19
    Academic Journal

    Source: Andrology and Genital Surgery; Том 24, № 1 (2023); 36-47 ; Андрология и генитальная хирургия; Том 24, № 1 (2023); 36-47 ; 2412-8902 ; 2070-9781

    File Description: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/634/501; Thornton J.W. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A 2001;98(10):5671–6. DOI:10.1073/pnas.091553298; McLachlan J.A. Environmental signalling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 2001;22(3):319–41. DOI:10.1210/edrv.22.3.0432; Oettel M., Mukhopadhyay A.K. Progesterone: the forgotten hormone in men? Aging Male 2004;7(3):236–57. DOI:10.1080/13685530400004199; Foresta C., Rossato M., Mioni R., Zorzi M. Progesterone induces capacitation in human spermatozoa. Andrologia 1992;24(1):33–5. DOI:10.1111/j.1439-0272.1992.tb02605.x; Pietrobon E.O., Los Monclus M., Alberdi A.J., Fornés M.W. Progesterone receptor availability in mouse spermatozoa during epididymal transit and capacitation: ligand blot detection of progesterone-binding protein. J Androl 2003;24(4):612–20. DOI:10.1002/j.1939-4640.2003.tb02713.x; Baranizadeh K., Mahboobian M.M., Amiri I. et al. Effects of progesterone nanoparticles on the sperm capacitation and acrosome reaction in asthenozoospermia men. Andrologia 2022;54(1):e14258. DOI:10.1111/and.14258; Rasmusson A.M., Pineles S.L., Brown K.D., Pinna G. A role for deficits in GABAergic neurosteroids and their metabolites with NMDA receptor antagonist activity in the pathophysiology of posttraumatic stress disorder. J Neuroendocrinol 2022;34(2):e13062. DOI:10.1111/jne.13062; Baker M.E., Katsu Y. Progesterone: an enigmatic ligand for the mineralocorticoid receptor. Biochem Pharmacol 2020;177:113976. DOI:10.1016/j.bcp.2020.113976; Ohlsson C., Langenskiöld M., Smidfelt K. et al. Low progesterone and low estradiol levels associate with abdominal aortic aneurysms in men. J Clin Endocrinol Metab 2022;107(4):e1413–25. DOI:10.1210/clinem/dgab867; Ghandehari S., Matusov Y., Pepkowitz S. et al. Progesterone in addition to standard of care vs standard of care alone in the treatment of men hospitalized with moderate to severe COVID-19: a randomized, controlled pilot trial. Chest 2021;160(1):74–84. DOI:10.1016/j.chest.2021.02.024; Gadkar-Sable S., Shah C., Rosario G. et al. Progesterone receptors: various forms and functions in reproductive tissues. Front Biosci 2005;10:2118–30. DOI:10.2741/1685.; Shackleton C., Malunowicz E. Apparent pregnene hydroxylation deficiency (APDH): seeking the parentage of an orphan metabolome. Steroids 2003;68(9):707–17. PMID: 14625002. DOI:10.1016/s0039-128x(03)00115-6; Naville D., Keeney D.S., Jenkin G. et al. Regulation of expression of male-specific rat liver microsomal 3 beta-hydroxysteroid dehydrogenase. Mol Endocrinol 1991;5(8):1090–100. DOI:10.1016/s0039- 10.1210/mend-5-8-1090; Zumoff B., Miller L., Levin J. et al. Follicular-phase serum progesterone levels of nonsmoking women do not differ from the levels of nonsmoking men. Steroids 1990;55(12):557–9. DOI:10.1016/0039-128x(90)90052-d; Winkelmann B.R., März W., Boehm B.O. et al. Rationale and design of the LURIC study – a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2001;2(Suppl 1):S1–73. DOI:10.1517/14622416.2.1.S1; Arnett-Mansfield R.L., deFazo A., Wain G.V. et al. Relative expression of progesterone receptors A and B in endometrioid cancers of the endometrium. Cancer Res 2001;61(11):4576–82. PMID: 11389093.; Lieberman A., Curtis L. In defense of progesterone: a review of the literature. Altern Ther Health Med 2017; 23(6):24–32. PMID: 29055286.; Samadi A., Carlson C.G., Gueorguiev A., Cenedella R.J. Rapid, non-genomic actions of progesterone and estradiol on steady-state calcium and resting calcium influx in lens epithelial cells. Pflugers Arch 2002;444(6):700–9. DOI:10.1007/s00424-002-0889-7; Pedersen S.B., Kristensen K., Richelsen B. Anti-glucocorticoid effects of progesterone in vivo on rat adipose tissue metabolism. Steroids 2003;68(6):543–50. DOI:10.1016/s0039-128х(03)00084-9; Falkenstein E., Tillmann H.-C., Christ M. et al. Multiple actions of steroid hormones – a focus on rapid, nongenomic effects. Pharmacol Rev 2000;52(4):513–55. PMID: 11121509.; Rajaram R.D., Brisken C. Paracrine signaling by progesterone. Mol Cell Endocrinol 2012;357(1–2):80–90. DOI:10.1016/j.mce.2011.09.018; Sciarra A., Innocenzi M., Ravaziol M. et al. [Role of neuroendocrine cells in prostate cancer progression (In Italian)]. Urologia 2011;78(2):126–31. DOI:10.5301/RU.2011.8337; Hermann M., Untergasser G., Rumpold H., Berger P. Aging of the male reproductive system. Exp Gerontol 2000;35(9–10): 1267–79. DOI:10.1016/s0531-5565(00)00159-5; Song L., Shen W., Zhang H. et al. Differential expression of androgen, estrogen, and progesterone receptors in benign prostatic hyperplasia. Bosn J Basic Med Sci 2016;16(3):201–8. DOI:10.17305/bjbms.2016.1209; Chen R., Yu Y., Dong X. Progesterone receptor in the prostate: a potential suppressor for benign prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol Biol 2017;166:91–6. DOI:10.1016/j.jsbmb.2016.04.008; Kaore S.N., Langade D.K., Yadav V.K. et al. Novel actions of progesterone: what we know today and what will be the scenario in the future? J Pharm Pharmacol 2012;64(8):1040–62. DOI:10.1111/j.2042-7158.2012.01464.х; Da Silva M.H.A., De Souza D.B. Current evidence for the involvement of sex steroid receptors and sex hormones in benign prostatic hyperplasia. Res Rep Urol 2019;11:1–8. DOI:10.2147/RRU.S155609.; Fochi R.A., Santos F.C., Goes R.M., Taboga S.R. Progesterone as a morphological regulatory factor of the male and female gerbil prostate. Int J Exp Pathol 2013;94(6):373–86. DOI:10.1111/iep.12050; Yu Y., Yang O., Fazli L. et al. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation. Prostate 2015;75(10):1043–50. DOI:10.1002/pros.22988; Grindstad T., Andersen S., Al-Saad S. et al. High progesterone receptor expression in prostate cancer is associated with clinical failure. PLoS One 2015;10(2):e0116691. DOI:10.1371/journal.pone.0116691; Grindstad T., Richardsen E., Andersen S. et al. Progesterone receptors in prostate cancer: progesterone receptor B is the isoform associated with disease progression. Sci Rep 2018;8(1):11358. DOI:10.1038/s41598-018-29520-5; Spirina L.V., Kovaleva I.V., Usynin E.A. et al. Progesterone receptor expression in the benign prostatic hyperplasia and prostate cancer tissues, relation with transcription, growth factors, hormone reception and components of the AKT/mTOR signaling pathway. Asian Pac J Cancer Prev 2020;21(2):423–9. DOI:10.31557/APJCP.2020.21.2.423; Bera K.N., Yadav S.K., Prakash O. et al. Immunoexpression of estrogen receptor-β and progesterone receptor in prostate adenocarcinoma, does it inhibit neoplastic proliferation and invasion? Indian J Pathol Microbiol 2020; 63(Supplement): S30–S33. DOI:10.4103/IJPM.IJPM_467_18; Li W., Klein R.J. Genome-wide association study identifies a role for the progesterone receptor in benign prostatic hyperplasia risk. Prostate Cancer Prostatic Dis 2021;24(2):492–8. DOI:10.1038/s41391-020-00303-2; Yang M., Li J.C., Tao C. et al. PAQR6 upregulation is associated with AR signaling and unfavorite prognosis in prostate cancers. Biomolecules 2021;11(9):1383. DOI:10.3390/biom11091383; Tao C., Liu W., Yan X. et al. PAQR5 expression is suppressed by TGFβ1 and associated with a poor survival outcome in renal clear cell carcinoma. Front Oncol 2022;11:827344. DOI:10.3389/fonc.2021.827344; Check J.H. The role of progesterone and the progesterone receptor in cancer. Expert Rev Endocrinol Metab 2017;12(3):187–97. DOI:10.1080/17446651.2017.1314783; Pitchford A.G. Gestronol hexanoate (SH582) and benign prostatic hypertrophy. Proc R Soc Med 1972;65(2):128–9. PMID: 4117436.; Ibba A.L. [On the treatment of prostatic adenoma with hydroxyprogesterone caronate (In Italian)]. Osp Ital Chir 1968;19(4):427–42. PMID: 4180617.; Musierowicz A. [Hormonal treatment of prostatic hypertrophy with special reference to the usefulness of gestagens (In Polish)]. Wiad Lek 1974;27(22):1985–8. PMID: 4140619.; Щербаков А.П. Применение прогестерона при аденоме предстательной железы. Урология и нефрология 1978;1:72–6.; Nagel R., Hargenda B. [Treatment of benign prostatic hypertrophy with progestogens including gestonorone caproate. (In Japanese)]. Hinyokika Kiyo 1970;16(9):423–8. PMID: 4097356.; Momose S., Hidaka M., Oota Y., Oomaru K. [The clinical effects of SH 582 (gestonorone caproate) on benign prostatic hypertrophy (In Japanese)]. Hinyokika Kiyo 1970;16(9):551–4. PMID: 4097366.; Tanaka H., Fukushige M., Shiraishi T. [Treatment of prostatic hypertrophy with progestational steroid (gestonorone caproate) (In Japanese)]. Hinyokika Kiyo 1970;16(9):531–50. PMID: 4097365.; Meiraz D., Margolin Y., Lev-Ran A., Lazebnik J. Treatment of benign prostatic hyperplasia with hydroxyprogesterone-caproate: placebo-controlled study. Urology 1977;9(2):144–8. DOI:10.1016/0090-4295(77)90184-4; Schacter L., Rozencweig M., Canetta R. et al. Megestrol acetate: clinical experience. Cancer Treat Rev 1989;16(1):49–63. DOI:10.1016/0305-7372(89)90004-2; Карпушин В.Т., Сапожников В.В. Фонофорез гидроксипрогестерона капроната в лечении больных с аденомой предстательной железы, осложненной дизурией. Вопросы курортологии и физиотерапии. 1981;6:46–9. PMID: 6175097.; Григорьева В.Д., Сапожников В.В., Пономарев Ю.Т. и др. Применение ректального фонофореза гидроксипрогестерона капроната для коррекции эндокринных нарушений у пациентов с аденомой простаты. Вопросы курортологии и физиотерапии 1984;6:29–32. PMID: 6084361.; Onu P.E. Depot medroxyprogesterone in the management of benign prostatic hyperplasia. Eur Urol 1995;28(3):229–35. DOI:10.1159/000475056; Albouy M., Sanquer A., Maynard L., Eun H.M. Efficacies of osaterone and delmadinone in the treatment of benign prostatichyperplasia in dogs. Vet Rec 2008;163(6):179–83. DOI:10.1136/vr.163.6.179; Fujimoto K., Hirao Y., Ohashi Y. et al. The effects of chlormadinone acetate on lower urinary tract symptoms and erectile functions of patients with benign prostatic hyperplasia: a prospective multicenter clinical study. Adv Urol 2013;2013:584678. DOI:10.1155/2013/584678; Li W., Li X., Zhang B. et al. Current progresses and trends in the development of progesterone receptor modulators. Curr Med Chem 2016;23(23):2507–54. DOI:10.2174/0929867323666160428105310; Bouchard P. Selective progesterone receptor modulators: a class with multiple actions and applications in reproductive endocrinology, and gynecology. Gynecol Endocrinol 2014;30(10):683–4. DOI:10.3109/09513590.2014.950647; https://agx.abvpress.ru/jour/article/view/634

  20. 20