-
1
-
2
-
3Academic Journal
Subject Terms: economic efficiency, predictive maintenance, превентивное обслуживание, preventive maintenance, equipment maintenance, simulation modelling, stochastic modelling, предиктивное обслуживание, экономическая эффективность, техническое обслуживание оборудования, имитационное моделирование, стохастическое моделирование
-
4
-
5
-
6Academic Journal
Subject Terms: equipment management, cost optimisation, операционная эффективность, digitalisation of production, оптимизация затрат, maintenance, predictive maintenance, IoT-технологии, цифровизация производства, IoT technologies, простои оборудования, enterprise competitiveness, промышленные предприятия, fault prediction, повышение производительности, производственная эффективность, industrial enterprises, equipment monitoring, конкурентоспособность предприятия, operating efficiency, управление оборудованием, предиктивное обслуживание, productivity improvement, техническое обслуживание, машинное обучение, прогнозирование неисправностей, machine learning, production efficiency, downtime, мониторинг оборудования
-
7Academic Journal
-
8Academic Journal
-
9Academic Journal
-
10Academic Journal
-
11Academic Journal
Source: Недвижимость: экономика, управление, Iss 2 (2025)
Subject Terms: эксплуатационная надежность инженерных систем, отказ систем, аварии систем, датчики, предиктивное обслуживание, обслуживание систем, Real estate business, HD1361-1395.5
File Description: electronic resource
-
12Academic Journal
Source: Scientific Collection «InterConf+»
Subject Terms: Indonesia, машинное обучение, предиктивное обслуживание, LSTM GRU, остаточный ресурс оборудования, IIoT
File Description: application/pdf
-
13Academic Journal
-
14Academic Journal
-
15Dissertation/ Thesis
Authors: Morozov, D. M.
Contributors: Зверева, О. М., Zvereva, O. M., УрФУ. Институт строительства и архитектуры, Кафедра «Информационное моделирование в строительстве»
Subject Terms: ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ, TECHNOLOGICAL EQUIPMENT, ПРЕДИКТИВНОЕ ОБСЛУЖИВАНИЕ, ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ, МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, MASTER'S THESIS, ARTIFICIAL INTELLIGENCE, PREDICTIVE MODEL, MACHINE LEARNING, МАШИННОЕ ОБУЧЕНИЕ, ПРОГНОСТИЧЕСКАЯ МОДЕЛЬ, PREDICTIVE MAINTENANCE
File Description: application/pdf
Access URL: https://elar.urfu.ru/handle/10995/145381
-
16Academic Journal
Authors: A. I. Epikhin, S. I. Kondratiev, E. V. Khekert, А. И. Епихин, С. И. Кондратьев, Е. В. Хекерт
Source: World of Transport and Transportation; Том 21, № 6 (2023); 110-118 ; Мир транспорта; Том 21, № 6 (2023); 110-118 ; 1992-3252
Subject Terms: предиктивное обслуживание, ships, engine, wavelet transform, image, network, predictive maintenance, суда, двигатель, вейвлет-преобразование, изображение, сеть
File Description: application/pdf
Relation: https://mirtr.elpub.ru/jour/article/view/2620/4389; https://mirtr.elpub.ru/jour/article/view/2620/4390; Tianlong Lu, Zhen Lu, Yuchuan Gao, Lei Shi, Huaiyin Wang, Tianyou Wang. Investigation on suitable swirl ratio and spray angle of a large-bore marine diesel engine using genetic algorithm. Fuel, 2023, Vol. 345, 128187. DOI:10.1016/j.fuel.2023.128187.; Епихин, А. И. Подход нечеткой кластеризации в распределенных информационных системах судовых двигателей. Морские интеллектуальные технологии. – 2023. – № 2–1 (60). – С. 75–79. DOI:10.37220/MIT.2023.60.2.008.; Marko, K. A., Bryant, B., Soderborg, N. Neural network application to comprehensive engine diagnostics. In: IEEE International Conference on Systems, Man and Cybernetics, Chicago, IL, 1992, pp. 1016–1022.; Глушков С. П., Жидких В. О. Выбор вейвлетобразующей функции для анализа динамических характеристик сигнала двигателя внутреннего сгорания // Вестник Сибирского государственного университета путей сообщения. – 2017. – № 1 (40). – С. 51–56. [Электронный ресурс]: http://www.stu.ru/particular/get_teamwox_file.php?id=28121&ext=.pdf [полный текст номера]. Доступ 20.11.2023.; Shatnawi, Y., Al-Khassaweneh, M. Fault Diagnosis in Internal Combustion Engines Using Extension Neural Network. IEEE Transactions on Industrial Electronics, 2014, Vol. 61, Iss. 3, pp. 1434–1443. DOI:10.1109/TIE.2013.2261033 [ограниченный доступ].; Ravikumar, K. N., Madhusudana, C. K., Kumar, H., Gangadharan, K. V. Classification of gear faults in internal combustion (IC) engine gearbox using discrete wavelet transform features and K star algorithm. Engineering Science and Technology, 2022, Vol. 30, 101048. DOI: https://doi.org/10.1016/j.jestch.2021.08.005.; Ghaedi, A., Pour, E. S., Hosseinzadeh, F. Application of the discrete wavelet transform and probabilistic neural networks in IC engine fault diagnostics. Indian Journal of Fundamental and Applied Life Sciences, 2015, Vol. 5 (S1), pp. 1587–1592. [Электронный ресурс]: www.cibtech.org/sp.ed/jls/2015/01/jls.htm (online). Доступ 27.11.2023.; Czech, P., Wojnar, G., Burdzik, R., Konieczny, L., Warczek, J. Application of the discrete wavelet transform and probabilistic neural networks in IC engine fault diagnostics. Journal of Vibroengineering, 2014, Vol. 16, Iss. 4, 1268, pp. 1619–1639. [Электронный ресурс]: https://www.extrica.com/article/15251. Доступ 27.11.2023.; Кириллов А. В., Деста А. Б., Дубесса М. Х., Акалу Й. А. Применение нейронных сетей для диагностики и предупреждения отказов датчиков турбореактивного двухконтурного двигателя. Перспективы науки. – 2021. – № 11 (146). – С. 35–37. EDN: ZBQMDY; Енчев С. В., Товкач С. С. Вейвлет-анализ параметров систем автоматического управления авиационных двигателей. Научный вестник МГТУ ГА. – 2014. – № 204. – С. 90–96. [Электронный ресурс]: https://avia.mstuca.ru/jour/article/view/593. Доступ 27.11.2023.; Monday, H. N., Li, J., Nneji, G. U. [et al]. A wavelet convolutional capsule network with modified super resolution generative adversarial network for fault diagnosis and classification. Complex and Intelligent Systems, 2022, pp. 4831–4847. DOI: https://doi.org/10.1007/s40747-022-00733-6.; Wenliao Du, Jianfeng Tao, Yanming Li, Chengliang Liu. Wavelet leaders multifractal features based fault diagnosis of rotating mechanism. Mechanical Systems and Signal Processing, 2014, Vol. 43, Iss. 1–2, pp. 57–75. DOI: https://doi.org/10.1016/j.ymssp.2013.09.003.; Dong, D. W., Hopfield, J. J., Unnikrishnan, K. P. Neural Networks for Engine Fault Diagnostics. In: Proceedings of the 1997 IEEE Workshop, 1997, pp. 636–644.; Kobayashi, T., Simon, D. L. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics. In: Proceedings of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, Utah, 2001, paper no. AIAA‑2001–3763.; Sadollah, A., Travieso-Gonzalez, C. M. [Eds]. Recent Trends in Artificial Neural Networks: from Training to Prediction. London, IntechOpen, 2020, 150 p. ISBN 978-1-78985-420-6.; Luo, Qiwu; Yigang, He; Sun, Yichuang. Timeefficient fault detection and diagnosis system for analog circuits. Automatika, 2018, Vol. 59, pp. 303–311. DOI:10.1080/00051144.2018.1541644.; Ma, Y., Han, R., Wang, W. Prediction-Based Portfolio Optimization Models Using Deep Neural Networks. IEEE access, 2020, Vol. 8, pp. 115393–115405. DOI:10.1109/ACCESS.2020.3003819.; Song, J., Xue, G., Pan, X., Ma, Y., Li, H. Hourly Heat Load Prediction Model Based on Temporal Convolutional Neural Network. IEEE access, 2020. Vol. 8, pp. 16726–16741. DOI:10.1109/ACCESS.2020.2968536.; Yüce, A., Nur Deniz, F., Tan, N.Interactive Analysis of Integer Order Approximation Methods in LabVIEW Environment. 1st International Mediterranean Science and Engineering Congress (IMSEC 2016), Çukurova University, Congress Center, October 26–28, 2016, Adana / TURKEY, paper ID 686, pp. 2357–2365. [Электронный ресурс]: https://www.researchgate.net/profile/Furkan-Deniz/publication/348326399_Kesir_dereceli_transfer_fonksiyonlari_icin_tamsayi_dereceli_yaklasim_yontemlerinin_LabVIEW_ortaminda_interaktif_analizi_Interactive_Analysis_of_Integer_Order_Approximation_Methods_in_LabVIEW_Environme/links/5ff82609a6fdccdcb83b7523/Kesir-dereceli-transferfonksiyonlari-icin-tamsayi-dereceli-yaklasim-yoentemlerininLabVIEW-ortaminda-interaktif-analizi-Interactive-Analysis-ofInteger-Order-Approximation-Methods-in-LabVIEWEnvironm.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9u In19. Доступ 27.11.2023.; Ruiz de Miras, J. Fractal Analysis in MATLAB: ATutorial for Neuroscientists. In: A. Di Ieva (ed.). The Fractal Geometry of the Brain, Springer Series in Computational Neuroscience, 2016, pp. 523–532. DOI:10.1007/978-1-4939-3995-4_33.; Yue Gao, Dai-Jun Zhang, Cui-Na Jiao, Ying-Lian Gao, Jin-Xing Liu. Spatial Domain Identification Based on Graph Attention Denoising Auto-encoder, 2023. In: Advanced Intelligent Computing Technology and Applications: 19th International Conference, ICIC 2023, Zhengzhou, China, August 10–13, 2023, Proceedings, Part III, pp. 359–367. DOI: https://doi.org/10.1007/978-981-99-4749-2_31.; Abdelmaksoud, M., Torki, M., El-Habrouk, M., Elgeneidy, M. Convolutional-neural-network-based multisignals fault diagnosis of induction motor using single and multi-channels datasets. Alexandria Engineering Journal, 2023, Vol. 73, pp. 231–248. DOI:10.1016/j.aej.2023.04.053.; Jian Zhang, Yangqian Meng, Dai Liu, Long Liu, Xiuzhen Ma, Changzhao Jiang, Xiannan Li, Li Huang. Modelling and multi-objective combustion optimization of marine engine with speed maintaining control target. Thermal science and engineering progress, 2023, Vol. 41, pp. 12–18. DOI:10.1016/j.tsep.2023.101852.; Chao Luo, Haiyue Wang. Fuzzy forecasting for long-term time series based on time-variant fuzzy information granules. Applied soft computing, 2020, Vol. 88, pp. 65–72. DOI:10.1016/j.asoc.2019.106046 [ограниченный доступ].; Zhou, W., Wu, J., Liu, A., Zhang, W. A., Yu, L. Neurodynamics-based distributed model predictive control of a low-speed two-stroke marine main engine power system. ISA Transactions, 2023, Vol. 138, pp. 341–358. DOI:10.1016/j.isatra.2023.03.006.; Zhenyi Kuai, Guoyong Huang. Fault Diagnosis of Diesel Engine Valve Clearance Based on Wavelet Packet Decomposition and Neural Networks. Electronics, 2023, Vol. 12, 353. DOI:10.3390/electronics12020353.; Ofner, A. B., Kefalas, A., Posch, S., Pirker, G., Geiger, B. C. In-cylinder pressure reconstruction from engine block vibrations via a branched convolutional neural network. Mechanical systems and signal processing, 2023. Vol. 183, 109640. DOI:10.1016/j.ymssp.2022.109640.; https://mirtr.elpub.ru/jour/article/view/2620
-
17
-
18Academic Journal
Subject Terms: электроустановки, агропромышленный комплекс, предиктивное обслуживание, техническое обслуживание оборудования, техническое диагностирование, преобразователи частоты, техническое обслуживание электроустановок
File Description: application/pdf
Access URL: https://rep.bsatu.by/handle/doc/18348
-
19
-
20Dissertation/ Thesis
Authors: MUNTEANU, Eugeniu
Contributors: ZAPOROJAN, Sergiu
Subject Terms: internetul lucrurilor, sisteme incorporate, modele AI, microfir, mentenanță predictivă, inteligență la margine, senzori, internet of things, embedded systems, edge ntelligence, AI models, non-contact sensors, measuring devices, microwire, predictive maintenance, интернет вещей, встроенные системы, граничные вычисления, модели ИИ, микропровод, предиктивное обслуживание
File Description: application/pdf
Availability: http://repository.utm.md/handle/5014/28904