Showing 1 - 12 results of 12 for search '"ПОСТИНФАРКТНОЕ РЕМОДЕЛИРОВАНИЕ СЕРДЦА"', query time: 0.65s Refine Results
  1. 1
    Academic Journal

    Contributors: The study was supported by the Russian Science Foundation grant No. 23-65-10017. The section on post-infarction cardiac remodeling was prepared in the framework of the state assignment 122020300042-4, Работа выполнена при финансовой поддержке гранта Российского научного фонда №2365-10017. Раздел, посвященный постинфарктному ремоделированию сердца, подготовлен в рамках государственного задания 122020300042-4

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 40, № 1 (2025); 11-18 ; Сибирский журнал клинической и экспериментальной медицины; Том 40, № 1 (2025); 11-18 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2628/1043; Currey E.M., Falconer N., Isoardi K.Z., Barras M. Impact of pharmacists during in-hospital resuscitation or medical emergency response events: A systematic review. Am. J. Emerg. Med. 2024;75:98–110. https://doi.org/10.1016/j.ajem.2023.10.020; Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R. et al. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1_Pt_B):102049. https://doi.org/10.1016/j.cpcardiol.2023.102049; Nanavaty D., Sinha R., Kaul D., Sanghvi A., Kumar V., Vachhani B. et al. Impact of COVID-19 on acute myocardial infarction: A national inpatient sample analysis. Curr. Probl. Cardiol. 2024;49(1_Pt_A):102030. https://doi.org/10.1016/j.cpcardiol.2023.102030; Hti Lar Seng N.S., Zeratsion G., Pena Zapata O.Y., Tufail M.U., Jim B. Utility of cardiac troponins in patients with chronic kidney disease. Cardiol. Rev. 2024;32(1):62–70. https://doi.org/10.1097/CRD.0000000000000461; Luo Q., Sun W., Li Z., Sun J., Xiao Y., Zhang J. et al. Biomaterialsmediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials. 2023;303:122368. https://doi.org/10.1016/j.biomaterials.2023.122368; Мотова А.В., Каретникова В.Н., Осокина А.В., Поликутина О.М., Барбараш О.Л. Инфаркт миокарда 2-го типа: особенности диагностики в реальной клинической практике. Сибирский журнал клинической и экспериментальной медицины. 2022;37(3):75–82. https://doi.org/10.29001/2073-8552-2022-37-3-75-82; Вышлов Е.В., Алексеева Я.В., Усов В.Ю., Мочула О.В., Рябов В.В. Синдром микрососудистого повреждения миокарда у пациентов с первичным инфарктом миокарда с подъемом сегмента ST: распространенность и связь с клиническими характеристиками. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):36–46. https://doi.org/10.29001/2073-8552-2021-36-4-36-46; Li M., Hu L., Li L. Research progress of intra-aortic balloon counterpulsation in the treatment of acute myocardial infarction with cardiogenic shock: A review. Medicine (Baltimore). 2023;102(49):e36500. https://doi.org/10.1097/MD.0000000000036500; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Cur. Cardiol. Rev. 2022;18(5):63–79. https://doi.org/10.2174/1573403X18666220413121730; Reimer K.A., Jennings R.B. Verapamil in two reperfusion models of myocardial infarction. Temporary protection of severely ischemic myocardium without limitation of ultimate infarct size. Lab. Invest. 1984;51(6):655–666.; Kitamura K., Kangawa K., Kawamoto M., Ichiki Y., Nakamura S., Matsuo H. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 1993a;192(2):553–560. https://doi.org/10.1006/bbrc.1993.1451; Sugo S., Minamino N., Kangawa K., Miyamoto K., Kitamura K., Sakata J. et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 1994;201(3):1160–1166. https://doi.org/10.1006/bbrc.1994.1827; Kitamura K., Sakata J., Kangawa K., Kojima M., Matsuo H., Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem. Biophys. Res. Commun. 1993b; 194(2):720– 725. https://doi.org/10.1006/bbrc.1993.1881; Ishiyama Y., Kitamura K., Ichiki Y., Sakata J., Kida O., Kangawa K. et al. Haemodynamic responses to rat adrenomedullin in anaesthetized spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1995;22(9):614–618. https://doi.org/10.1111/j.1440-1681.1995.tb02075.x; Meeran K., O'Shea D., Upton P.D., Small C.J., Ghatei M.A., Byfield P.H. et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J. Clin. Endocrinol. Metab. 1997;82(1):95–100. https://doi.org/10.1210/jcem.82.1.3656; Sandoval D.A., D'Alessio D.A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015;95(2):513–548. https://doi.org/10.1152/physrev.00013.2014; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. https://doi.org/10.1016/j.bmcl.2020.127499; Naot D., Musson D.S., Cornish J. The activity of peptides of the calcitonin family in bone. Physiol. Rev. 2019;99(1):781–805. https://doi.org/10.1152/physrev.00066.2017; Woolley M.J., Reynolds C.A., Simms J., Walker C.S., Mobarec J.C., Garelja M.L. et al. Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochem. Pharmacol. 2017;142:96–110. https://doi.org/10.1016/j.bcp.2017.07.005; Sekine N., Takano K., Kimata-Hayashi N., Kadowaki T., Fujita T. Adrenomedullin inhibits insulin exocytosis via pertussis toxin-sensitive G protein-coupled mechanism. Am. J. Physiol. Endocrinol. Metab. 2006;291(1):E9–E14. https://doi.org/10.1152/ajpendo.00213.2005; Mittra S. Bourreau J.P. Gs and Gi coupling of adrenomedullin in adult rat ventricular myocytes. Am J. Physiol. Heart Circ. Physiol. 2006;290(5):H1842–H1847. https://doi.org/10.1152/ajpheart.00388.2005; Berenguer C., Boudouresque F., Dussert C., Daniel L., Muracciole X., Grino M. et al. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Oncogene. 2008;27(4):506–518. https://doi.org/10.1038/sj.onc.1210656; Bell D., Campbell M., McAleer S.F., Ferguson M., Donaghy L., Harbinson M.T. Endothelium-derived intermedin/adrenomedullin-2 protects human ventricular cardiomyocytes from ischaemiareoxygenation injury predominantly via the AM1 receptor. Peptides. 2016;76:1–13. https://doi.org/10.1016/j.peptides.2015.12.005; Xian X., Sakurai T., Kamiyoshi A., Ichikawa-Shindo Y., Tanaka M., Koyama T. et al. Vasoprotective activities of the adrenomedullin-RAMP2 system in endothelial cells. Endocrinology. 2017;158(5):1359–1372. https://doi.org/10.1210/en.2016-1531; Josiassen J., Frydland M., Holmvang L., Lerche Helgestad O.K., Okkels Jensen L., Goetze J.P. et al. Mortality in cardiogenic shock is stronger associated to clinical factors than contemporary biomarkers reflecting neurohormonal stress and inflammatory activation. Biomarkers. 2020;25(6):506–512. https://doi.org/10.1080/1354750X.2020.1795265; Nagaya N., Nishikimi T., Uematsu M., Yoshitomi Y., Miyao Y., Miyazaki S. et al. Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction. Heart. 1999;81(5):483–487. https://doi.org/10.1136/hrt.81.5.483; Hartopo A.B., Puspitawati I., Anggraeni V.Y. High level of mid-regional proadrenomedullin during ST-segment elevation myocardial infarction is an independent predictor of adverse cardiac events within 90-day follow-up. Medicina (Kaunas). 2022;58(7):861. https://doi.org/10.3390/medicina58070861; Vijay P., Szekely L., Aufiero T.X., Sharp T.G. Coronary sinus adrenomedullin rises in response to myocardial injury. Clin. Sci. (Lond). 1999;96(4):415–420. https://doi.org/10.1042/cs0960415; Oie E., Vinge L.E., Yndestad A., Sandberg C., Grøgaard H.K., Attramadal H. Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation. 2000;101(4):415–422. https://doi.org/10.1161/01.cir.101.4.415; Nagaya N., Nishikimi T., Yoshihara F., Horio T., Morimoto A., Kangawa K. Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278(4):R1019–R1026. https://doi.org/10.1152/ajpregu.2000.278.4.R1019; Belloni A.S., Guidolin D., Ceretta S., Bova S., Nussdorfer G.G. Acute effect of ischemia on adrenomedullin immunoreactivity in the rat heart: an immunocytochemical study. Int. J. Mol. Med. 2004;14(1):71–73. https://doi.org/10.3892/ijmm.14.1.71; Hinrichs S., Scherschel K., Krüger S., Neumann J.T., Schwarz M., Yan I. et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proc. Natl. Acad. Sci USA. 2018;115(37):E8727–E8736. https://doi.org/1073/pnas.1721635115; Kato K., Yin H., Agata J., Yoshida H., Chao L., Chao J. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J. Physiol. Heart. Circ. Physiol. 2003;285(4):H1506– H1514. https://doi.org/10.1152/ajpheart.00270.2003; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis L.V.M., Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. https://doi.org/10.2174/1570161119666201120160619; Yin H., Chao L., Chao J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension. 2004;43(1):109–116. https://doi.org/10.1161/01.HYP.0000103696.60047.55; An R., Xi C., Xu J., Liu Y., Zhang S., Wang Y. et al. Intramyocardial injection of recombinant adeno-associated viral vector coexpressing PR39/adrenomedullin enhances angiogenesis and reduces apoptosis in a rat myocardial infarction model. Oxid. Med. Cell. Longev. 2017;2017:1271670. https://doi.org/10.1155/2017/1271670; Naryzhnaya N.V., Maslov L.N., Derkachev I.A., Ma H., Zhang Y., Prasad N.R. et al. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J. Biomed. Res. 2022;37(4):230–254. https://doi.org/10.7555/JBR.36.20220125; Moradi M., Mousavi A., Emamgholipour Z., Giovannini J., Moghimi S., Peytam F. et al. Quinazoline-based VEGFR-2 inhibitors as potential antiangiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur. J. Med. Chem. 2023;259:115626. https://doi.org/10.1016/j.ejmech.2023.115626; Okumura H., Nagaya N., Itoh T., Okano I., Hino J., Mori K. et al. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation. 2004;109(2):242–248. https://doi.org/10.1161/01.CIR.0000109214.30211.7C; Hamid S.A., Baxter G.F. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res. Cardiol. 2005;100(5):387– 396. https://doi.org/10.1007/s00395-005-0538-3; Hamid S.A., Baxter G.F. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J. Mol. Cell. Cardiol. 2006;41(2):360–363. https://doi.org/10.1016/j.yjmcc.2006.05.017; Hamid S.A., Totzeck M., Drexhage C., Thompson I., Fowkes R.C., Rassaf T. et al. Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res. Cardiol. 2010;105(2):257–266. https://doi.org/10.1007/s00395-009-0058-7; Nishida H., Sato T., Miyazaki M., Nakaya H. Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels. Cardiovasc. Res. 2008;77(2):398–405. https://doi.org/10.1016/j.cardiores.2007.07.015; Torigoe Y., Takahashi N., Hara M., Yoshimatsu H., Saikawa T. Adrenomedullin improves cardiac expression of heat-shock protein 72 and tolerance against ischemia/reperfusion injury in insulin-resistant rats. Endocrinology. 2009;150(3):1450–1455. https://doi.org/10.1210/en.2008-1052; Karakas M., Akin I., Burdelski C., Clemmensen P., Grahn H., Jarczak D. et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, doubleblinded, placebo-controlled, multicentre trial. Lancet Respir. Med. 2022;10(3):247–254. https://doi.org/10.1016/S2213-2600(21)00439-2; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Marutsuka K. et al. Beneficial effects of adrenomedullin on left ventricular remodeling after myocardial infarction in rats. Cardiovasc. Res. 2002;56(3):373–380. https://doi.org/10.1016/s0008-6363(02)00594-1; Okumura H., Nagaya N., Kangawa K. Adrenomedullin infusion during ischemia/reperfusion attenuates left ventricular remodeling and myocardial fibrosis in rats. Hypertens. Res. 2003;26_Suppl:S99–S104. https://doi.org/10.1291/hypres.26.s99; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Cao Y. et al. Adrenomedullin administration immediately after myocardial infarction ameliorates progression of heart failure in rats. Circulation. 2004;110(4):426–431. https://doi.org/10.1161/01.CIR.0000136085.34185.83; Dong W., Yu P., Zhang T., Zhu C., Qi J., Liang J. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor-1α-associated mechanism. Mol. Med. Rep. 2018;17(3):4547–4553. https://doi.org/10.3892/mmr.2018.8450; Dou L., Lu E., Tian D., Li F., Deng L., Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. J. Transl. Int. Med. 2023;11(2):169–177. https://doi.org/10.2478/jtim-2023-0091; Wang X., Jia J.H., Zhang M., Meng Q.S., Yan B.W., Ma Z.Y. et al. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J. 2023;37(10):e23143. https://doi.org/10.1096/fj.202300474R; https://www.sibjcem.ru/jour/article/view/2628

  2. 2
  3. 3
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 7, № 2 (2022); 113-124 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3427/2328; Virani SS, Alonso А, Benjamin EJ. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation. 2020; 141(9): 139-596. doi:10.1161/CIR.0000000000000757; Shih J-Y, Chen Z-C, Chang H-Y. Risks of age and sex on clinical outcomes post myocardial infarction. Int J Cardiol Heart Vasc. 2019; 23: 100350. doi:10.1016/j.ijcha.2019.100350; Report on cardiovascular health and diseases in China 2019: An updated summary. Chinese Circulation Journal. 2020; 35(9): 833-854.; Timmis A, Townsend N, Gale CP. European Society of Cardiology: Cardiovascular disease statistics 2019. Eur Heart J. 2020; 41: 12-85. doi:10.1093/eurheartj/ehz859; Maglietta G, Ardissino М, Malagoli Tagliazucchi G. Longterm outcomes after early-onset myocardial infarction. J Am Coll Cardiol. 2019; 74(16): 2113-2115. doi:10.1016/j.jacc.2019.08.1000; Pfeffer MA. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation. 1985; 2(72): 406-412.; Guo Y, Zhang C, Ye T, Chen X, Liu X, Chen X, et al. Pinocembrin ameliorates arrhythmias in rats with chronic ischaemic heart failure. Ann Med. 2021; 53(1): 830-840. doi:10.1080/07853890.2021.1927168; Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci. 2021; 264: 118628. doi:10.1016/j.lfs.2020.118628; Maida CD, Norrito RL, Daidone M. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020; 21(18): 6454. doi:10.3390/ijms21186454; Morton AB, Jacobsen NL, Segal SS. Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. Am J Physiol Cell Physiol. 2021; 320(6): C1099-C1111. doi:10.1152/ajpcell.00501.2020; Gonçalves RC, Banfi A, Oliveira MB. Strategies for revascularization and promotion of angiogenesis in trauma and disease. Biomaterials. 2021; 269: 120628. doi:10.1016/j.biomaterials.2020.120628; László A, Lénárt L, Illésy L. The role of neurotrophins in psychopathology and cardiovascular diseases: Psychosomatic connections. J Neural Transm (Vienna). 2019; 126(3): 265-278. doi:10.1007/s00702-019-01973-6; Kotlega D, Zembron-Lacny A, Morawin B. Free fatty acids and their inflammatory derivatives affect BDNF in stroke patients. Mediators Inflamm. 2020; 2020: 6676247. doi:10.1155/2020/6676247; Jamali A, Shahrbanian S, Morteza Tayebi S. The effects of exercise training on the brain-derived neurotrophic factor (BDNF) in the patients with type 2 diabetes: A systematic review of the randomized controlled trials. J Diabetes Metab Disord. 2020; 19(1): 633-643. doi:10.1007/s40200-020-00529-w; Wang J, Amidfar M, Eyileten C. Nerve growth factor in metabolic complications and Alzheimer’s disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(10): 165858. doi:10.1016/j.bbadis.2020.165858; Xue Y, Liang H, Yang R. The role of pro- and mature neurotrophins in the depression. Behav Brain Res. 2021; 404: 113162. doi:10.1016/j.bbr.2021.113162; Hang PZ, Zhu H, Li PF. The emerging role of BDNF/TrkB signaling in cardiovascular diseases. Life (Basel). 2021; 11(1): 70. doi:10.3390/life11010070; Halloway S, Jung M, Yeh AY. An integrative review of brain-derived neurotrophic factor and serious cardiovascular conditions. Nurs Res. 2020; 69(5): 376-390. doi:10.1097/NNR.0000000000000454; Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021; 17(1): 34-46. doi:10.1038/s41584-020-00528-4; Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail. 2021; 8(2): 974-987. doi:10.1002/ehf2.13138; Li R, Xu J, Rao Z. Facilitate angiogenesis and neurogenesis by growth factors integrated decellularized matrix hydrogel. Tissue Eng Part A. 2021; 27(11-12): 771-787. doi:10.1089/ten.TEA.2020.0227; Yan T, Zhang Z, Li D. NGF receptors and PI3K/AKT pathway involved in glucose fluctuation-induced damage to neurons and alpha-lipoic acid treatment. BMC Neuroscience. 2020; 21(1): 38. doi:10.1186/s12868-020-00588-y; Xu F, Na L, Li Y. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020; 10: 54. doi:10.1186/s13578-020-00416-0; Baldassarro VA, Lorenzini L, Bighinati A. NGF and endogenous regeneration: From embryology toward therapies. Adv Exp Med Biol. 2021; 1331: 51-63. doi:10.1007/978-3-030-74046-7_5; Dahlström M, Nordvall G, Sundström E. Identification of amino acid residues of nerve growth factor important for neurite outgrowth in human dorsal root ganglion neurons. Eur J Neurosci. 2019; 50: 3487-3501. doi:10.1111/ejn.14513; Testa G, Cattaneo A, Capsoni S. Understanding pain perception through genetic painlessness diseases: The role of NGF and proNGF. Pharmacol Res. 2021; 169: 105662. doi:10.1016/j.phrs.2021.105662; Grassi G, Quarti-Trevano F, Esler MD. Sympathetic activation in congestive heart failure: An updated overview. Heart Fail Rev. 2021; 26(1): 173-182. doi:10.1007/s10741-019-09901-2; Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, et al. Nerve growth factor, stress and diseases. Curr Med Chem. 2021; 28(15): 2943-2959. doi:10.2174/0929867327999200818111654; Wang Y, Tan J, Yin J, Hu H, Shi Y, Wang Y, et al. Targeting blockade of nuclear factor-kappaB in the hypothalamus paraventricular nucleus to prevent cardiac sympathetic hyperinnervation post myocardial infarction. Neurosci Lett. 2019; 707: 134319. doi:10.1016/j.neulet.2019.134319; Oliveira ÍM, Silva Júnior ELD, Martins YO, Rocha HAL, Scanavacca MI, Gutierrez PS. Cardiac autonomic nervous system remodeling may play a role in atrial fibrillation: A study of the autonomic nervous system and myocardial receptors. Arq Bras Cardiol. 2021; 117(5): 999-1007. doi:10.36660/abc.20200725; Gussak G, Pfenniger A, Wren L, Gilani M, Zhang W, Yoo S, et al. Region-specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation. JCI Insight. 2019; 4(20): e130532. doi:10.1172/jci.insight.130532; Yang M, Zhang S, Liang J, Tang Y, Wang X, Huang C, et al. Different effects of norepinephrine and nerve growth factor on atrial fibrillation vulnerability. J Cardiol. 2019; 74: 460-465. doi:10.1016/j.jjcc.2019.04.009; Wang Z, Li S, Lai H, Zhou L, Meng G, Wang M, et al. Interaction between endothelin-1 and left stellate ganglion activation: A potential mechanism of malignant ventricular arrhythmia during myocardial ischemia. Oxid Med Cell Longev. 2019; 2019: 6508328. doi:10.1155/2019/6508328; Jie X, Yang H, Wang K, Zhu ZF, Wang JP, Yang LG, et al. Apocynin prevents reduced myocardial nerve growth factor, contributing to amelioration of myocardial apoptosis and failure. Clin Exp Pharmacol Physiol. 2021; 48(5): 704-716. doi:10.1111/1440-1681.13465; Cheng XY, Chen C, He SF, Huang CX, Zhang L, Chen ZW, et al. Spinal NGF induces anti-intrathecal opioid-initiated cardioprotective effect via regulation of TRPV1 expression. Eur J Pharmacol. 2019; 844: 145-155. doi:10.1016/j.ejphar.2018.12.007; van der Bijl P, Abou R, Goedemans L, Gersh BJ, Holmes DR Jr, Ajmone Marsan N, et al. Left ventricular post-infarct remodeling: Implications for systolic function improvement and outcomes in the modern era. JACC Heart Fail. 2020; 8(2): 131-140. doi:10.1016/j.jchf.2019.08.014; Schuttler D, Clauss S, Weckbach LT, Brunner S. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells. 2019; 8(10): 1128. doi:10.3390/cells8101128; Smit M, Coetzee AR, Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 2020; 34(9): 2501-2512. doi:10.1053/j.jvca.2019.10.00; Lin Y, Ding S, Chen Y, Xiang M, Xie Y. Cardiac adipose tissue contributes to cardiac repair: A review. Stem Cell Rev Rep. 2021; 17(4): 1137-1153. doi:10.1007/s12015-020-10097-4; Revelo X, Parthiban P, Chen C, Barrow F, Fredrickson G, Wang H, et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ Res. 2021; 129(12): 1086-1101. doi:10.1161/CIRCRESAHA.121.319737; Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J, et al. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021; 8(1): 222-237. doi:10.1002/ehf2.13144; Yu TS, Ge LZ, Cao JM. Research advances in sympathetic remodeling after myocardial infarction and its significance in forensic science. Fa Yi Xue Za Zhi. 2019; 35(1): 68-73. doi:10.12116/j.issn.1004-5619.2019.01.013; Kosmas N, Manolis AS, Dagres N, Iliodromitis EK. Myocardial infarction or acute coronary syndrome with non-obstructive coronary arteries and sudden cardiac death: A missing connection. Europace. 2020; 22(9): 1303-1310. doi:10.1093/europace/euaa156; Lyu J, Wang M, Kang X, Xu H, Cao Z, Yu T, et al. Macrophagemediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res Cardiol. 2020; 115(5): 56. doi:10.1007/s00395-020-0813-3; Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA. The role of regulatory neuropeptides and neurotrophic factors in asthma pathophysiology. Russian Open Medical Journal. 2019; 8(4): e0402. doi:10.15275/rusomj.2019.0402; Cuello AC. Levi-Montalcini R. NGF metabolism in health and in the Alzheimer’s pathology. Adv Exp Med Biol. 2021; 1331: 119-144. doi:10.1007/978-3-030-74046-7_9; Paoletti F, Merzel F, Cassetta A, Ogris I, Covaceuszach S, Grdadolnik J, et al. Endogenous modulators of neurotrophin signaling: Landscape of the transient ATP-NGF interactions. Comput Struct Biotechnol J. 2021; 19: 2938-2949. doi:10.1016/j.csbj.2021.05.009; Yamashita N. NGF signaling in endosomes. Adv Exp Med Biol. 2021; 1331: 19-29. doi:10.1007/978-3-030-74046-7_3; Rowe CW, Dill T, Faulkner S, Gedye C, Paul JW, Tolosa JM, et al. The precursor for nerve growth factor (proNGF) in thyroid cancer lymph node metastases: Correlation with primary tumour and pathological variables. Int J Mol Sci. 2019; 20(5924). doi:10.3390/ijms20235924; Kendall A, Nyström S, Ekman S, Hultén LM, Lindahl A, Hansson E, et al. Nerve growth factor in the equine joint. Vet J. 2021; 267: 105579. doi:10.1016/j.tvjl.2020.105579; Liu Z, Wu H, Huang S. Role of NGF and its receptors in wound healing (Review). Exp Ther Med. 2021; 21(6): 599. doi:10.3892/etm.2021.10031; Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021; 17(1): 34-46. doi:10.1038/s41584-020-00528-4; Kang L, Andersen ND, Turek JW. Commentary: Connecting the dots: Coronary artery development as a combination of vasculogenesis and angiogenesis. J Thorac Cardiovasc Surg. 2021: S0022-5223(21)01224-1. doi:10.1016/j.jtcvs.2021.08.026; Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021; 117(5): 1257-1273. doi:10.1093/cvr/cvaa287; Kurotsu S, Osakabe R, Isomi M, Tamura F, Sadahiro T, Muraoka N, et al. Distinct expression patterns of Flk1 and Flt1 in the coronary vascular system during development and after myocardial infarction. Biochem Biophys Res Commun. 2019; 495: 884-891. doi:10.1016/j.bbrc.2017.11.094; Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, et al. Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol. 2019; 73: 2990-3002. doi:10.1016/j.jacc.2019.03.503; Yang S, Cheng J, Man C, Jiang L, Long G, Zhao W, et al. Effects of exogenous nerve growth factor on the expression of BMP-9 and VEGF in the healing of rabbit mandible fracture with local nerve injury. J Orthop Surg Res. 2021; 16(1): 74. doi:10.1186/s13018-021-02220-z; Julian K, Prichard B, Raco J, Jain R, Jain R. A review of cardiac autonomics: From pathophysiology to therapy. Future Cardiol. 2022; 18(2): 125-133. doi:10.2217/fca-2021-0041; Kusayama T, Wan J, Yuan Y, Chen PS. Neural mechanisms and therapeutic opportunities for atrial fibrillation. Methodist Debakey Cardiovasc J. 2021; 17(1): 43-47. doi:10.14797/FVDN2224; Shah R, Assis F, Alugubelli N, Okada DR, Cardoso R, Shivkumar K, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias in patients with structural heart disease: A systematic review. Heart Rhythm. 2019; 16(10): 1499-1505. doi:10.1016/j.hrthm.2019.06.018; Aksu T, Gupta D, Pauza DH. Anatomy and physiology of intrinsic cardiac autonomic nervous system: Da Vinci anatomy card #2. JACC Case Rep. 2021; 3(4): 625-629. doi:10.1016/j.jaccas.2021.02.018; Moss A, Robbins S, Achanta S, Kuttippurathu L, Turick S, Nieves S, et al. A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. iScience. 2021; 24(7): 102713. doi:10.1016/j.isci.2021.102713; Kotalczyk A, Mazurek M, Kalarus Z, Potpara TS, Lip GYH. Stroke prevention strategies in high-risk patients with atrial fibrillation. Nat Rev Cardiol. 2021; 18(4): 276-290. doi:10.1038/s41569-020-00459-3; Sethwala AM, Goh I, Amerena JV. Combating inflammation in cardiovascular disease. Heart Lung Circ. 2021; 30(2): 197-206. doi:10.1016/j.hlc.2020.09.003; Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, et al. Molecular mechanisms associated with ROSdependent angiogenesis in lower extremity artery disease. Antioxidants (Basel). 2021; 10(5): 735. doi:10.3390/antiox10050735; Bostan MM, Stătescu C, Anghel L, Șerban IL, Cojocaru E, Sascău R. Post-myocardial infarction ventricular remodeling biomarkers – The key link between pathophysiology and clinic. Biomolecules. 2020; 10(11): 1587. doi:10.3390/biom10111587; Henning RJ. Cardiovascular exosomes and MicroRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 2021; 14(2): 195-212. doi:10.1007/s12265-020-10040-5; Hu Y, Xiong J, Wen H, Wei H, Zeng X. MiR-98-5p promotes ischemia/reperfusion-induced microvascular dysfunction by targeting NGF and is a potential biomarker for microvascular reperfusion. Microcirculation. 2021; 28(1): e12657. doi:10.1111/micc.12657; Zhao W, Zhao J, Rong J. Pharmacological modulation of cardiac remodeling after myocardial infarction. Oxid Med Cell Longev. 2020; 2020: 8815349. doi:10.1155/2020/8815349; Pentz R, Iulita MF. The NGF metabolic pathway: New opportunities for biomarker research and drug target discovery: NGF pathway biomarkers and drug targets. Adv Exp Med Biol. 2021; 1331: 31-48. doi:10.1007/978-3-030-74046-7_4; Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev. 2020; 41(5): 2746-2774. doi:10.1002/med.21721; Luo W, Gong Y, Qiu F, Yuan Y, Jia W, Liu Z, et al. NGF nanoparticles enhance the potency of transplanted human umbilical cord mesenchymal stem cells for myocardial repair. Am J Physiol Heart Circ Physiol. 2021; 320(5): H1959-H1974. doi:10.1152/ajpheart.00855.2020; Saragovi HU, Galan A, Levin LA. Neuroprotection: Prosurvival and anti-neurotoxic mechanisms as therapeutic strategies in neurodegeneration. Front Cell Neurosci. 2019; 13: 231. doi:10.3389/fncel.2019.00231; Dobbin SJH, Petrie MC, Myles RC, Touyz RM, Lang NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond). 2021; 135(1): 71-100. doi:10.1042/CS20200305; https://www.actabiomedica.ru/jour/article/view/3427

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12