Εμφανίζονται 1 - 20 Αποτελέσματα από 162 για την αναζήτηση '"ПОЗИТРОННО-ЭМИССИОННАЯ ТОМОГРАФИЯ"', χρόνος αναζήτησης: 0,85δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal

    Πηγή: Radiatsionnaya Gygiena = Radiation Hygiene; Том 17, № 4 (2024); 126-134 ; Радиационная гигиена; Том 17, № 4 (2024); 126-134 ; 2409-9082 ; 1998-426X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.radhyg.ru/jour/article/view/1097/928; Чипига Л.А., Ладанова Е.Р., Водоватов А.В. и др. Тенденции развития ядерной медицины в Российской Федерации за 2015–2020 гг. // Радиационная гигиена. 2022. T. 15, № 4. С. 122-133. DOI:10.21514/1998-426X-2022-15-4-122-133.; Чипига Л.А. Исследование программ автоматической модуляции силы тока для оптимизации протоколов сканирования в компьютерной томографии // Радиационная гигиена. 2019. T. 12, № 1. С. 104-114 с. DOI:10.21514/1998-426X-2019-12-1-104-114.; Lee C., Kim K.P., Bolch W.E. et al. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. Journal of Radiological Protection. 2015. Vol. 35, No 4. P. 891-909. DOI:10.1088/0952-4746/35/4/891. Epub 2015 Nov 26. PMID: 26609995.; Чипига Л.А. Сравнение расчетных методов определения эффективной и органных доз у пациентов при компьютерно-томографических исследованиях // Радиационная гигиена. 2017. T. 10, № 1. С. 56-64. DOI:10.21514/1998-426X-2017-10-1-56-64.; Chipiga L., Golikov V., Vodovatov A. et al. Comparison of organ absorbed doses in whole-body computed tomography scans of paediatric and adult patient models estimated by different methods // Radiation Protection Dosimetry. 2021. Vol. 195, Issue 3-4. P. 246–256. DOI:10.1093/rpd/ncab086.; Lee C., Lodwick D., Hurtado J. et al. The UF family of reference hybrid phantoms for computational radiation dosimetry // Physics in Medicine and Biology. 2010. Vol. 55, №2. P. 339–363.; Recommendations of the International Commission on Radiological Protection. ICRP Publication 60 // Annals of the ICRP. 1991. № 21. 90 р.; Водоватов А.В., Чипига Л.А., Пивень П.А. и др. Оценка поглощенных доз в плоде при проведении компьютерной томографии органов грудной клетки беременной женщины // Радиационная гигиена. 2021. T. 14, № 3. С. 126-135. DOI:10.21514/1998-426X-2021-14-3-126-135.; https://www.radhyg.ru/jour/article/view/1097

  4. 4
    Academic Journal

    Πηγή: Surgery and Oncology; Том 15, № 1 (2025); 49-53 ; Хирургия и онкология; Том 15, № 1 (2025); 49-53 ; 2949-5857

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/781/494; Семенов А.В., Гордон К.Б., Рожнов В.А. и др. Лучевая терапия локализованного рака гортани в режиме гиперфракционирования с равномерным дроблением дневной дозы. Радиация и риск (Бюллетень НРЭР) 2022;31(1):127–35. DOI:10.21870/0131-3878-2022-31-1-127-135; MacReady N. Looking treatment complications in the mouth. J Natl Cancer Inst 2013;105(2):76–7. DOI:10.1093/jnci/djs643; Nathan C.O., Asarkar A.A., Entezami P. et al. Current management of xerostomia in head and neck cancer patients. Am J Otolaryngol 2023;44(4):103867. DOI:10.1016/j.amjoto.2023.103867; Hopcraft M.S., Tan C. Xerostomia: an update for clinicians. Aust Dent J 2010;55(3):238–44;quiz 353. DOI:10.1111/j.1834-7819.2010.01229.x; Valstar M.H., de Bakker B.S., Steenbakkers R.J.H.M. et al. The tubarial salivary glands: A potential new organ at risk for radiotherapy. Radiother Oncol 2021;154:292–8. DOI:10.1016/j.radonc.2020.09.034; Pringle S., Bikker F.J., Vogel W. et al. Immunohistological profiling confirms salivary gland-like nature of the tubarial glands and suggests closest resemblance to the palatal salivary glands. Radiother Oncol 2023;187:109845. DOI:10.1016/j.radonc.2023.109845; Narayan R.K., Kumari C., Panchal P. et al. A macroscopic salivary gland and a potential organ or simply tubarial sero-mucinous glands? Radiother Oncol 2021;154:324–5. DOI:10.1016/j.radonc.2020.12.016; Schumann S. Salivary glands at the pharyngeal ostium of the eustachian tube are already described in histological literature. Radiother Oncol 2021;154:326. DOI:10.1016/j.radonc.2020.12.022; Mudry A., Jackler R.K. Are “tubarial salivary glands” a previously unknown structure? Radiother Oncol 2021;154:314–5. DOI:10.1016/j.radonc.2020.12.003; Li W., Wang J.W., Fang X. et al. Further comments on the tubarial glands. Radiother Oncol 2022;172:50–3. DOI:10.1016/j.radonc.2022.05.010; Sakthivel P., Thakar A., Arunraj S.T. et al. Physiological PSMA uptake in the tubarial salivary glands and its implications in the PARIS protocol-A first study of its kind! Clin Nucl Med 2021;46(8):e398–e405. DOI:10.1097/RLU.0000000000003583; Thakar A., Sakthivel P., Thankarajan Arunraj S. et al. Validation of postoperative angiofibroma radionuclide imaging study (PARIS) protocol using PSMA PET/CT-A proof of concept study. Clin Nucl Med 2021;46(5):e242–9. DOI:10.1097/RLU.0000000000003516; Pushpa N.B., Ravi K.S., Durgapal P. Discovery of new salivary gland – а substantial histological analysis. Radiother Oncol 2021;161:92–4. DOI:10.1016/j.radonc.2021.06.004; Holsinger F.C., Bui D.T. Anatomy, function, and evaluation of the salivary glands. Salivary gland disorders. Springer Berlin: Heidelberg, 2007. Pp. 1–16. DOI:10.1007/978-3-540-47072-4_1

  5. 5
    Academic Journal

    Συνεισφορές: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2022-301)., Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (соглашение № 075-15-2022-301).

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 4 (2024); 104-113 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 4 (2024); 104-113 ; 2413-5496 ; 2311-1267

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1103/961; Weinstein J.L., Katzenstein H.M., Cohn S.L. Advances in the diagnosis and treatment of neuroblastoma. Oncologist. 2003;8(3):278–92. doi:10.1634/theoncologist.8-3-278.; Kembhavi S.A., Shah S., Rangarajan V., Qureshi S., Popat P., Kurkure P. Imaging in neuroblastoma: An update. Indian J Radiol Imaging. 2015;25(2):129–36. doi:10.4103/0971-3026.155844.; Simon T., Hero B., Schulte J.H., Deubzer H., Hundsdoerfer P., von Schweinitz D., Fuchs J., Schmidt M., Prasad V., Krug B., Timmermann B., Leuschner I., Fischer M., Langer T., Astrahantseff K., Berthold F., Lode H., Eggert A. 2017 GPOH Guidelines for Diagnosis and Treatment of Patients with Neuroblastic Tumors. Klin Padiatr. 2017;229:147–67. doi:10.1055/s-0043-103086.; Papaioannou G., McHugh K. Neuroblastoma in childhood: review and radiological findings. Cancer Imaging. 2005;5(1):116–27. doi:10.1102/1470-7330.2005.0104.; Monclair T., Brodeur G.M., Ambros P.F., Brisse H.J., Cecchetto G., Holmes K., Kaneko M., London W.B., Matthay K.K., Nuchtern J.G., von Schweinitz D., Simon T., Cohn S.L., Pearson A.D.; INRG Task Force. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27(2):298–303. doi:10.1200/JCO.2008.16.6876.; Allolio B., Fassnacht M. Clinical review: Adrenocortical carcinoma: clinical update. J Clin Endocrinol Metab. 2006;91(6):2027–37. doi:10.1210/jc.2005-2639.; Клинические рекомендации по лечению нейробластомы у детей от 14.04.2020. [Электронный ресурс]: URL: https://cr.minzdrav.gov.ru/schema/78_1.; Рыжкова Д.В., Тихонова Д.Н., Гринева Е.Н. Методы ядерной медицины в диагностике нейроэндокринных опухолей. Сибирский онкологический журнал. 2013;6(60):56–63.; Rufini V., Shulkin B. The evolution in the use of MIBG in more than 25 years of experimental and clinical applications. Q J Nucl Med Mol Imaging. 2008;52(4):341–50. PMID: 19088689.; Yadgarov M., Kailash C., Shamanskaya T., Kachanov D., Likar Y. Asphericity of tumor [123I]mIBG uptake as a prognostic factor in highrisk neuroblastoma. Pediatr Blood Cancer. 2022;69(11):e29849. doi:10.1002/pbc.29849.; Agrawal A., Rangarajan V., Shah S., Puranik A., Purandare N. MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol. 2018;91(1091):20180103. doi:10.1259/bjr.20180103.; Bombardieri E., Giammarile F., Aktolun C., Baum R.P., Bischof Delaloye A., Maffioli L., Moncayo R., Mortelmans L., Pepe G., Reske S.N., Castellani M.R., Chiti A.; European Association for Nuclear Medicine. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(12):2436–46. doi:10.1007/s00259-010-1545-7.; Lopez Quiñones A.J., Vieira L.S., Wang J. Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of meta-Iodobenzylguanidine (mIBG). Drug Metab Dispos. 2022;50(9):1218–27. doi:10.1124/dmd.121.000707.; Taïeb D., Timmers H.J., Hindié E., Guillet B.A., Neumann H.P., Walz M.K., Opocher G., de Herder W.W., Boedeker C.C., de Krijger R.R., Chiti A., Al-Nahhas A., Pacak K., Rubello D.; European Association of Nuclear Medicine. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2012;39(12):1977–95. doi:10.1007/s00259-012-2215-8.; Jones J., DeSai C., Chieng R. MIBG. Reference article, Radiopaedia.org (Accessed on 24 Mar 2024). doi:10.53347/rID-9024.; Коган С.А., Серик Т.Г., Ердомаева Я.А., Киргизов К.И. Информационный бюллетень. Проведение МЙБГ-диагностики детскому населению на территории РФ. РОО НОДГО Институт управления и трансляционной медицины НМИЦ ДГОИ им. Дмитрия Рогачева. [Электронный ресурс]: URL: https://nodgo.org/sites/default/files/MIBG_512.pdf.; Samim A., Tytgat G.A.M., Bleeker G., Wenker S.T.M., Chatalic K.L.S., Poot A.J., Tolboom N., van Noesel M.M., Lam M.G.E.H., de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med. 2021;11(4):270. doi:10.3390/jpm11040270.; Vik T.A., Pfluger T., Kadota R., Castel V., Tulchinsky M., Farto J.C., Heiba S., Serafini A., Tumeh S., Khutoryansky N., Jacobson A.F. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatr Blood Cancer. 2009;52(7):784–90. doi:10.1002/pbc.21932.; Кайлаш А., Ликарь Ю.Н. Преимущества и недостатки методов ядерной медицины, используемых при диагностике у пациентов с нейробластомой (обзор литературы). Российский журнал детской гематологии и онкологии. 2016;3(2):50–6. doi:10.17650/2311-1267-2016-3-2-50-56.; Jacobs A., Delree M., Desprechins B., Otten J., Ferster A., Jonckheer M.H., Mertens J., Ham H.R., Piepsz A. Consolidating the role of 123I-MIBG-scintigraphy in childhood neuroblastoma: five years of clinical experience. Pediatr Radiol. 1990;20(3):157–9. doi:10.1007/BF02012960.; Brisse H.J., McCarville M.B., Granata C., Krug K.B., Wootton-Gorges S.L., Kanegawa K., Giammarile F., Schmidt M., Shulkin B.L., Matthay K.K., Lewington V.J., Sarnacki S., Hero B., Kaneko M., London W.B., Pearson A.D., Cohn S.L., Monclair T.; International Neuroblastoma Risk Group Project. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261(1):243–57. doi:10.1148/radiol.11101352.; Kaufman R.A., Thrall J.H., Keyes J.W. Jr, Brown M.L., Zakem J.F. False negative bone scans in neuroblastoma metastatic to the ends of long bones. AJR Am J Roentgenol. 1978;130(1):131–5. doi:10.2214/ajr.130.1.131.; Wagner H.N. Jr. A brief history of positron emission tomography (PET). Semin Nucl Med. 1998;28(3):213–20. doi:10.1016/s0001-2998(98)80027-5.; Pauwels E.K., Ribeiro M.J., Stoot J.H., McCready V.R., Bourguignon M., Mazière B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22. doi:10.1016/s0969-8051(97)00226-6.; Rahman W.T., Wale D.J., Viglianti B.L., Townsend D.M., Manganaro M.S., Gross M.D., Wong K.K., Rubello D. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging. Biomed Pharmacother. 2019;117:109168. doi:10.1016/j.biopha.2019.109168.; Almuhaideb A., Papathanasiou N., Bomanji J. 18F-FDG PET/CT imaging in oncology. Ann Saudi Med. 2011;31(1):3–13. doi:10.4103/0256-4947.75771.; Mbakaza O., Vangu M.-D.-T.W. 18F-FDG PET/CT Imaging: Normal Variants, Pitfalls, and Artifacts Musculoskeletal, Infection, and Inflammation. Front Nucl Med. 2022;2:847810. doi:10.3389/fnume.2022.847810.; Pijl J.P., Glaudemans A.W.J.M., Gheysens O., Slart R.H.J.A., Kwee T.C. Importance of Blood Glucose Management Before 18F-FDG PET/CT in 322 Patients with Bacteremia of Unknown Origin. J Nucl Med. 2023;64(8):1287–94. doi:10.2967/jnumed.122.264839.; Surasi D.S., Bhambhvani P., Baldwin J.A., Almodovar S.E., OʼMalley J.P. 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol. 2014;42(1):5–13. doi:10.2967/jnmt.113.132621.; Shammas A., Lim R., Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29(5):1467–86. doi:10.1148/rg.295085247.; Agrawal A., Rangarajan V. Appropriateness criteria of FDG PET/CT in oncology. Indian J Radiol Imaging. 2015;25(2):88–101. doi:10.4103/0971-3026.155823.; Li C., Zhang J., Chen S., Huang S., Wu S., Zhang L., Zhang F., Wang H. Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging. 2018;45(2):306–15. doi:10.1007/s00259-017-3851-9.; Hu R., Zhang Y., Liu S., Lee P., Liu C., Liu A. Prognostic prediction by 18F-FDG-PET/CT parameters in patients with neuroblastoma: a systematic review and meta-analysis. Front Oncol. 2023;13:1208531. doi:10.3389/fonc.2023.1208531.; Lee J.W., Cho A., Yun M., Lee J.D., Lyu C.J., Kang W.J. Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol. 2015;84(12):2633–9. doi:10.1016/j.ejrad.2015.09.027.; Ren J., Fu Z., Zhao Y. Clinical value of 18F-FDG PET/CT to predict MYCN gene, chromosome 1p36 and 11q status in pediatric neuroblastoma and ganglioneuroblastoma. Front Oncol. 2023;13:1099290. doi:10.3389/fonc.2023.1099290.; Li S., Liu J., Wang G., Feng L., Yang X., Kan Y., Wang W., Yang J. Predictive value of 2-deoxy-2-fluorine-18-fluoro-D-glucose positron emission tomography/computed tomography parameters for MYCN amplification in high-risk neuroblastoma. Eur J Radiol. 2024;170:111243. doi:10.1016/j.ejrad.2023.111243.; Piccardo A., Lopci E. Potential role of 18F-DOPA PET in neuroblastoma. Clin Transl Imaging. 2016;4:79–86. doi:10.1007/s40336-016-0162-2.; Piccardo A., Lopci E., Conte M., Garaventa A., Foppiani L., Altrinetti V., Nanni C., Bianchi P., Cistaro A., Sorrentino S., Cabria M., Pession A., Puntoni M., Villavecchia G., Fanti S. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39(1):57–71. doi:10.1007/s00259-011-1938-2.; Pfluger T., Piccardo A. Neuroblastoma: MIBG Imaging and New Tracers. Semin Nucl Med. 2017;47(2):143–57. doi:10.1053/j.semnuclmed.2016.10.007.; Fiebrich H.B., Brouwers A.H., Kerstens M.N., Pijl M.E., Kema I.P., de Jong J.R., Jager P.L., Elsinga P.H., Dierckx R.A., van der Wal J.E., Sluiter W.J., de Vries E.G., Links T.P. 6-[F-18]Fluoro-Ldihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab. 2009;94(10):3922–30. doi:10.1210/jc.2009-1054.; Piccardo A., Treglia G., Fiz F., Bar-Sever Z., Bottoni G., Biassoni L., Borgwardt L., de Keizer B., Jehanno N., Lopci E., Kurch L., Massollo M., Nadel H., Roca Bielsa I., Shulkin B., Vali R., De Palma D., Cecchin D., Santos A.I., Zucchetta P. The evidence-based role of catecholaminergic PET tracers in Neuroblastoma. A systematic review and a head-to-head comparison with mIBG scintigraphy. Eur J Nucl Med Mol Imaging. 2024;51(3):756–67. doi:10.1007/s00259-023-06486-9.; Liu C.J., Lu M.Y., Liu Y.L., Ko C.L., Ko K.Y., Tzen K.Y., Chang H.H., Yang Y.L., Jou S.T., Hsu W.M., Yen R.F. Risk Stratification of Pediatric Patients With Neuroblastoma Using Volumetric Parameters of 18F-FDG and 18F-DOPA PET/CT. Clin Nucl Med. 2017;42(3):e142–8. doi:10.1097/RLU.0000000000001529.; OʼBrien S.R., States L.J., Zhuang H. Neuroblastoma Shown on 18F-DOPA PET/CT Performed to Evaluate Congenital Hyperinsulinism. Clin Nucl Med. 2021;46(11):927–8. doi:10.1097/RLU.0000000000003689.; Bacca A., Chiacchio S., Zampa V., Carrara D., Duce V., Congregati C., Simi P., Taddei S., Materazzi G., Volterrani D., Mariani G., Bernini G. Role of 18F-DOPA PET/CT in diagnosis and follow-up of adrenal and extra-adrenal paragangliomas. Clin Nucl Med. 2014;39(1):14–20. doi:10.1097/RLU.0000000000000242.; Piccardo A., Lopci E., Conte M., Cabria M., Cistaro A., Garaventa A., Villavecchia G. Bone and lymph node metastases from neuroblastoma detected by 18F-DOPA-PET/CT and confirmed by posttherapy 131I-MIBG but negative on diagnostic 123I-MIBG scan. Clin Nucl Med. 2014;39(1):e80–3. doi:10.1097/RLU.0b013e31827a0002.; Piccardo A., Morana G., Puntoni M., Campora S., Sorrentino S., Zucchetta P., Ugolini M., Conte M., Cistaro A., Ferrarazzo G., Pescetto M., Lattuada M., Bottoni G., Garaventa A., Giovanella L., Lopci E. Diagnosis, Treatment Response, and Prognosis: The Role of 18F-DOPA PET/CT in Children Affected by Neuroblastoma in Comparison with 123I-mIBG Scan: The First Prospective Study. J Nucl Med. 2020;61(3):367–74. doi:10.2967/jnumed.119.232553.; Modak S., Mauguen A., Basu E.M., Price A., Behr G., Min R., Lyashchenko S.K., Schwartz J., Pandit-Taskar N. J Clin Oncol. 2023;41(suppl 16; abstr. 10046). doi:10.1200/JCO.2023.41.16_suppl.10046.6.; Wang P., Li T., Liu Z., Jin M., Su Y., Zhang J., Jing H., Zhuang H., Li F. [18F]MFBG PET/CT outperforming [123I]MIBG SPECT/CT in the evaluation of neuroblastoma. Eur J Nucl Med Mol Imaging. 2023;50(10):3097–106. doi:10.1007/s00259-023-06221-4.; Samim A., Blom T., Poot A.J., Windhorst A.D., Fiocco M., Tolboom N., Braat A.J.A.T., Viol S.L.M., van Rooij R., van Noesel M.M., Lam M.G.E.H., Tytgat G.A.M., de Keizer B. [18F]mFBG PET-CT for detection and localisation of neuroblastoma: a prospective pilot study. Eur J Nucl Med Mol Imaging. 2023;50(4):1146–57. doi:10.1007/s00259-022-06063-6. Erratum in: Eur J Nucl Med Mol Imaging. 2023;50(5):1541.; Pandit-Taskar N., Zanzonico P., Staton K.D., Carrasquillo J.A., Reidy-Lagunes D., Lyashchenko S., Burnazi E., Zhang H., Lewis J.S., Blasberg R., Larson S.M., Weber W.A., Modak S. Biodistribution and Dosimetry of 18F-Meta-Fluorobenzylguanidine: A First-in-Human PET/CT Imaging Study of Patients with Neuroendocrine Malignancies. J Nucl Med. 2018;59(1):147–53. doi:10.2967/jnumed.117.193169.; Sun L., Zhang B., Peng R. Diagnostic Performance of 18F-FDG PET(CT) in Bone-Bone Marrow Involvement in Pediatric Neuroblastoma: A Systemic Review and Meta-Analysis. Contrast Media Mol Imaging. 2021;2021:8125373. doi:10.1155/2021/8125373.; Ouvrard E., Kaseb A., Poterszman N., Porot C., Somme F., Imperiale A. Nuclear medicine imaging for bone metastases assessment: what else besides bone scintigraphy in the era of personalized medicine? Front Med (Lausanne). 2024;10:1320574. doi:10.3389/fmed.2023.1320574.; Wang Y., Xu Y., Kan Y., Wang W., Yang J. Diagnostic Value of Seven Different Imaging Modalities for Patients with Neuroblastic Tumors: A Network Meta-Analysis. Contrast Media Mol Imaging. 2021;2021:5333366. doi:10.1155/2021/5333366.; Melzer H.I., Coppenrath E., Schmid I., Albert M.H., von Schweinitz D., Tudball C., Bartenstein P., Pfluger T. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38(9):1648–58. doi:10.1007/s00259-011-1843-8.; Xia J., Zhang H., Hu Q., Liu S.Y., Zhang L.Q., Zhang A., Zhang X.L., Wang Y.Q., Liu A.G. Comparison of diagnosing and staging accuracy of PET (CT) and MIBG on patients with neuroblastoma: Systemic review and meta-analysis. J Huazhong Univ Sci Technolog Med Sci. 2017;37(5):649–60. doi:10.1007/s11596-017-1785-x.; Chambers G., Frood R., Patel C., Scarsbrook A. 18F-FDG PET-CT in paediatric oncology: established and emerging applications. Br J Radiol. 2019;92(1094):20180584. doi:10.1259/bjr.20180584.; Sharp S.E., Shulkin B.L., Gelfand M.J., Salisbury S., Furman W.L. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50(8):1237–43. doi:10.2967/jnumed.108.060467.; Masselli G., Casciani E., De Angelis C., Sollaku S., Gualdi G. Clinical application of 18F-DOPA PET/TC in pediatric patients. Am J Nucl Med Mol Imaging. 2021;11(2):64–76. PMID: 34079636.; Park J.R., Bagatell R., Cohn S.L., Pearson A.D., Villablanca J.G., Berthold F., Burchill S., Boubaker A., McHugh K., Nuchtern J.G., London W.B., Seibel N.L., Lindwasser O.W., Maris J.M., Brock P., Schleiermacher G., Ladenstein R., Matthay K.K., Valteau-Couanet D. Revisions to the International Neuroblastoma Response Criteria: A Consensus Statement From the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2017;35(22):2580–7. doi:10.1200/JCO.2016.72.0177.; https://journal.nodgo.org/jour/article/view/1103

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 67, № 2 (2023); 126-133 ; Доклады Национальной академии наук Беларуси; Том 67, № 2 (2023); 126-133 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1120/1119; Sehn, L. H. Diffuse Large B-Cell Lymphoma / L. H. Sehn, G. N. Salles // Engl. J. Med. – 2021. – Vol. 384, N 9. – P. 842–858. https://doi.org/10.1056/NEJMra2027612; A guide to Hodgkin and non-Hodgkin lymphomas: similarities and differences / F. Holdsworth [et al.] // Br. J. Nurs. – 2021. – Vol. 23, N 30. – P. 16–22. https://doi.org/10.12968/bjon.2021.30.17.S16; Intensive conventional chemotherapy (ACVBP regimen) compared with standard CHOP for poor-prognosis aggressive non-Hodgkin lymphoma / Н. Tilly [et al.] // Blood. – 2003. – Vol. 102, N 13. – Р. 4284–4289. https://doi.org/10.1182/ blood-2003-02-0542; CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group / M. Pfreundschuh [et al.] // Lancet. Oncol. – 2011. – Vol. 12, N 11. – P. 1013–1022. https://doi.org/10.1016/S1470-2045(11)70235-2; Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60) / M. Pfreundschuh [et al.] // Lancet. Oncol. – 2008. – Vol. 9, N 2. – P. 105–116. https://doi.org/10.1016/s1470-2045(08)70002-0; Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study / M. Crump [et al.] // Blood. – 2017. – Vol. 130, N 16. – P. 1800–1808. https://doi.org/10.1182/blood-2017-03-769620; Optimal timing and criteria of interim PET in DLBCL: a comparative study of 1692 patients / J. J. Eertink [et al.] // Blood. Adv. – 2021. – Vol. 5, N 9. – P. 2375–2384. https://doi.org/10.1182/bloodadvances.2021004467; A Predictive model for aggressive non-Hodgkin’s lymphoma. The International non-Hodgkin’s lymphoma prognostic factors project / M. A. Shipp [et al.] // N. Engl. J. Med. – 1993. – Vol. 329. – P. 987–994. https://doi.org/10.1056/NEJM199309303291402; Cragg, M. S. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents / M. S. Cragg, M. J. Glennie // Blood. – 2004. – Vol. 103, N 7. – P. 2738–2743. https://doi.org/10.1182/blood-2003-06-2031; Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy / M. J. Maurer [et al.] // J. Clin. Oncol. – 2014. – Vol. 32, N 10. – P. 1066–1073. https://doi. org/10.1200/JCO.2013.51.5866; Phase I studies of interleukin (IL-2) and rituximab in B-cell non-Hodgkin’s lymphoma: IL-2 mediated natural killer cell expansion correlates with clinical response / W. L. Gluck [et al.] // Clin. Cancer. Res. – 2004. – Vol. 10, N 7. – P. 2253– 2264. https://doi.org/10.1158/1078-0432.ccr-1087-3; Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration – effect relationship / S. Dall’Ozzo [et al.] // Cancer. Res. – 2004. – Vol. 64, N 13. – P. 4664–4669. https://doi.org/10.1158/0008- 5472.CAN-03-2862; Combination immunotherapy of B-cell non-Hodgkin’s Lymphoma with rituximab and interleukin-2: a preclinical and phase I study / C. F. Eisenbeis [et al.] // Clin. Cancer Res. – 2004. – Vol. 10, N 18. – P. 6101–6110. https://doi.org/10.1158/1078- 0432.CCR-04-0525; Combination immunotherapy with rituximab and interleukin-2 in patients with relapsed or refractory follicular non-Hodgkin’s lymphoma / J. W. Friedberg [et al.] // Brit. J. Haemathol. – 2002. – Vol. 117, N 4. – P. 828–834. https://doi. org/10.1046/j.1365-2141.2002.03535.x; https://doklady.belnauka.by/jour/article/view/1120

  14. 14
  15. 15
    Academic Journal

    Πηγή: Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care; Vol 12, No 1 (2022); 19-30 ; Российский вестник детской хирургии, анестезиологии и реаниматологии; Vol 12, No 1 (2022); 19-30 ; 2587-6554 ; 2219-4061 ; 10.17816/psaic.20221

    Περιγραφή αρχείου: application/pdf

  16. 16
  17. 17
  18. 18
    Academic Journal

    Συνεισφορές: Институт инженерной физики и радиоэлектроники, Кафедра экспериментальной и инновационных технологий, Институт нанотехнологий, спектроскопии и квантовой химии, Кафедра экспериментальной физики и инновационных технологий

    Πηγή: Mol Ther Nucleic Acids
    Molecular Therapy: Nucleic Acids, Vol 9, Iss C, Pp 12-21 (2017)

    Συνδεδεμένο Πλήρες Κείμενο
  19. 19
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 64, № 4 (2019); 477-484 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 64, № 4 (2019); 477-484 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2019-64-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/558/456; Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F−: Activities and distribution in the [18F]FDG synthesis process / L. Bowden [et al.] // Appl. Radiat. Isot. – 2009. – Vol. 67, № 2. – P. 248–255. https://doi.org/10.1016/j.apradiso.2008.10.015; Позитронно-эмиссионная томография. Ч. 1: Характеристика метода. Получение радиофармпрепаратов / С. Д. Бринкевич [и др.] // Мед.-биол. проблемы жизнедеятельности. – 2013. – № 2 (10). – С. 129–137.; Monte Carlo simulation and radiometric characterization of proton irradiated [18F]H2O for the treatment of the waste streams originated from [18F]FDG synthesis process / R. Remetti [et al.] // Appl. Radiat. Isot. – 2011. – Vol. 69, № 7. – P. 1046–1051. https://doi.org/10.1016/j.apradiso.2011.02.008; Niobium sputtered Havar foils for the high-power production of reactive [18F]fluoride by proton irradiation of [18F]H2O targets / J. S. Wilson [et al.] // Appl. Radiat. Isot. – 2008. – Vol. 66, № 5. – P. 565–570.https://doi.org/10.1016/j.apradiso.2007.12.004; Cyclotron produced radionuclides: Operation and maintenance of gas and liquid targets / International atomic energy agency. – Vienna: IAEA, 2012 – 103 p. – (IAEA radioisotopes and radiopharmaceuticals. Series No. 4).; Chu, S. Y. F. The Lund/LBNL Nuclear Data Search [Electronic resource] / S. Y. F. Chu, L. P. Ekström, R. B. Firestone. – Mode of access: http://nucleardata.nuclear.lu.se/toi/ – Date of access: 18.12.2018.; Radionuclide impurities in [18F]F– and [18F]FDG for positron emission tomography / M. Kohler [et al.] // Appl. Radiat. Isot. – 2013. – Vol. 81. – P. 268–271. https://doi.org/10.1016/j.apradiso.2013.03.044; Quantification of the activity of tritium produced the routine synthesis of 18F fluorodeoxyglucose for positron emission tomography / C. Marshall [et al.] // J. Radiological Protection. – 2014. – Vol. 34, № 2. – P. 435–444. https://doi.org/10.1088/0952-4746/34/2/435; Evaluated Nuclear Data File [Electronic resource]. – Mode of access: https://www-nds.iaea.org/exfor/endf.htm – Date of access: 09.10.2018.; Долгоживущие радионуклиды при производстве [18F]фторхолина для ПЭТ-диагностики / П. В. Тылец [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. –2018. –Т. 54, №3. – С.359–368. https://doi.org/10.29235/1561-8331-2018-54-3-359-368; Обращение с водными радиоактивными отходами при производстве радиофармпрепаратов на основе 18F / В. О. Крот [и др.] // Вестн. Полоц. гос. ун-та. Сер. С, Фундаментальные науки. Физика – 2018. – № 4. – C. 128–134.; https://vestift.belnauka.by/jour/article/view/558

  20. 20
    Academic Journal

    Πηγή: Medical Visualization; Том 24, № 4 (2020); 133-145 ; Медицинская визуализация; Том 24, № 4 (2020); 133-145 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/977/633; Поп В.П., Рукавицин О.А. и др. Множественная миелома и родственные ей заболевания. 3-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2016. 224 с.; Сахин В.Т., Маджанова Е.Р., Крюков Е.В., Сотников А.В., Гордиенко А.В., Казаков С.П., Рукавицын О.А. Анемия при хронических заболеваниях: ключевые механизмы патогенеза у пациентов со злокачественными новообразованиями и возможные подходы к классификации. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2019; 12 (3): 344–349. https://doi.org/10.21320/2500-2139-2019-12-3-344-349; Rajkumar S., Kumar S. Multiple myeloma: diagnosis and treatment. Mayo Clin. Proc. 2016; 91 (1): 101–119. https://doi.org/10.1016/j.mayocp.2015.11.007.; Mariette X., Khalifa P., Ravaud P., Frija J., Laval-Jeantet M., Chastang C., Brouet J.C., Fermand J.P. Bone densitometry in patients with multiple myeloma. Am. J. Med. 1992; 6 (93): 595–598. https://doi.org/10.1016/0002-9343(92)90190-m .; Muchtar E., Dagan A., Robenshtok E., Shochat T., Oniashvili N., Amitai I., Raanani P., Magen H. Bone mineral density utilization in patients with newly diagnosed multiple myeloma. Hematological Oncology. 2017; 4 (35): 703–710. https://doi.org/10.1002/hon.2303; Durie B.G., Harousseau J.L., Miguel J.S., Bladé J., Barlogie B., Anderson K., Gertz M., Dimopoulos M., Westin J., Sonneveld P., Ludwig H., Gahrton G., Beksac M., Crowley J., Belch A., Boccadaro M., Cavo M., Turesson I., Joshua D., Vesole D., Kyle R., Alexanian R., Tricot G., Attal M., Merlini G., Powles R., Richardson P., Shimizu K., Tosi P., Morgan G., Rajkumar S.V.; International Myeloma Working Group. International uniform response criteria for multiple myeloma. Leukemia. 2006; 9 (20): 1467–1473. https://doi.org/10.1038/sj.leu.2404284; Троян В.Н., Рукавицын О.А., Крюков Е.В., Козырев С.В., Поп В.П., Симашова П.И., Сапельникова Э.Р., Дараган-Сущов И.Г. Возможности двухэнергетической рентгеновской абсорбциометрической денситометрии в мониторинге динамики лечения множественной миеломы. Военно-медицинский журнал. 2018; 339 (11): 58–59.; Крюков Е.В., Троян В.Н., Рукавицын О.А., Козырев С.В., Дараган-Сущов И.Г., Поп В.П., Алексеев С.А., Сапельникова Э.Р. Денситометрия как метод мониторинга при лечении больных множественной миеломой. Медицинская визуализация. 2018; 22 (5): 106–113. https://doi.org/10.24835/1607-0763-2018-5-106-113.; Bier G., Kloth C., Schabel C., Bongers M., Nikolaou K., Horger M. Vertebral lesion distribution in multiple myeloma-assessed by reduced-dose whole-body MDCT. Skeletal Radiol. 2016; 1 (45): 127–133. https://doi.org/10.1007/s00256-015-2268-4; Nanni C., Zamagni E., Farsad M., Castellucci P., Tosi P., Cangini D., Salizzoni E., Canini R., Cavo M., Fanti S. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur. J. Nuclear Med. Molec. Imaging. 2006; 5 (33): 525–531. https://doi.org/10.1007/s00259-005-0004-3; Durie B.G., Waxman A.D., D'Agnolo A., Williams C.M. Whole-Body 18F-FDG PET Identifies High-Risk Myeloma. J. Nuclear Med. 2002; 11 (43): 1457–1463.; https://medvis.vidar.ru/jour/article/view/977