Εμφανίζονται 1 - 20 Αποτελέσματα από 857 για την αναζήτηση '"ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ"', χρόνος αναζήτησης: 1,66δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Πηγή: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 308-311
    BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 308-311

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journal.asu.ru/bioasia/article/view/16351

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 60, № 2 (2024); 129-135 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 60, № 2 (2024); 129-135 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2024-60-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/879/739; Щукин, Е. Д. Коллоидная химия: учеб. для вузов / Е. Д. Щукин, А. В. Перцов, Е. А. Амелина. – 7-е изд., испр. и доп. – М.: Юрайт, 2023. – 444 с.; Можейко, Ф. Ф. Регулирование пенообразования поверхностно-активных веществ в растворах неорганических электролитов / Ф. Ф. Можейко [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2018. – Т. 54, № 1. – C. 37–45.; Ramos, J. Cationic polymer nanoparticles and nanogels: From synthesis to biotechnological applications / J. Ramos, J. Forcada, R. Hidalgo-Alvarez // Chem. Rev. – 2014. – Vol. 114. – P. 367–428.; Нанотехнология молекулярного наслаивания при антиадгезионной модификации волокон тканей / В. А. Волков [и др.] // Хим. волокна. – 2008. – № 2. – С. 34–40.; Авдохин, В. М. Основы обогащения полезных ископаемых: в 2 т. / В. М. Авдохин – М.: Изд-во Моск. гос. горного ун-та: Горная кн., 2008. – Т. 1: Обогатительные процессы. – 417 с.; Титков, С. Н. Технология и физико-химические особенности флотации водорастворимых минералов / С. Н. Титков // Обогащение руд. – 2002. – № 1. – С. 10–15.; Kronberg, B. Surface Chemistry of Surfactants and Polymers / B. Kronberg, K. Holmberg, B. Lindman. – Chichester, West Sussex: John Wiley & Sons, Inc., 2014. – 496 p.; Ritacco, H. Properties of Aqueous Solutions of Polyelectrolytes and Surfactants of Opposite Charge: Surface Tension, Surface Rheology, and Electrical Birefringence Studies / H. Ritacco, D. Kurlat, D. Langevin // J. Phys. Chem. B. – 2003. – Vol. 107, № 34. – P. 9146–9158.; Taylor, D. J. F. Polymer/surfactant interactions at the air/water interface / D. J. F.Taylor, R. K. Thomas, J. Penfold // Adv. Colloid Interface Sci. – 2007. – Vol. 132, № 2. – P. 69–110.; Critical Aggregation Concentration in Mixed Solutions of Anionic Polyelectrolytes and Cationic Surfactants / N. Jain [et al.] // Langmuir. – 2004. – Vol. 20. – P. 8496–8503.; Polymer-surfactant systems in bulk and at fluid interfaces / E. Guzmán [et al.] // Adv. Colloid Interface Sci. – 2016. – Vol. 233. – P. 38–64.; Noskov, B. A., Kinetics of adsorption from micellar solutions / B. A. Noskov // Adv. Colloid Interface Sci. – 2002. – Vol. 95, № 1. – P. 237–293.; Поверхностно-активные вещества и полимеры в водных растворах / К. Холмберг [и др.]. – М.: БИНОМ. Лаборатория знаний, 2007. – 528 с.; Jain, N. J. Study of Adsorbed Monolayers of a Cationic Surfactant and an Anionic Polyelectrolyte at the Air-Water Interface / N. J. Jain, P.-A. Albouy, D. Langevin // Langmuir. – 2003. – Vol. 19, № 14. – P. 5680–5690.; Pojjaźk, K. Effect of salt on the equilibrium and nonequilibrium features of polyelectrolyte/surfactant association / K. Pojjaźk, E. Bertalanits, R. Meźszaźros // Langmuir. – 2011. – Vol. 27, № 15. – P. 9139–9147.; https://vestichem.belnauka.by/jour/article/view/879

  14. 14
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 20 (2024); 116-122 ; Медицинский Совет; № 20 (2024); 116-122 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8757/7689; Notter RH. Lung surfactants: basic science and clinical applications. New York: Marcel Dekker; 2000. 464 p. Available at: https://doi.org/10.1201/9781482270426.; Bernhard W. Lung surfactant: Function and composition in the context of development and respiratory physiology. Ann Anat. 2016;208:146-150. https://doi.org/10.1016/j.aanat.2016.08.003.; Hamm H, Fabel H, Bartsch W. The surfactant system of the adult lung: physiology and clinical perspectives. Clin Investig. 1992;70(8):637-657. https://doi.org/10.1007/bf00180279.; Clements JA, Avery ME. Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med. 1998;157(4):59-66. https://doi.org/10.1164/ajrccm.157.4.nhlb1-1.; Johansson J, Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997;244(3):675-693. https://doi.org/10.1111/j.1432-1033.1997.00675.x.; Goss V, Hunt AN, Postle AD. Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim Biophys Acta. 2013;1831(2):448-458. https://doi.org/10.1016/j.bbalip.2012.11.009.; Van Golde LM, Batenburg JJ, Robertson B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev. 1988;68(2):374-455. https://doi.org/10.1152/physrev.1988.68.2.374.; Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta. 1998;1408(2-3):90-108. https://doi.org/10.1016/s0925-4439(98)00061-1.; Perez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta. 2008;1778(7-8):1676-1695. https://doi.org/10.1016/j.bbamem.2008.05.003.; Carreto-Binaghi LE, Aliouat el M, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res. 2016;17(1):66. https://doi.org/10.1186/s12931-016-0385-9.; King BA, Kingma PS. Surfactant protein D deficiency increases lung injury during endotoxemia. Am J Respir Cell Mol Biol. 2011;44(5):709-715. https://doi.org/10.1165/rcmb.2009-0436oc.; Гасанов СШ, Мирзоева ИА, Алджанова СБ, Гасымова ЕА, Гулиева ГМ. Современные представления о функциях белков легочного сурфактанта. Медицинские новости. 2019;293(2):44-46. Режим доступа: https://www.mednovosti.by/journal.aspx?article=8599.; Wright JR. Immunomodulatory functions of surfactant. Physiol Rev. 1997;77(4):931-962. https://doi.org/10.1152/physrev.1997.77.4.931.; Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 1999;160(6):1843-1850. https://doi.org/10.1164/ajrccm.160.6.9901117.; Розенберг ОА. Препараты легочного сурфактанта при острых и хронических заболеваниях легких (Часть I). Общая реаниматология. 2014;10(4):51-73. https://doi.org/10.15360/1813-9779-2014-4-51-73.; Morley CJ, Bangham AD, Miller N, Davis JA. Dry artificial lung surfactant and its effect on very premature babies. Lancet. 1981;1(8211):64-68. https://doi.org/10.1016/s0140-6736(81)90002-7.; Deshpande S, Suryawanshi P, Ahya K, Maheshwari R, Gupta S. Surfactant Therapy for Early Onset Pneumonia in Late Preterm and Term Neonates Needing Mechanical Ventilation. J Clin Diagn Res. 2017;11(8):SC09-SC12. https://doi.org/10.7860/jcdr/2017/28523.10520.; Sinha SK, Lacaze-Masmonteil T, Valls i Soler A, Wiswell TE, Gadzinowski J, Hajdu J et al. A multicenter, randomized, controlled trial of lucinactant versus poractant alfa among very premature infants at high risk for respiratory distress syndrome. Pediatrics. 2005;115(4):1030-1038. https://doi.org/10.1542/peds.2004-2231.; Polin RA, Carlo WA, Papile L-A, Tan R, Kumar P, Benitz W et al. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156-163. https://doi.org/10.1542/peds.2013-3443.; Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology. 2019;115(4):432-450. https://doi.org/10.1159/000499361.; Jobe A, Ikegami M. Surfactant for the treatment of respiratory distress syndrome. Am Rev Respir Dis. 1987;136(5):1256-1275. https://doi.org/10.1164/ajrccm/136.5.1256.; Engle WA, Stark AR, Adamkin DH, Batton DG, Bell EF, Bhutani VK et al. Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics. 2008;121(2):419-432. https://doi.org/10.1542/peds.2007-3283.; Розенберг ОА. Легочный сурфактант и его применение при заболеваниях легких. Общая реаниматология. 2007;3(1):66-77. https://doi.org/10.15360/1813-9779-2007-1-66-77.; Затовка ГН, Дугинова СА, Сафаров АА, Нечаева МВ, Блауберг ЕН. Лечение респираторного дистресс-синдрома у новорожденных с применением сурфактанта BL. Анестезиология и реаниматология. 2006;(1):38-43. Режим доступа: https://biosurf.ru/upload/iblock/5ff/5ff2ca83e794d2141406a5163874d03b.pdf.; Eworuke E, Major JM, Gilbert McClain LI. National incidence rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS cause-specific factors in the United States (2006-2014). J Crit Care. 2018;47:192-197. https://doi.org/10.1016/j.jcrc.2018.07.002.; Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818-824. https://doi.org/10.1164/ajrccm.149.3.7509706.; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-2533. https://doi.org/10.1001/jama.2012.5669.; Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4):2000607. https://doi.org/10.1183/13993003.00607-2020.; Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-1349. https://doi.org/10.1056/nejm200005043421806.; Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147-163. https://doi.org/10.1146/annurev-pathol-011110-130158.; Brackenbury AM, Malloy JL, McCaig LA, Yao LJ, Veldhuizen RA, Lewis JF. Evaluation of alveolar surfactant aggregates in vitro and in vivo. Eur Respir J. 2002;19(1):41-46. https://doi.org/10.1183/09031936.02.00211202.; Gunther A, Kalinowski M, Rosseau S, Seeger W. Surfactant incorporation markedly alters mechanical properties of a fibrin clot. Am J Respir Cell Mol Biol. 1995;13(6):712-718. https://doi.org/10.1165/ajrcmb.13.6.7576709.; Baker CS, Evans TW, Randle BJ, Haslam PL. Damage to surfactant-specific protein in acute respiratory distress syndrome. Lancet. 1999;353(9160):1232-1237. https//doi.org/10.1016/s0140-6736(98)09449-5.; Gregory TJ, Longmore WJ, Moxley MA, Whitsett JA, Reed CR, Fowler AA 3rd et al. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest. 1991;88(6):1976-1981. https://doi.org/10.1172/jci115523.; Gunther A, Schmidt R, Harodt J, Schmehl T, Walmrath D, Ruppert C et al. Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: impact on biophysical and biochemical surfactant properties. Eur Respir J. 2002;19(5):797-804. https://doi.org/10.1183/09031936.02.00243302.; Avdeev SN, Trushenko NV, Chikina SY, Tsareva NA, Merzhoeva ZM, Yaroshetskiy AI et al. Beneficial effects of inhaled surfactant in patients with COVID-19-associated acute respiratory distress syndrome. Respir Med. 2021;185:106489. https://doi.org/10.1016/j.rmed.2021.106489.; Piva S, DiBlasi RM, Slee AE, Jobe AH, Roccaro AM, Filippini M et al. Surfactant therapy for COVID-19 related ARDS: a retrospective case-control pilot study. Respir Res. 2021;22(1):20. https://doi.org/10.1186/s12931-020-01603-w.; Veldhuizen RAW, Zuo YY, Petersen NO, Lewis JF, Possmayer F. The COVID-19 pandemic: a target for surfactant therapy? Expert Rev Respir Med. 2021;15(5):597-608. https://doi.org/10.1080/17476348.2021.1865809.; Авдеев СН, Адамян ЛВ, Алексеева ЕИ, Багненко СФ, Баранов АА, Баранова НН. Профилактика, диагностика и лечение новой коронавирус- ной инфекции (COVID-19): временные методические рекомендации. 2022. 260 с. Режим доступа: https://library.mededtech.ru/rest/documents/COVID-19_V17.; Рута АВ, Лучинина ЕВ, Шелехова ТВ, Зайцева МР, Лучинин ЕА, Бонцевич РА. Влияние преднизолона на биомаркеры воспаления при интерстициальной пневмонии, сопряженной с коронавирусной инфекцией. Актуальные проблемы медицины. 2022;45(2):129-140. https://doi.org/10.52575/2687-0940-2022-45-2-129-140.

  15. 15
    Academic Journal

    Συνεισφορές: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the government assignment No. FEWG-2024-0003 “Biocatalyticsistems based on microorganism cells, subcellular structures, and enzymes in combination with nanomaterials.”, Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках государственного задания № FEWG-2024-0003 «Биокаталитические системы на основе клеток микроорганизмов, субклеточных структур и ферментов в сочетании с наноматериалами».

    Πηγή: Fine Chemical Technologies; Vol 19, No 5 (2024); 418-428 ; Тонкие химические технологии; Vol 19, No 5 (2024); 418-428 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2159/2062; https://www.finechem-mirea.ru/jour/article/view/2159/2063; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2159/1454; Alizadeh-Sani M., Hamishehkar H., Khezerlou A., Azizi-Lalabadi M., Azadi Y., Nattagh-Eshtivani E. Bioemulsifiers Derived from Microorganisms: Applications in the Drug and Food Industry. Adv. Pharm. Bull. 2018;8(2):191–199. https://doi.org/10.15171/apb.2018.023; Adu S.A., Naughton P.J., Marchant R., Banat I.M. Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics. 2020;12(11):1099. https://doi.org/10.3390/pharmaceutics12111099; Fenibo E.O., Ijoma G.N., Selvarajan R., Chikere C.B. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms. 2019;7(11):581. https://doi.org/10.3390/microorganisms7110581; Pasternak G., Askitosari T.D., Rosenbaum M.A. Biosurfactants and Synthetic Surfactants in Bioelectrochemical Systems: A Mini-Review. Front. Microbiol. 2020;11:358. https://doi.org/10.3389/fmicb.2020.00358; Kumar A., Singh S.K., Kant C., Verma H., Kumar D., Singh P.P., et al. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants. 2021;10(9):1472. https://doi.org/10.3390/antiox10091472; Gouthami K., Mallikarjunaswamy A.M.M., Bhargava R.N., Ferreira L.F.R., Rahdar A., Saratale G.D., Bankole P.O., Mulla S.I. Microbial Biodegradation and Biotransformation of Petroleum Hydrocarbons: Progress, Prospects, and Challenges. In: Genomics Approach to Bioremediation. Genomics Approach to Bioremediation: Principles, Tools, and Emerging Technologies. 2023. P. 229–247. https://doi.org/10.1002/9781119852131.ch13; Eras-Muñoz E., Farré A., Sánchez A., Font X., Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered. 2022;13(5):12365–12391. https://doi.org/10.1080/21655979.2022.2074621; Claus S., Jenkins Sánchez L., Van Bogaert I.N.A. The role of transport proteins in the production of microbial glycolipid biosurfactants. Appl. Microbiol. Biotechnol. 2021;105(5): 1779–1793. https://doi.org/10.1007/s00253-021-11156-7; Sobrinho H.B.S., Luna J.M., Rufino R.D., Porto A.L.F., Sarubbo L.A. Biosurfactants: Classification, properties and environmental applications. In: Recent Developments in Biotechnology. 1st ed. Houston, USA: Studium Press LLC; 2013. P. 303–330.; Филонов А.Е., Кошелева И.А., Самойленко В.А., Шкидченко А.Н. и др. Биопрепарат для очистки почв от загрязнений нефтью и нефтепродуктами, способ его получения и применения: пат. РФ № 2378060. Заявка № 200712540313; заявл. 05.07.2007; опубл. 10.01.2010.; Delegan Y., Valentovich L., Petrikov K., Vetrova A., Akhremchuk A., Akimov V. Complete Genome Sequence of Rhodococcus erythropolis X5, a Psychrotrophic Hydrocarbon-Degrading Biosurfactant-Producing Bacterium. Microbiol. Resour. Announc. 2019;8(48). https://doi.org/10.1128/mra.01234-19; Каримова В.Т., Дмитриевна Е.Д., Нечаева И.А. Влияние гуминовых веществ торфов Тульской области на рост микроорганизмов деструкторов нефти Rhodococcus erythropolis S67 и Rhodococcus erythropolis X5. Известия Тульского государственного университета. Естественные науки. 2017;2:60–68.; Luong T.M., Ponamoreva O.N., Nechaeva I.A., Petrikov K.V., Delegan Ya.A., Surin A.K., Linklater D., Filonov A.E. Characterization of biosurfactants produced by the oildegrading bacterium Rhodococcus erythropolis S67 at low temperature. World J. Microbiol. Biotechnol. 2018;34(2):20. https://doi.org/10.1007/s11274-017-2401-8; Лыонг Т.М., Нечаева И.А., Петриков К.В., Пунтус И.Ф., Понаморева О.Н. Бактерии-нефтедеструкторы рода Rhodococcus – потенциальные продуценты биосурфактантов. Известия вузов. Прикладная химия и биотехнология. 2016;6(1–16):50–60.; Леонова Т.И., Акатова Е.В., Пунтус И.Ф. Выделение гликолипидных биосурфактантов, продуцируемых бактериями Rhodococcus sp. 3-2, методом экстракции. Известия Тульского государственного университета. Естественные науки. 2021;(2):33–41. https://doi.org/10.24412/2071-6176-2021-2-33-41; Yang X., Tan F., Zhong H., Liu G., Ahmad Z., Liang Q. Sub-CMC solubilization of n-alkanes by rhamnolipid biosurfactant: the Influence of rhamnolipid molecular structure. Colloids Surf. B: Biointerfaces. 2020;192:111049. https://doi.org/10.1016/j.colsurfb.2020.111049; Лыонг Т.М., Нечаева И.А., Петриков К.В., Филонов А.Е., Понаморева О.Н. Структура и физико-химические свойства гликолипидных биосурфактантов, продуцируемых бактериями-нефтедеструкторами Rhodococcus sp. X5. Известия вузов. Прикладная химия и биотехнология. 2017;7(2–21): 72–79. https://doi.org/10.21285/2227-2925-2017-7-2-72-79; Kuyukina M.S., Ivshina I.B., Philp J.C., Christofi N., Dunbar S.A., Ritchkova M.I. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J. Microbiol. Methods. 2001;46(2):149–156. https://doi.org/10.1016/S0167-7012(01)00259-7; Ratnikava M.S., Charniauskaya M.I., Bukliarevich H.A., Myamin U.Y., Meloni F., Lussu R., Titok M.A. Rhodococcus erythropolis strain A29-K1 – an effective producer of surface active compounds. In: Biotechnology of Microorganisms: Proc. International Scientific-Practical Conference. 2019. P. 163–165.; Petrikov K., Delegan Y., Surin A., Ponamoreva O., Puntus I., Filonov A., Boronin A. Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure. Process Biochem. 2013; 48(5–6):931–935. https://doi.org/10.1016/j.procbio.2013.04.008; White D.A., Hird L.C., Ali S.T. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J. Appl. Microbiol. 2013;115(3):744–755. https://doi.org/10.1111/jam.12287; Yin H., Qiang J., Jia Y., Ye J., Peng H., Qin H., Zhang N., He B. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem. 2009;44(3):302–308. https://doi.org/10.1016/j.procbio.2008.11.003; Balan S.S., Mani P., Kumar C.G., Jayalakshmi S. Structural characterization and biological evaluation of Staphylosan (dimannooleate), a new glycolipid surfactant produced by a marine Staphylococcus saprophyticus SBPS-15. Enzyme Microb. Technol. 2019;120:1–7. https://doi.org/10.1016/j.enzmictec.2018.09.008; Tian Z.J., Chen L.Y., Li D.H., Pang H.Y., Wu S., Liu J.B., Huang L. Characterization of a Biosurfactant-producing Strain Rhodococcus sp. HL-6. Romanian Biotechnol. Lett. 2016;21(4):11650–11659.; Philp J.C.M.S., Kuyukina M., Ivshina I., Dunbar S., Christofi N., Lang S., Wray V. Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl. Microbiol. Biotechnol. 2002;59(2):318–324. https://doi.org/10.1007/s00253-002-1018-4; Tuleva B., Cohen R., Stoev G., Stoineva I. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J. Appl. Microbiol. 2008;104(6):1703–1710. https://doi.org/10.1111/j.1365-2672.2007.03680.x; Wang Y., Nie M., Diwu Z., Lei Y., Li H., Bai X. Characterization of trehalose lipids produced by a unique environmental isolate bacterium Rhodococcus qingshengii strain FF. J. Appl. Microbiol. 2019;127(5):1442–1453. https://doi.org/10.1111/jam.14390; Дремук А.П., Киенская К.И., Авраменко Г.В., Назаров В.В., Белова И.А. Особенности солюбилизирующего действия растворов бинарных и тройных смесей поверхностноактивных веществ на основе алкилполиглюкозида. Известия вузов. Прикладная химия и биотехнология. 2017;7(1): 49–55. https://doi.org/10.21285/2227-2925-2017-7-1-50-56; Заруева Е.С., Нечаева И.А., Понаморева О.Н. Солюбилизация н-гексадекана в минеральной водной среде в присутствии поверхностно-активных веществ. Известия Тульского государственного университета. Естественные науки. 2020;(1):3–12.; Harendra S., Vipulanandan C. Effects of surfactants on solubilization of perchloroethylene (PCE) andtrichloroethylene (TCE). Ind. Eng. Chem. Res. 2011;50(9):5831–5837. https://doi.org/10.1021/ie102589e; Rodrigues R., Betelu S., Colombano S., Masselot G., Tzedakis T., Ignatiadis I. Influence of temperature and surfactants on the solubilization of hexachlorobutadiene and hexachloroethane. J. Chem. Eng. Data. 2017;62(10): 3252–3260. https://doi.org/10.1021/acs.jced.7b00320; Li S., Pi Y., Bao M., Zhang C., Zhao D., Li Y., Sun P., Lu J. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons. Marine Pollut. Bull. 2015;101(1):219–225. https://doi.org/10.1016/j.marpolbul.2015.09.059; Zhong H., Liu Y., Liu Z., Jiang Y., Tan F., Zeng G., Yuan X., Yan M., Niu Q., Liang Y. Degradation of pseudo-solubilized and mass hexadecane by a Pseudomonas aeruginosa with treatment of rhamnolipid biosurfactant. Int. Biodeterior. Biodegradation. 2014;94:152–159. https://doi.org/10.1016/j.ibiod.2014.07.012; Yang Z., Cui J., Yin B. Solubilization of Nitrogen Heterocyclic Compounds Using Different Surfactants. Water, Air, Soil Pollut. 2018;229(9):304. https://doi.org/10.1007/s11270-018-3917-8

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20