Showing 1 - 20 results of 101 for search '"ПОВЕРХНОСТНАЯ АКТИВНОСТЬ"', query time: 0.61s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was supported by the RUDN University Strategic Academic Leadership Program, Russia, and the Research Council of Ferdowsi University of Mashhad, Iran., Публикация выполнена при поддержке Программы стратегического академического лидерства РУДН, Россия, и Исследовательского совета Мешхедского университета имени Фирдоуси, Иран.

    Source: Fine Chemical Technologies; Vol 18, No 6 (2023); 559-571 ; Тонкие химические технологии; Vol 18, No 6 (2023); 559-571 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2014/1983; https://www.finechem-mirea.ru/jour/article/view/2014/1984; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2014/1128; Sindhwani S., Chan W.C.W. Nanotechnology for modern medicine: next step towards clinical translation. J. Intern. Med. 2021;290(3):486–498. https://doi.org/10.1111/joim.13254; Cao Y., Li S., Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol. Mech. Methods. 2021;31(1):1–17. https://doi.org/10.1080/15376516.2020.1828521; Hsu J.C., Nieves L.M., Betzer O., Sadan T., Noël P.B., Popovtzer R., Cormode D.P. Nanoparticle contrast agents for X-ray imaging applications. WIREs Nanomed. Nanobiotechnol. 2020;12(2):e1642. https://doi.org/10.1002/wnan.1642; Temizel-Sekeryan S., Hicks A.L. Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resour. Conserv. Recycl. 2020;156:104676. https://doi.org/10.1016/j.resconrec.2019.104676; Makhlouf S.A. Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 2002;246(1–2):184–190. https://doi.org/10.1016/S0304-8853(02)00050-1; Wang R.M., Liu C.M., Zhang H.Z., Chen C.P., Guo L., Xu H.B., Yang S.H. Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties. Appl. Phys. Lett. 2004;85:2080–2082. https://doi.org/10.1063/1.1789577; Rashad M., Rüsing M., Berth G., Lischka K., Pawlis A. CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. J. Nanomater. 2013;2013:Article ID 714853. https://doi.org/10.1155/2013/714853; Lanje A.S., Ningthoujam R.S., Sharma S.J., Pode R.B., Vatsa R.K. Luminescence properties of Sn1–xFexO2 nanoparticles. Int. J. Nanotechnol. 2010;7(9–12):979–988. https://doi.org/10.1504/IJNT.2010.034703; Duan X., Huang Y., Agarwal R., Lieber C.M. Single-nanowire electrically driven lasers. Nature. 2003;421:241–245. https://doi.org/10.1038/nature01353; Seo Hee J.U., Hong S.K., Jang H.C., Kang Y.C. Fine size cobalt oxide powders prepared by spray pyrolysis using two types of spray generators. J. Ceramic Soc. Japan. 2007;115(1344):507–510. https://doi.org/10.2109/jcersj2.115.507; Lou X.W., Deng D., Lee J.Y., Feng J., Archer L.A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008;20(2):258–262. https://doi.org/10.1002/adma.200702412; Li Y.G., Tan B., Wu Y.Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008;8(1):265–270. https://doi.org/10.1021/nl0725906; Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989;89(8):1861–1873. https://doi.org/10.1021/cr00098a010; Hagfeldt A., Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995;95(1):49–68. https://doi.org/10.1021/cr00033a003; Zhu X., Bai B., Zhou B., Ji S. Co3O4 nanoparticles with different morphologies for catalytic removal of ethyl acetate. Catal. Commun. 2021;156:106320. https://doi.org/10.1016/j.catcom.2021.106320; Nguyen H., El-Safty S.A. Meso- and macroporous Co3O4 nanorods for effective VOC Gas sensors. J. Phys. Chem. C. 2011;115(17):8466–8474. https://doi.org/10.1021/jp1116189; Li L.L., Chu Y., Liu Y., Song J.L., Wang D., Du X.W. A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 2008;62(10–11):1507–1510. https://doi.org/10.1016/j.matlet.2007.09.012; Li W.Y., Xu L.N., Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 2005;15(5):851–857. https://doi.org/10.1002/adfm.200400429; Xu R., Hua C.Z. Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95°C. J. Phys. Chem. B. 2003;107(4):926–930. https://doi.org/10.1021/jp021094x; Sun X.M., Li Y.D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004;43(5):597–601. https://doi.org/10.1002/anie.200352386; Sun X.M., Liu J.F., Li Y.D. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 2006;12(7):2039–2047. https://doi.org/10.1002/chem.200500660; Hu L.H., Peng Q., Li Y.D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Amer. Chem. Soc. 2008;130(48):16136–16137. https://doi.org/10.1021/ja806400e; Ковальчукова О.В., Бостанабад А.Ш., Лобанов Н.Н., Рудакова Т.А., Страшнов П.В., Скаржевский Ю.А., Зюзин И.Н. Алкил- и бензилнитрозогидроксиламинаты меди(II) как прекурсоры для синтеза микро- и наноразмерных оксидов меди(I) различной морфологии. Неорган. материалы. 2014;50(11):1183–1188. https://doi.org/10.7868/S0002337X14110098; Absalan Y., Fortalnova E.A., Lobanov N.N., Dobrokhotova E.V., Kovalchukova O.V. Ti (IV) complexes with some diphenols as precursors for TiO2 nano-sized catalysts. J. Organomet. Chem. 2018;859:80–91. https://doi.org/10.1016/j.jorganchem.2018.02.002; Absalan Y., Kovalchukova O.V., Bratchikova I.G., Lobanov N.N. Novel synthesis method for photo-catalytic system based on some 3d-metal titanates. J. Mater. Sci.: Mater. Electron. 2017;28(23):18207–18219. https://doi.org/10.1007/s10854-017-7769-6; Absalan Y., Ryabov M.A., Kovalchukova O.V. Thermal decomposition of bimetallic titanium complexes: A new method for synthesizing doped titanium nano-sized catalysts and photocatalytic application. Mater. Sci. Eng. C. 2019;97:813–826. https://doi.org/10.1016/j.msec.2018.12.077; Absalan Y., Gholizadeh M., Butusov L., Bratchikova I., Kopylov V., Kovalchukova O. Titania nanotubes (TNTs) prepared through the complex compound of gallic acid with titanium; examining photocatalytic degradation of the obtained TNTs. Arab. J. Chem. 2020;13(10):7274–7288. https://doi.org/10.1016/j.arabjc.2020.02.023; Алабада Р., Авраменко О.В., Исаева Н.Ю., Ковальчукова О.В., Абсалан Я. Комплексные соединения переходных металлов с гидроксиароматическими карбоновыми кислотами как прекурсоры для синтеза наноразмерных оксидов металлов. Изв. АН. Сер. хим. 2020;(5):934–940. https://doi.org/10.1007/s11172-020-2851-2; Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия; 1970. 360 с.; Климова В.А. Основные микрометоды анализа органических соединений. М.: Химия; 1975. 224 с; Chernyak S.A., Suslova E.V., Ivanov A.S., Egorov A.V., Maslakov K.I., Savilov S.V., Lunin V.V. Co catalysts supported on oxidized CNTs: Evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2016;523:221–229. https://doi.org/10.1016/j.apcata.2016.06.012; Shrestha S., Wang B., Dutta P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020;279:102162. https://doi.org/10.1016/j.cis.2020.102162; Sathyamurthy R., Kabeel A.E., Balasubramanian M., Devarajan M., Sharshir S.W., Manokar A.M. Experimental study on enhancing the yield from stepped solar still coated using fumed silica nanoparticle in black paint. Mater. Lett. 2020;272:127873. https://doi.org/10.1016/j.matlet.2020.127873; Arani R.P., Sathyamurthy R., Chamkha A., Kabeel A.E., Deverajan M., Kamalakannan K., Balasubramanian M., Manokar A.M., Essa F., Saravanan A. Effect of fins and silicon dioxide nanoparticle black paint on the absorber plate for augmenting yield from tubular solar still. Environ. Sci. Pollut. Res. 2021;28(26):35102–35112. https://doi.org/10.1007/s11356-021-13126-y

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Contributors: ELAKPI

    Source: Innovative Biosystems and Bioengineering, Vol 2, Iss 1 (2018)
    Наукові вісті Національного технічного університету України "Київський політехнічний інститут", Vol 0, Iss 6, Pp 7-13 (2017)
    Innovative Biosystems and Bioengineering; Том 2, № 1 (2018); 57-63

    File Description: application/pdf

  10. 10
    Academic Journal

    Source: Mining Science and Technology (Russia); Vol 5, No 4 (2020); 297-306 ; Горные науки и технологии; Vol 5, No 4 (2020); 297-306 ; 2500-0632

    File Description: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/249/215; https://mst.misis.ru/jour/article/view/249/223; Хан Г. А., Габриелова Л. И., Власова Н. С. Флотационные реагенты и их применение. М.: Недра; 1986. 271 с.; Богданов О. С., Гольман А. М., Каковский И. А. и др. Физико-химические основы теории флотации. М.: Наука; 1983. 264 с.; Конев В. А. Флотация сульфидов. М.: Недра; 1985. 262 с.; Соложенкин П. М., Кубак Д. А., Петухов В. Н. Компьютерное моделирование сульфгидрильных соединений с гидроксильными радикалами и прогноз их в качестве флотореагентов. Вестник МГТУ им.Г.И. Носова. 2016;14(1):26-33.; Справочник по обогащению руд. Том. 2. Основные процессы. Под ред. О. С. Богданова. М.: Недра; 1983. С. 270–280.; Lewis A. Tecflote-novel chemistry for new sulfide collectors. A selective collectors at natural pH for pyrite rich ores and ores containing sulfides, gold, silver and platinum group elements. In: XXIX IMPC. Moscow; 2018. P. 244.; Tercero N., Nagaraj D. R., Farinato R. A critical overview of dithiophosphinate and dithiophosphate interactions wits base metal sulfides and precious metals. Mining, Metal. and Explor. 2019;(1):99-110.; Solozhenkin P., Ibragimova O., Emelyanenko E., Yagudina J. Current understanding of thiol collector adsorption mechanismon tennantite using computational docking and FTIR-techniques. In: XXIX IMPC. Moscow; 2018. P. 20.; Miki H., Hirajima T., Muta Y. et al. Investigation of reagents for selective flotation on chalcopyrite and molybdenite. In: XXIX IMPC. Moscow; 2018. Р.663.; Karimain A., Rezaei B., Masoumi A. The effect mixed collectors in the rougher flotation of sungun copper. Life Science Journal. 2013;10(6s):268–272.; Solozhenkin P. M., Krausz S. Stady of sulfhydric flotation reagents isomery. In: XV Balkan Mineral Processing Congress. Bulgaria. 2013;(1):429-432.; Lui G., Xiao J., Yang X., Zhong H. A review of flotation collectors: fundamentals to practice. In: XXVIII IMPC. Canada, Quebec; 2016. P. 206.; New technologies to recover gold and silver from ores and concentrates incell-type column / P.N. Hreniuc, I. Pasca, O. Stevan, G. Badescu // XV Balkan Mineral Processing Congress. Bulgaria. 2013. Vol 1. P. 466–475.; Рябой В. И., Шепета Е. Д. Влияние поверхностной активации и гидрофобизирующих свойств диалкилдитиофосфатов на флотацию медных мышьяксодержащих руд. Обогащение руд. 2016;4(364):29–34.; Ryaboy V. I., Shepeta E. D., Ryaboy I. V. Applying Reagents Containing the Thioamide Group in the Flotation of Copper-Arsenopyrite Ores. In: XXIX IMPC. Moscow; 2018. P. 692.; Саматова Л. А., Рябой В. И., Шепета Е. Д. Повышение извлечения цветных и благородных металлов с использованием аэрофлотов при флотации шеелит-сульфидных руд. ФТПРПИ. 2013;(6):151-157.; Рябой В. И., Левковец С. Е., Ефремова Г. А., Коваль О. Е. Новый диалкилдитимофосфатный собиратель для флотации серебросодержащих руд. Горные науки и технологии. 2018;(3):45–53. DOI:10.17073/2500-0632-2018-3-45-53; Kondratyev S. A. Estimation of Reagents-Collectors Flotation Activity. Обогащение руд. 2010;(4):24-30.; Pan Lei, Jung Sunghwan, Yoon Rol-Hoan. A fundamental study on the collector in the kinetics of bubbleparticle interaction. International Journal of Mineral Processing. 2012;37-41:106-109. DOI:10.1016/j.minpro.2012.02.001; Pan Lei, Yoon Rol-Hoan. Direct measurement of hydrodynamic and surface forces in bubble-particle interactions. In: XXVII IMPC. Santiago, Chile. 2014;(1):88.; Tan Y. H., Rafiei A. A., et. al. Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers. International Journal of Mineral Processing. 2013;119:1-5.; Chu P., Finch J. Break-up in formation of small bubbles: Salts and frothers. In: XXVII IMPC. Santiago, Chile; 2014. Р. 95.; Kondratyev S. A., Ryaboy V. I. Influence of desorbed species of xanthates and dialkyldithiophosphates on their collecting ability. In: XXVIII IMPC. Quebec, Canada; 2016. P. 133.; Tan Y. H., Finch J. A. Surfactant structure-property relationship: Aliphatic alcohols and bubble rise velocity. In: XV Balkan Mineral Processing Congress. Bulgaria; 201. P. 423-428.; Ignatkina V. A., Dyachkov F. G., Bocharov V. A. Collecting properties of diisobutyl dithiophosphinate in sulfide minerals flotation from sulfide ore. Journal of mining science. 2013;49(5):795-802.; https://mst.misis.ru/jour/article/view/249

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: Innovative Biosystems and Bioengineering : international scientific journal, 2018, Vol. 2, No. 1

    File Description: С. 57-63; application/pdf

    Relation: Колоїдні характеристики водних систем рамноліпідного біокомплексу штаму Pseudomonas sp. PS-17 з Tween-80 та їх перспективи для біотехнології / О. В. Карпенко, В. А. Волошинець, І. В. Карпенко, Т. Я. Покиньброда, І. В. Семенюк, Г. Г. Мідяна // Innovative Biosystems and Bioengineering : international scientific journal. – 2018. – Vol. 2, No. 1. – Pp. 57–63. – Bibliogr.: 19 ref.; https://ela.kpi.ua/handle/123456789/22707; https://doi.org/10.20535/ibb.2018.2.1.127258

  19. 19
  20. 20