-
1Academic Journal
Source: Fine Chemical Technologies; Vol 14, No 6 (2019); 66-75 ; Тонкие химические технологии; Vol 14, No 6 (2019); 66-75 ; 2686-7575 ; 2410-6593
Subject Terms: параметр растворимости Хансена, nematic, phase diagrams, thermal analysis, 4-pentyloxybenzoic acid, n-alkanes, solubility, thermodynamic modeling, Hildebrand solubility parameter, Hansen solubility parameter, нематический, фазовые диаграммы, термический анализ, 4-н-пентилоксибензойная кислота, н-алканы, растворимость, термодинамическое моделирование, параметр растворимости Гильдебранда
File Description: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/1574/1612; https://www.finechem-mirea.ru/jour/article/view/1574/1625; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1574/114; История кафедры физической химии Московского института тонких химических технологий им. М.В. Ломоносова. ВестникМИТХТ. 2010;Юбилейный выпуск:32-36.; Флид В.Р. Естественно-научный факультет - молодость с вековыми традициями. Вестник МИТХТ. 2010;Юбилейный выпуск:44-63.; Pestov S. Physical properties of liquid crystals. Landolt-Boemstein. Numerical data and functional relationships in science and technology. New Series. V. VIII/5A. Berlin-Heidelberg: Springer, 2003. 498 p.; Томилин М.Г., Пестов С.М. Свойства жидкокристаллических материалов. СПб.: Политехника; 2005. 296 с.; Молочко В.А., Пестов С.М. Фазовые равновесия и термодинамика систем с жидкими кристаллами. М.: МИТ -ХТ; 2003. 242 с.; Mo J., Milleret G., Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery. Liquid Crystals Rev. 2017;5(2):69-85. https://doi.org/10.1080/21680396.2017.1361874; Shibaev V.P., Bobrovsky A.Yu. Liquid crystalline polymers: Development trends and photocontrollable materials. Russ. Chem. Rev. 2017;86(11):1024-1072. https://doi.org/10.1070/RCR4747; Musevic I. Liquid-crystal micro-photonics. Liquid Crystals Rev. 2016;4(1):1-34. https://doi.org/10.1080/21680396.2016.1157768; Pestov S.M., Tomilin M.G. Increasing the viewing angles in displays based on liquid crystals. Review. J. Optic. Technol. 2012;79(9):576-587. https://doi.org/10.1364/JOT.79.000576; Cham Q. Li. (Ed.) Nanoscience with liquid crystals. From self-organized nanostructures to applications. N.Y.: Springer; 2014. 420 p.; Беляев В.В., Чилая ГС. Жидкие кристаллы в начале XXI века. М.: ИИУ МГОУ; 2017. 142 с. ISBN 978-57017-2785-2; Беляев В.В. Жидкокристаллические дисплеи. Технологии настоящего и будущего. Часть 2. Новые технологии и области применения ЖК-дисплеев. Электроника: Наука, технология, бизнес. 2015;(10):124-131.; Pongali Sathya Prabu N., Madhu Mohan M.L.N. Thermal and dielectric investigations on supramolecular hydrogen bonded liquid crystals. Molecular Crystals and Liquid Crystals. 2012;569(1):72-91. https://doi.org/10.1080/15421406.2012.703035; Petrov M., Katranchev B., Rafailov P.M. The unique physical properties of the hydrogen bonded in dimers liquid crystals. IOP Conf. Series: Journal of Physics. 2017;780:012012. https://doi.org/10.1088/1742-6596/780/1/012012; Subhasri P., Vasanthi T., Vijayakumar VN. Investigation on induced non-tilted smectic A* and thermochromic effect in tilted smectic C* phase of linear double hydrogen bonded ferroelectric liquid crystals. J. Korean Phys. Soc. 2019;74(4):368-373. https://doi.org/10.3938/jkps.74.368; Amabilino D.B., Smith D.K., Steed J. W. Supramolecular materials. Chem. Soc. Rev. 2017; 46(9):2404-2420. https://doi.org/10.1039/C7CS00163K; Chandrasekar G., Pongali Sathya Prabu N., Madhu Mohan M.L.N. Calorimetric investigations of hydrogen-bonded liquid crystal binary mixtures. J. Therm. Anal. Calorim. 2018;134(3):1799-1822. https://doi.org/10.1007/s10973-018-7688-7; Surekha M., Ashok Kumar A.V.N., Chalapathy P.V., Muniprasad M., Potukuchi D.M. Synthesis and phase transition characterization by polarized optical microscopy and differential scanning calorimetry in hydrogen bonded chiral liquid crystal series: M*SA:nOBAs. Molecular Crystals and Liquid Crystals. 2018;668(1):1-28. https://doi.org/10.1080/15421406.2018.1555350; Rajanandkumar R., Pongali Sathya Prabu N., Madhu Mohan M.L.N. Characterization of hydrogen bonded liquid crystals formed by suberic acid and alkyl benzoic acids. Molecular Crystals and Liquid Crystals. 2013;587(1):60-79. https://doi.org/10.1080/15421406.2013.821383; Subhapriya P., Sadasivam K., Madhu Mohan M.L.N., Vijayanand P.S. Experimental and theoretical investigation of p-n alkoxybenzoic acid based liquid crystals - A DFT approach. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2014;123:511-523. https://doi.org/10.1016/j.saa.2014.01.074; Hart E., Lee G., Qian E., Jodray M., Barrera M., Fischer R., Che M., Liu Y, Zha O., Woods D., Acree W.E. Jr., Abraham M.H. Determination of Abraham model solute descriptors for 4-tert-butylbenzoic acid from experimental solubility data in organic monosolvents. Phys. & Chem. Liquids. 2018;57(4):445-452. https://doi.org/10.1080/00319104.2018.1482552; Reyes C.G., Baller J., Araki T., Lagerwall J.P.F. Isotropic-isotropic phase separation and spinodal decomposition in liquid crystal-solvent mixtures. Soft Matter. 2019;15:6044-6054. https://doi.org/10.1039/c9sm00921c; Беляев В.В., Гребенкин М.Ф., Лисецкий Л.Н. Влияние процессов димеризации на свойства смесей алкилбензойных и алкилциклогексанкарбоновых кислот. Журн. физ. химии. 1988:62:3087-3088.; Nosikova L.A., Kochetov A.N., Kudryashova Z.A., Melnikov A.B., Churakov A.V, Kuzmina L.G. Molecular and crystal structure of the cocrystal of p-n-heptyloxybenzoic acid - p-n-hexyloxybenzoic acid, obtained in the system of mesomorphic acids. Crystallography Rep. 2018;63(6):909-915. https://doi.org/10.1134/S1063774518060238; Bhagavath P., Mahabaleshwara S. Mesomorphism in binary mixtures of 4-((hexylimino)methyl) benzoic acid and 4-alkyloxybenzoic acids. J. Therm. Anal. Calorim. 2017:129(1);339-345. https://doi.org/10.1007/s10973-017-6105-y; Ilyin S., Konstantinov I. Rheological evidence for the existence of subphases in the liquid crystalline 4-n-alkoxybenzoic acids. Liquid Crystals. 2015;43(3):369-380. https://doi.org/10.1080/02678292.2015.1116627; Ermakov S.F., Myshkin N.K. Liquid-crystal nanomaterials. Tribology and applications. N.Y.: Springer; 2018. 267 p.; Armarego W.L.E., Chai C.L.L. Purification of laboratory chemicals. 5th ed. Amsterdam: Butterworth Heinemann; 2003. 609 p.; Acree W.E. Jr., Chickos J.S. Phase change enthalpies and entropies of liquid crystals. J. Phys. Chem. Ref. Data. 2006;35(3):1051-1330. https://doi.org/10.1063/1.1901689; Lei Z., Chen B., Li C., Liu H. Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chem. Rev. 2008;108(4):1419-1455. https://doi.org/10.1021/cr068441+; Hansen C.M. (Ed.) Hansen Solubility Parameters. A User’s handbook. 2nd ed. Boca Raton: CRC Press; 2007. 544 p.; Stefanis E., Panayiotou C. Prediction of Hansen solubility parameters with a new group-contribution method. Int. J. Thermophys. 2008;29:568-585. https://doi.org/10.1007/s10765-008-0415-z
-
2Academic Journal
Authors: Lysich, D.V.
Subject Terms: hydrogen bond, mixtures of solvents, van der Waals volume, solubility parameter, УДК 541.64, смеси растворителей, ван-дер-ваальсов объем, УДК 678.74.325, «взрывная» фотолитография, водородная связь, 'lift-off' photolithography, УДК 776.17, cohesive energy, сшивка, crosslinking, энергия когезии, параметр растворимости
File Description: application/pdf
Access URL: http://dspace.susu.ru/xmlui/handle/0001.74/30901
-
3Academic Journal
-
4Academic Journal
Authors: Охотина, Н., Ведяшкина, Д., Ильязов, М., Савельчев, А.
Subject Terms: АЛКИЛФЕНОЛФОРМАЛЬДЕГИДНЫЕ СМОЛЫ, ПАРАМЕТР РАСТВОРИМОСТИ, ПОЛЯРНОСТЬ, СОВМЕСТИМОСТЬ
File Description: text/html
-
5Academic Journal
Subject Terms: полимерные материалы, органические люминофоры, параметр растворимости Гильдебрандта, когезия вещества
File Description: application/pdf
Relation: Лебедев В. В. Исследование и выбор растворителей для введения сцинтилляционных добавок в меламино-альдегидную матрицу / В. В. Лебедев, В. Л. Авраменко, В. Д. Тицкая // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Химия, химическая технология и экология. – Харьков : НТУ "ХПИ", 2008. – № 13. – С. 42-50.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/32894
Availability: http://repository.kpi.kharkov.ua/handle/KhPI-Press/32894
-
6Academic Journal
Authors: Voronchikhin, Vasily D., Tovbis, Mikhail S., Voronina, Svetlana Yu., Karmanova, Olga V., Ворончихин, В.Д., Товбис, М.С., Воронина, С.Ю., Карманова, О.В.
Subject Terms: solubility parameter, polymers, oligomers, thermodynamic compatibility, параметр растворимости, полимеры, олигомеры, термодинамическая совместимость
Relation: Журнал Сибирского федерального университета. Химия, 2019. Journal of Siberian Federal University. Chemistry, 2020 13 (1)
-
7Academic Journal
Source: Вестник Казанского технологического университета.
Subject Terms: ФОСФОЛИПИД, СИНТЕТИЧЕСКИЙ ПОЛИИЗОПРЕН, ПАРАМЕТР СОВМЕСТИМОСТИ, ПАРАМЕТР РАСТВОРИМОСТИ ХАНСЕНА, МЕТОД ГЕЛЬДЕБРАНДА-СКЕТЧАРДА
File Description: text/html
-
8Academic Journal
Source: Вестник Казанского технологического университета.
File Description: text/html
-
9Academic Journal
Authors: Лысич, Д.В., Lysich, D.V.
Subject Terms: УДК 678.74.325, УДК 541.64, УДК 776.17, «взрывная» фотолитография, параметр растворимости, смеси растворителей, энергия когезии, ван-дер-ваальсов объем, сшивка, водородная связь,
"lift-off" photolithography, solubility parameter, mixtures of solvents, cohesive energy, van der Waals volume, crosslinking, hydrogen bond File Description: application/pdf
Relation: Вестник ЮУрГУ. Серия Химия; Vestnik Ûžno-Ural’skogo gosudarstvennogo universiteta. Seriâ Himiâ; Bulletin of SUSU; Химия;Т. 9; http://dspace.susu.ru/xmlui/handle/0001.74/30901