Εμφανίζονται 1 - 20 Αποτελέσματα από 719 για την αναζήτηση '"Офтальмология"', χρόνος αναζήτησης: 0,74δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: Исследование выполнено в рамках проекта № Ф23ИНДГ-004.

    Πηγή: «System analysis and applied information science»; № 3 (2025); 47-58 ; Системный анализ и прикладная информатика; № 3 (2025); 47-58 ; 2414-0481 ; 2309-4923 ; 10.21122/2309-4923-2025-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://sapi.bntu.by/jour/article/view/763/550; Curran, K. Inclusion of diabetic retinopathy screening strategies in national-level diabetes care planning in low- and middle-income countries: a scoping review / K. Curran, P. Piyasena, N. Congdon [et al.] // Health Research Policy and Systems. 2023. Vol. 21, № 2. DOI:10.1186/s12961-022-00940-0; Nørgaard, M. F. Automated screening for diabetic retinopathy - A systematic review / M. F. Nørgaard, J. Grauslund // Ophthalmic research. 2018. Vol. 60, № 1. P. 9–17. DOI:10.1159/000486284; Павлов, В. Г. Современные тенденции скрининга диабетической ретинопатии / В. Г. Павлов, А. Л. Сидамонидзе, Д. В. Петрачков // Вестник офтальмологии. 2020. Т. 136, № 4. С. 300–309. DOI:10.17116/oftalma2020136042300; Avidor, D. Cost-effectiveness of diabetic retinopathy screening programs using telemedicine: a systematic review / D. Avidor, A. Loewenstein, M. Waisbourd, A. Nutman // Cost Effectiveness and Resource Allocation. 2020. Vol. 18. P. 1–9. DOI:10.1186/s12962-020-00211-1; Tung, T. H. Economic evaluation of screening for diabetic retinopathy among Chinese type 2 diabetics: a community-based study in Kinmen / T. H. Tung [и др.] // Taiwan. J Epidemiol. 2008. Vol. 18, № 5. P. 225–33. DOI:10.2188/jea.je2007439; Biswas, S. Which color channel is better for diagnosing retinal diseases automatically in color fundus photographs? / S. Biswas, Md. I. A. Khan, Md. T. Hossain, A. Biswas [et al.] // Life (Basel). 2022. Vol. 12, № 7. P. 973. DOI:10.3390/life12070973; Guo, T. Refined image quality assessment for color fundus photography based on deep learning / T. Guo, K. Liu, H. Zou [et al.] // Digital Health. 2024. Vol. 10. P. 1–13. DOI:10.1177/20552076231207582; 1000 Fundus images with 39 categories. URL: https://www.kaggle.com/datasets/linchundan/fundusimage1000/data (дата обращения: 19.05.2025).; Li T. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening / Tao Li, Yingqi Gao, Kai Wang [et al.] // Information Sciences. 2019. Vol. 501. P. 511–522. DOI:10.1016/j.ins.2019.06.011; Lundström C. Technical report: Measuring digital image quality. 2006. 15 p.; Keelan B. Handbook of image quality: characterization and prediction / by Brian Keelan. CRC Press, 2002. 544 p. DOI:10.1201/9780203910825.; Голуб Ю. И., Старовойтов В. В. Оценка качества цифровых изображений. Минск : ОИПИ НАН Беларуси, 2023. 252 с.; Amin, J. A. Review on recent developments for detection of diabetic retinopathy / J. Amin, M. Sharif, M. Yasmin // Scientifica (Cairo). 2016. Vol. 2016 (6838976). DOI:10.1155/2016/6838976; Raja, D. S. S. Performance analysis of retinal image blood vessel segmentation / D. S. S. Raja, S. Vasuki, D. R. Kumar // Advanced Computing: An international journal. 2014. Vol. 5, № 2/3. P. 17–23. DOI:10.5121/acij.2014.5302; Long, S. Microaneurysms detection in color fundus images using machine learning based on directional local contrast / S. Long, J. Chen, A. Hu [et al.] // Biomedical engineering online. 2020. Vol. 19(21). DOI:10.1186/s12938-020-00766-3; Старовойтов, В. В. Оценка качества цифровых изображений сетчатки / В. В. Старовойтов, Ю. И. Голуб, М. М. Лукашевич // Системный анализ и прикладная информатика. 2021. № 4. С. 25–38.; Starovoitov, V. A universal retinal image template for automated screening of diabetic retinopathy / V. V. Starovoitov, Yu. I. Golub, M. V. Lukashevich // Pattern Recognition and Image Analysis. 2022. Vol 32. P. 322–331. 10.1134/S1054661822020195; https://sapi.bntu.by/jour/article/view/763

  9. 9
  10. 10
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 40, № 1 (2025); 218-225 ; Сибирский журнал клинической и экспериментальной медицины; Том 40, № 1 (2025); 218-225 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2652/1066; Sun H., Saeedi P., Karuranga S., Pinkepank M., Ogurtsova K., Duncan B.B. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabet. Res. Clin. Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119; Nanegrungsunk O., Ruamviboonsuk P., Grzybowski A. Prospective studies on artificial intelligence (AI)-based diabetic retinopathy screening. Ann. Transl. Med. 2022;10(24):1297. https://doi.org/10.21037/atm-2022-71; Huang X., Wang H., She C., Feng J., Liu X., Hu X. et al. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Front. Endocrinol. (Lausanne). 2022;13:946915. https://doi.org/10.3389/fendo.2022.946915; Li J.O., Liu H., Ting D.S.J., Jeon S., Chan R.V.P., Kim J.E. et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog. Retin. Eye Res. 2021;82:100900. https://doi.org/10.1016/j.preteyeres.2020.100900; Nakayama L.F., Zago Ribeiro L., Novaes F., Miyawaki I.A., Miyawaki A.E., de Oliveira J.A.E. Artificial intelligence for telemedicine diabetic retinopathy screening: a review. Ann. Med. 2023;55(2):2258149. https://doi.org/10.1080/07853890.2023.2258149; Liang X., Wen H., Duan Y., He K., Feng X., Zhou G. Nonproliferative diabetic retinopathy dataset (NDRD): A database for diabetic retinopathy screening research and deep learning evaluation. Health Informatics J. 2024;30(2):14604582241259328. https://doi.org/10.1177/14604582241259328; Guo J., Li X., Zhang W., Zhong J., Liu S. Validation of automatic diabetic retinopathy screening and diagnosis via deep neural networks on multi-modal retinal fundus image datasets. 2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC), Shenzhen, China; 2023:834–840. http://dx.doi.org/10.1109/CSISIAC60628.2023.10363900; Alwakid G., Gouda W., Humayun M., Jhanjhi N.Z. Deep learning-enhanced diabetic retinopathy image classification. Digit. Health. 2023;9:20552076231194942. https://doi.org/10.1177/20552076231194942; https://www.sibjcem.ru/jour/article/view/2652

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Πηγή: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 11 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 45-48 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 11 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 45-48 ; 2181-3469

    Περιγραφή αρχείου: application/pdf

  17. 17
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения : Сборник статей IX Международной научно-практической конференции молодых ученых и студентов, 17-18 апреля 2024 г. Т. 1.; http://elib.usma.ru/handle/usma/21336

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/21336

  18. 18
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 21, № 2 (2024); 264-269 ; Офтальмология; Том 21, № 2 (2024); 264-269 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2355/1211; Li JO, Liu H, Ting DSJ, Jeon S, Chan RVP, Kim JE, Sim DA, Thomas PBM, Lin H, Chen Y, Sakomoto T, Loewenstein A, Lam DSC, Pasquale LR, Wong TY, Lam LA, Ting DSW. Digital technology, telemedicine and artificial intelligence in ophthalmology: A global perspective. Prog Retin Eye Res. 2021 May;82:100900. doi:10.1016/j.preteyeres.2020.100900.; Wu KY, Kulbay M, Tanasescu C. An Overview of the Dry Eye Disease in Sjögren’s Syndrome Using Our Current Molecular Understanding. International Journal of Molecular Sciences. 2023;24(2):1580. doi:10.3390/ijms24021580.; Aljohani S, Jazzar A. Tear Cytokine Levels in Sicca Syndrome‑Related Dry Eye: A Meta‑Analysis. Diagnostics; 2023;13(13):2184. doi:10.3390/diagnostics13132184.; Yamaguchi T. Inflammatory response in dry eye. Investigative ophthalmology & visual science. 2018;59(14):DES192–DES199. doi:10.1167/iovs.17‑23651.; Dana R, Bradley JL, Guerin A. Estimated prevalence and incidence of dry eye disease based on coding analysis of a large, all‑age United States health care system. American Journal of Ophthalmology 2019;202:47–54. doi:10.1016/j.ajo.2019.01.026.; Litvin I, Zumbulidze N, Parfenova M. Dry eye syndrome: «retribution» for progress. Vrach. 2022;33(7):77–81. doi:10.29296/25877305‑2022‑07‑16.; Dag U, Çaglayan M, Öncül H. Maskassociated dry eye syndrome in healthcare professionals as a new complication caused by the prolonged use of masks during Covid‑19 pandemic period. Ophthalmic epidemiology; 2023;30(1):1–6. doi: 10.108 0/09286586.2022.2053549.; Jaiswal S, Asper L, Long J. Ocular and visual discomfort associated with smartphones, tablets and computers: what we do and do not know. Clinical and Experimental Optometry. 2019;102(5):463–477. doi:10.1111/cxo.12851.; Aghamollaei H, Parvin S, Shahriary A. Review of proteomics approach to eye diseases affecting the anterior segment. Journal of proteomics. 2020;225:103881. doi:10.1016/j.jprot.2020.103881.; McHorney CA, Ware JE, Raczek AE. The MOS 36‑Item Short‑Form Health Survey (SF‑36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Medical care. 1993:247–263. doi:10.1097/00005650199303000‑00006.; Arian M, Mirmohammadkhani M, Ghorbani R. Healthrelated quality of life (HRQoL) in beta‑thalassemia major (β‑TM) patients assessed by 36‑item short form health survey (SF‑36): a meta‑analysis. Quality of Life Research. 2019;28(2):321–334. doi:10.1007/s11136‑018‑1986‑1.; Agarwal P, Craig JP, Rupenthal ID. Formulation considerations for the management of dry eye disease. Pharmaceutics. 2021; 13(2):207. doi:10.3390/pharmaceutics13020207.; Sivakumar GK, Patel J, Malvankar‑Mehta MS, Mather R. Work productivity among Sjögren’s Syndrome and non‑Sjögren’s dry eye patients: a systematic review and meta‑analysis. Eye. 2021;35(12):3243–3257. doi:10.1038/s41433‑020‑01282‑3.; Kheirkhah A, Kobashi H, Girgis J. A randomized, sham‑controlled trial of intraductal meibomian gland probing with or without topical antibiotic/steroid for obstructive meibomian gland dysfunction. The Ocular Surface; 2021; 18(4):852–856. doi:10.1016/j.jtos.2020.08.008.; Eguchi A, Inomata T, Nakamura M. Heterogeneity of eye drop use among symptomatic dry eye individuals in Japan: large‑scale crowdsourced research using DryEyeRhythm application. Japanese Journal of Ophthalmology. 2021;65:271–281. doi:10.1007/s10384‑020‑00798‑1.; Morthen MK, Magno MS, Utheim TP. The physical and mental burden of dry eye disease: a large population‑based study investigating the relationship with healthrelated quality of life and its determinants. The Ocular Surface. 2021;21:107–117. doi:10.1016/j.jtos.2021.05.006.; Rico‑del‑Viejo L, Lorente‑Velázquez A, Hernández‑Verdejo JL. The effect of ageing on the ocular surface parameters. Contact Lens and Anterior Eye. 2018;41(1):5–12. doi:10.1016/j.clae.2017.09.015.; Weng HY, Ho WT, Chiu CY. Characteristics of tear film lipid layer in young dry eye patients. Journal of the Formosan Medical Association. 2021;120(7):1478–1484. doi:10.1016/j.jfma.2020.10.028.; Nøland ST, Badian RA, Utheim TP. Sex and age differences in symptoms and signs of dry eye disease in a Norwegian cohort of patients. The Ocular Surface. 2021;19:68–73. doi:10.1016/j.jtos.2020.11.009.; Cai Y, Wei J, Zhou J. Prevalence and incidence of dry eye disease in Asia: a systematic review and meta‑analysis. Ophthalmic Research. 2022;65(6):647–658. doi:10.1159/000525696.; Uchino M, Yokoi N, Shimazaki J. Adherence to eye drops usage in dry eye patients and reasons for non‑compliance: a web‑based survey. Journal of Clinical Medicine. 2022;11(2):367. doi:10.3390/jcm11020367; Abusharha A, Pearce IE, Afsar T. Evaluation of Therapeutic Capability of Emustil Drops against Tear Film Complications under Dry Environmental Conditions in Healthy Individuals. Medicina. 2023;59(7):1298. doi:10.3390/medicina59071298.; Mandell JT, Idarraga M, Kumar N. Impact of air pollution and weather on dry eye. Journal of clinical medicine. 2020;9(11):3740. doi:10.3390/jcm9113740.; Khanyuda A, Savada N, Uchino M. Physical inactivity, prolonged sedentary lifestyle, and use of visual displays as potential risk factors for dry eye disease: the JPHCFOLLOW study. The ocular surface. 2020;18:56–63. doi:10.1016/j.jtos.2019.09.007.; Koh S. Contact lens wear and dry eye: beyond the known. The Asia‑Pacific Journal of Ophthalmology. 2020;9(6):498–504. doi:10.1097/APO.0000000000000329; Akkaya S, Atakan T, Acikalin B. Effects of longterm computer use on eye dryness. Northern clinics of Istanbul. 2018;5(4):19. doi:10.14744/nci.2017.54036.; Wong AH, Cheung RK, Kua WN. Dry eyes after SMILE. The Asia‑Pacific Journal of Ophthalmology. 2019;8(5):397. doi:10.1097/01.APO.0000580136.80338.d0.; Bron AJ, Paiva CS, Chauhan SK. TFOS DEWS II pathophysiology report. The ocular surface. 2017;15(3):438–510. doi:10.1016/j.jtos.2017.05.011.; Periman LM, Perez VL, Saban DR. The immunological basis of dry eye disease and current topical treatment options. Journal of ocular pharmacology and therapeutics. 2020;36(3):137–146. doi:10.1089/jop.2019.0060.; Clayton JA. Dry eye. New England Journal of Medicine. 2018;378(23):2212–2223. doi:10.1056/NEJMra1407936.; Periman LM, Mah FS, Karpecki PM. A review of the mechanism of action of cyclosporine A: the role of cyclosporine A in dry eye disease and recent formulation developments. Clinical Ophthalmology. 2020:4187–4200. doi:10.2147/OPTH.S279051.; Ponzini E, Santambrogio C, De Palma A. Mass spectrometry‐based tear proteomics for noninvasive biomarker discovery. Mass Spectrometry Reviews. 2021;1–19. doi:10.1002/mas.21691.; Zhou L, Beuerman RW. The power of tears: how tear proteomics research could revolutionize the clinic. Expert Review of Proteomics. 2017;14:189–191. doi: 10.10 80/14789450.2017.1285703.; Dor M, Eperon S, Lalive PH. Investigation of the global protein content from healthy human tears. Experimental eye research. 2019;179:64–74. doi:10.1016/j.exer.2018.10.006.; Onugwu AL, Nwagwu CS, Onugwu OS. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release. 2023;354:465–488. doi:10.1016/j.jconrel.2023.01.018.; Dayon L, Cominetti O, Affolter M. Proteomics of human biological fluids for biomarker discoveries: Technical advances and recent applications. Expert Review of Proteomics. 2020;19(2):131–151. doi:10.1080/14789450.2022.2070477.; Hecht ES, Scigelova M, Eliuk S, Makarov A. Fundamentals and advances of orbitrap mass spectrometry. Encyclopedia of Analytical Chemistry. 2019;1–40. doi:10.1002/9780470027318.a9309.pub2.; Jun JH, Lee YH, Son MJ. Importance of tear volume for positivity of tear matrix metalloproteinase‑9 immunoassay. Plos One. 2020;15(7):e0235408. doi:10.1371/journal.pone.0235408.; Masoudi S. Biochemistry of human tear film: A review. Experimental Eye Research. 2022;220:109101. doi:10.1016/j.exer.2022.109101.; Posa A, Bräuer L, Schicht M. Schirmer strip vs. capillary tube method: non‑invasive methods of obtaining proteins from tear fluid. Annals of Anatomy Anatomischer Anzeiger. 2013;195(2):137–142. doi:10.1016/j.aanat.2012.10.001.; Martínez V, Franklin V, Wolffsohn JS. The potential influence of Schirmer strip variables on dry eye disease characterisation, and on tear collection and analysis. Contact Lens and Anterior Eye. 2018;41(1):47–53. doi:10.1016/j.clae.2017.09.012.; Qin W, Zhao C, Zhang L. A dry method for preserving tear protein samples. Biopreserv Biobank. 2017;15:417–421. doi:10.1016/j.jconrel.2021.06.042.; Kishazi E, Dor M, Eperon S. Thyroid‐associated orbitopathy and tears: a proteomics study. Journal of Proteomics. 2018;170:110–116. doi:10.1016/j.jprot.2017.09.001.; Nättinen J, Aapola U, Nukareddy P. Looking deeper into ocular surface health: an introduction to clinical tear proteomics analysis. Acta Ophthalmologica. 2022;100(5):486–498. doi:10.1111/aos.15059.; Pflugfelder SC, Stern ME. Biological functions of tear film. Experimental eye research. 2020;197:108115. doi:10.1016/j.exer.2020.10811.; Jung JH, Ji YW, Hwang HS. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Scientific Reports. 2017;7:1–11. doi:10.1038/s41598‑017‑13817‑y.; Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmologica. 2018;96(4):e412–e420. doi:10.1111/aos.13526.; Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA Journal. 2022;12:449–475. doi:10.1007/s13167‑021‑00265‑y.; Nagai N, Otake H. Novel drug delivery systems for the management of dry eye. Advanced Drug Delivery Reviews. 2022:114582. doi:10.1016/j.addr.2022.114582.; Kannan R, Das S, Shetty R. Tear proteomics in dry eye disease. Indian Journal of Ophthalmology. 2023;71(4):1203. doi:10.4103/IJO.IJO_2851_22.; Ponzini E, Scotti L, Grandori R. Lactoferrin concentration in human tears and ocular diseases: A meta‑analysis. Investigative Ophthalmology & Visual Science. 2020;61(12):9. doi:10.1167/iovs.61.12.9.; Urbanski G, Assad S, Chabrun F. Tear metabolomics highlights new potential biomarkers for differentiating between Sjögren’s syndrome and other causes of dry eye. The Ocular Surface. 2021;22:110–116. doi:10.1016/j.jtos.2021.07.006.; Huang Z, Du CX, Pan XD. The use of in‑strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS One. 2018;13(8):e0200702. doi:10.1371/journal.pone.0200702.; https://www.ophthalmojournal.com/opht/article/view/2355

  19. 19
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 21, № 4 (2024); 831-837 ; Офтальмология; Том 21, № 4 (2024); 831-837 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2514/1285; Онищенко ГГ, Попова АЮ, Романович ИК, Водоватов АВ, Башкетова НС, Историк ОА, Чипига ЛА, Шацкий ИГ, Сарычева СС, Библин АМ, Репин ЛВ. Современные принципы обеспечения радиационной безопасности при использовании источников ионизирующего излучения в медицине. Часть 2. Радиационные риски и совершенствование системы радиационной защиты. Радиационная гигиена. 2020;12(2):6–24. doi:10.21514/1998-426X-2019-12-2-6-24.; Дегтева МО, Шишкина ЕА, Толстых ЕИ, Возилова АВ, Шагина НБ, Волчкова АЮ, Иванов ДВ, Заляпин ВИ, Аклеев АВ. Использование методов ЭПР и FISH для реконструкции доз у людей, облучившихся на реке Теча. Радиационная биология. Радиоэкология. 2017;57(1):30–41. doi:10.7868/S0869803117010052.; Ainsbury EA, Dalk C, Hamada N, Benadjaoud MA, Chumak V. Radiation induced lens opacities: Epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy. Environ Int. 2021;146:106213. doi:10.1016/j.envint.2020.106213.; Микрюкова ЛД, Шалагинов СА. Исследование офтальмопатологии у лиц, пострадавших в результате радиационных инцидентов на Южном Урале. Радиация и риск. Бюллетень Национального радиационноэпидемиологического регистра. 2020;29(4):84–96. doi:10.21870/0131-3878-2020-29-4-84-96.; Бухтияров ИВ, Денисов ЭИ, Лагутина ГН, Пфаф ВФ, Чесалин ПВ, Степанян ИВ. Критерии и алгоритмы установления связи нарушений здоровья с работой. Медицина труда и промышленной экологии 2018;8:412. doi:10.31089/1026-9428-8-4-12.; Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers (Basel). 2018;10(7):E701. doi:10.3390/polym10070701.; Little MP, Cahoon EK, Kitahara CM, Simon SL. Occupational radiation exposure and excess additive risk of cataract incidence in a cohort of US radiologic technologists. Occup Environ Med. 2020;77(1):1–8. doi:10.1136/oemed-2019-105902.; You IC, Li Y, Jin R. Comparison of 0.1 %, 0.18 %, and 0.3 % Hyaluronic Acid Eye Drops in the Treatment of Experimental Dry Eye. J Ocul Pharmacol Ther. 2018;34(8):557–564. doi:10.1089/jop.2018.0032.; RicodelViejo L, LorenteVelázquez A, HernándezVerdejo JL. The effect of ageing on the ocular surface parameters. Contact Lens and Anterior Eye. 2018;41(1):5–12. doi:10.1016/j.clae.2017.09.015.; Mandell JT, Idarraga M, Kumar N. Impact of air pollution and weather on dry eye. Journal of clinical medicine. 2020;9(11):3740. doi:10.3390/jcm9113740.; Cejka C, Kubinova S, Cejkova J. Trehalose in ophthalmology. Histol Histopathol. 2019;34(6):611–618. doi:10.14670/HH-18-082.; Wang L, Cao K, Wei Z. Autologous serum eye drops versus artificial tear drops for dry eye disease: a systematic review and metaanalysis of randomized controlled trials. Ophthalmic Res. 2020;63(5):443–451. doi:10.1159/000505630.; Kossler AL, Brinton M, Patel ZM. Chronic Electrical Stimulation for Tear Secretion: Lacrimal vs. anterior ethmoid nerve. Ocul Surf. 2019;17(4):822–827. doi:10.1016/j.jtos.2019.08.012.; https://www.ophthalmojournal.com/opht/article/view/2514

  20. 20
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 21, № 4 (2024); 844-849 ; Офтальмология; Том 21, № 4 (2024); 844-849 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2516/1287; Baker GT 3rd, Sprott RL. Biomarkers of aging. Exp Gerontol. 1988;23(4–5):223– 239. doi:10.1016/0531-5565(88)90025-3.; Lara J, Cooper R, Nissan J, Ginty AT, Khaw KT, Deary IJ, Lord JM, Kuh D, Mathers JC. A proposed panel of biomarkers of healthy ageing. BMC Med. 2015 Sep 15;13:222. doi:10.1186/s12916-015-0470-9.; Johnson TE. Recent results: biomarkers of aging. Exp Gerontol. 2006;41(12):1243– 1246. doi:10.1016/j.exger.2006.09.006.; Butler RN, Sprott R, Warner H. Biomarkers of aging: from primitive organisms to humans. J Gerontol A Biol Sci Med Sci. 2004 Jun;59(6):B560–567. doi:10.1093/gerona/59.6.b560.; Engelfriet PM, Jansen EH, Picavet HS, Dollé ME. Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev. 2013;35(1):132–151. doi:10.1093/epirev/mxs011.; Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. doi:10.1186/gb-2013-14-10-r115.; Hannum G, Guinney J, Zhao L. Genomewide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013 Jan 24;49(2):359–367. doi:10.1016/j.molcel.2012.10.016.; Khalatyan AS, Shishparenok AN, Avetisov KS. Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of AgeRelated Macular Degeneration. Biomedicines. 2024 Aug 19;12(8):1893. doi:10.3390/biomedicines12081893.; Gardner M, Bann D, Wiley L. Gender and telomere length: systematic review and metaanalysis. Exp Gerontol. 2014 Mar;51:15–27. doi:10.1016/j.exger.2013.12.004.; Lapham K, Kvale MN, Lin J. Automated Assay of Telomere Length Measurement and Informatics for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015 Aug;200(4):1061–1072. doi:10.1534/genetics.115.178624.; Barrett EL, Richardson DS. Sex differences in telomeres and lifespan. Aging Cell. 2011;10(6):913–921. doi:10.1111/j.1474-9726.2011.00741.x.; Needham BL, Rehkopf D, Adler N. Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 19992002. Epidemiology. 2015 Jul;26(4):528–535. doi:10.1097/EDE.0000000000000299.; Bakaysa SL, Mucci LA, Slagboom PE. Telomere length predicts survival independent of genetic influences. Aging Cell. 2007 Dec;6(6):769–774. doi:10.1111/j.1474-9726.2007.00340.x.; Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst. 2015;107(6):djv074. doi:10.1093/jnci/djv074.; Zhu X, Han W, Xue W. The association between telomere length and cancer risk in population studies. Sci Rep. 2016 Feb 26;6:22243. doi:10.1038/srep22243.; Haycock PC, Heydon EE, Kaptoge S. Leucocyte telomere length and risk of cardiovascular disease: systematic review and metaanalysis. BMJ. 2014 Jul 8;349:g4227. doi:10.1136/bmj.g4227.; Scheller Madrid A, Rode L, Nordestgaard BG. Short Telomere Length and Ischemic Heart Disease: Observational and Genetic Studies in 290 022 Individuals. Clin Chem. 2016 Aug;62(8):1140–1149. doi:10.1373/clinchem.2016.258566.; Gardner MP, MartinRuiz C, Cooper R. Telomere length and physical performance at older ages: an individual participant metaanalysis. PLoS One. 2013 Jul 26;8(7):e69526. doi:10.1371/journal.pone.0069526.; Holly AC, Melzer D, Pilling LC. Towards a gene expression biomarker set for human biological age. Aging Cell. 2013 Apr;12(2):324–326. doi:10.1111/acel.12044.; Harries LW, Hernandez D, Henley W. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011 Oct;10(5):868–878. doi:10.1111/j.1474-9726.2011.00726.x.; Peters MJ, Joehanes R, Pilling LC. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015 Oct 22;6:8570. doi:10.1038/ncomms9570.; Pucić M, Knezević A, Vidic J. High throughput isolation and glycosylation analysis of IgGvariability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics. 2011 Oct;10(10):M111.010090. doi:10.1074/mcp.M111.010090. Epub 2011 Jun 8. PMID: 21653738; PMCID: PMC3205872.; Ruhaak LR, Uh HW, Beekman M. Decreased levels of bisecting GlcNAc glycoforms of IgG are associated with human longevity. PLoS One. 2010 Sep 7;5(9):e12566. doi:10.1371/journal.pone.0012566.; Parekh R, Roitt I, Isenberg D. Agerelated galactosylation of the Nlinked oligosaccharides of human serum IgG. J Exp Med. 1988 May 1;167(5):1731–1736. doi:10.1084/jem.167.5.1731.; Ruhaak LR, Uh HW, Beekman M. Plasma protein Nglycan profiles are associated with calendar age, familial longevity and health. J Proteome Res. 2011 Apr 1;10(4):1667–1674. doi:10.1021/pr1009959.; Knezevic A, Gornik O, Polasek O. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma Nglycans. Glycobiology. 2010 Aug;20(8):959– 969. doi:10.1093/glycob/cwq051.; Krištić J, Vučković F, Menni C. Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci. 2014 Jul;69(7):779–789. doi:10.1093/gerona/glt190.; Zhang J, Goodlett DR, Peskind ER. Quantitative proteomic analysis of agerelated changes in human cerebrospinal fluid. Neurobiol Aging. 2005 Feb;26(2):207–227. doi:10.1016/j.neurobiolaging.2004.03.012.; Ignjatovic V, Lai C, Summerhayes R. Agerelated differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One. 2011 Feb 18;6(2):e17213. doi:10.1371/journal.pone.0017213.; Baird GS, Nelson SK, Keeney TR. Agedependent changes in the cerebrospinal fluid proteome by slow offrate modified aptamer array. Am J Pathol. 2012 Feb;180(2):446– 456. doi:10.1016/j.ajpath.2011.10.024.; Menni C, Kiddle SJ, Mangino M. Circulating Proteomic Signatures of Chronological Age. J Gerontol A Biol Sci Med Sci. 2015 Jul;70(7):809–816. doi:10.1093/gerona/glu121.; Ishikawa M, Maekawa K, Saito K. Plasma and serum lipidomics of healthy white adults shows characteristic profiles by subjects’ gender and age. PLoS One. 2014 Mar 14;9(3):e91806. doi:10.1371/journal.pone.0091806.; Yu Z, Zhai G, Singmann P. Human serum metabolic profiles are age dependent. Aging Cell. 2012 Dec;11(6):960–967. doi:10.1111/j.1474-9726.2012.00865.x.; Menni C, Kastenmüller G, Petersen AK. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int J Epidemiol. 2013 Aug;42(4):1111–1119. doi:10.1093/ije/dyt094.; Hertel J, Friedrich N, Wittfeld K. Measuring Biological Age via Metabonomics: The Metabolic Age Score. J Proteome Res. 2016 Feb 5;15(2):400–410. doi:10.1021/acs.jproteome.5b00561.; Collino S, Montoliu I, Martin FP. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One. 2013;8(3):e56564. doi:10.1371/journal.pone.0056564.; Lawton KA, Berger A, Mitchell M. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008 Apr;9(4):383–397. doi:10.2217/14622416.9.4.383.; Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci. 2013;68(6):667–674. doi:10.1093/gerona/gls233.; Belsky DW, Caspi A, Houts R. Quantification of biological aging in young adults. Proc Natl Acad Sci USA. 2015 Jul 28;112(30):E4104–4110. doi:10.1073/pnas.1506264112.; Sebastiani P, Thyagarajan B, Sun F, Schupf N, Newman AB, Montano M, Perls TT. Biomarker signatures of aging. Aging Cell. 2017 Apr;16(2):329–338. doi:10.1111/acel.12557.; Belsky DW, Moffitt TE, Cohen AA. Eleven Telomere, Epigenetic Clock, and BiomarkerComposite Quantifications of Biological Aging: Do They Measure the Same Thing? Am J Epidemiol. 2018 Jun 1;187(6):1220–1230. doi:10.1093/aje/kwx346.; Zierer J, Pallister T, Tsai PC. Exploring the molecular basis of agerelated disease comorbidities using a multiomics graphical model. Sci Rep. 2016 Nov 25;6:37646. doi:10.1038/srep37646.; Arsenis NC, You T, Ogawa EF. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017 Jul 4;8(27):45008–45019. doi:10.18632/oncotarget.16726.; Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8(1) ):73. doi:10.3390/cells8010073.; Canela A, Klatt P, Blasco MA. Telomere length analysis. Methods Mol Biol. 2007;371:45–72. doi:10.1007/978-1-59745-361-5_5.; Flammer J, Konieczka K, Bruno RM. The eye and the heart. Eur Heart J. 2013 May;34(17):1270–1278. doi:10.1093/eurheartj/eht023.; Wong CW, Wong TY, Cheng CY. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int. 2014 Jun;85(6):1290–1302. doi:10.1038/ki.2013.491.; Patton N, Aslam T, Macgillivray T. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005 Apr;206(4):319–348. doi:10.1111/j.1469-7580.2005.00395.x.; Koronyo Y, Biggs D, Barron E. Retinal amyloid pathology and proofofconcept imaging trial in Alzheimer’s disease. JCI Insight. 2017 Aug 17;2(16):e93621. doi:10.1172/jci.insight.93621.; Wang J, Knol MJ, Tiulpin A. Gray Matter Age Prediction as a Biomarker for Risk of Dementia. Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21213–21218. doi:10.1073/pnas.1902376116.; Xia X, Chen X, Wu G. Threedimensional facialimage analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nat Metab. 2020 Sep;2(9):946–957. doi:10.1038/s42255-020-00270-x.; Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 2017 Dec;40(12):681–690. doi:10.1016/j.tins.2017.10.001.; Cole JH, Ritchie SJ, Bastin ME. Brain age predicts mortality. Mol Psychiatry. 2018 May;23(5):1385–1392. doi:10.1038/mp.2017.62.; Zhu Z, Shi D, Guankai P. Retinal age gap as a predictive biomarker for mortality risk. Br J Ophthalmol. 2023 Apr;107(4):547–554. doi:10.1136/bjophthalmol-2021-319807.; Weidner CI, Lin Q, Koch CM. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014 Feb 3;15(2):R24. doi:10.1186/gb-2014-15-2-r24.; Putin E, Mamoshina P, Aliper A. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY). 2016 May;8(5):1021–1033. doi:10.18632/aging.100968.; Mamoshina P, Kochetov K, Putin E. Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. J Gerontol A Biol Sci Med Sci. 2018 Oct 8;73(11):1482–1490. doi:10.1093/gerona/gly005.; Fleischer JG, Schulte R, Tsai HH. Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol. 2018 Dec 20;19(1):221. doi:10.1186/s13059-018-1599-6.; Liem F, Varoquaux G, Kynast J. Predicting brainage from multimodal imaging data captures cognitive impairment. Neuroimage. 2017 Mar 1;148:179–188. doi:10.1016/j.neuroimage.2016.11.005.; Chen W, Qian W, Wu G. Threedimensional human facial morphologies as robust aging markers. Cell Res. 2015 May;25(5):574–587. doi:10.1038/cr.2015.36.; Li JO, Liu H, Ting DSJ. Digital technology, telemedicine and artificial intelligence in ophthalmology: A global perspective. Prog Retin Eye Res. 2021 May;82:100900. doi:10.1016/j.preteyeres.2020.100900.; Ho E, Wang E, Youn S. Deep Ensemble Learning for Retinal Image Classification. Transl Vis Sci Technol. 2022 Oct 3;11(10):39. doi:10.1167/tvst.11.10.39.; Muchuchuti S, Viriri S. Retinal disease detection using deep learning techniques: a comprehensive review. J Imaging. 2023 Apr;9(4):104. doi:10.3390/jimag-ing9040084.; Playout C, Duval R, Boucher MC. Focused Attention in Transformers for interpretable classification of retinal images. Med Image Anal. 2022 Nov;82:102608. doi:10.1016/j.media.2022.102608.; https://www.ophthalmojournal.com/opht/article/view/2516