Εμφανίζονται 1 - 10 Αποτελέσματα από 10 για την αναζήτηση '"Остеогенная дифференцировка"', χρόνος αναζήτησης: 0,66δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: Работа поддержана грантом РНФ 18-14-00152.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 73-82 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 73-82 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1152/831; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1152/1096; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1152/1097; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1152/1098; Natorska, J., Kopytek M., Undas A. Review. Aortic valvular stenosis: Novel therapeutic strategies. Eur J Clin Invest. 2021;51(7):e13527. doi:10.1111/eci.13527.; Kraler, S., Blaser, M. S., Aikawa, E., Camici, G.G., Lüscher, T. F. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J. 2022;43(7):683-697. doi:10.1093/eurheartj/ehab757; Moncla, L.-H. M., Briend, M., Bossé, Y., Mathieu, P. Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol. 2023; 20(8):546-559. doi:10.1038/s41569-023-00845-7; Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., Erwin, J. P., Fleisher, L. A., Jneid, H., Mack, M. J., McLeod, C. J., O'Gara, P. T., Rigolin, V. H., Sundt, T. M., Thompson A. AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;70(2): 252-289. doi:10.1016/j.jacc.2017.03.011.; Zigelman, C. Z., Edelstein, P. M. Aortic valve stenosis. Anesthesiol Clin. 2009;27(3): 519-32. doi:10.1016/j.anclin.2009.07.012; Rabkin-Aikawa, E., Aikawa, M., Farber, M., Kratz, J. R., Garcia-Cardena, G., Kouchoukos, N. T., Mitchell, M. B., Jonas, R. A., Schoen F. J. Clinical pulmonary autograft valves: Pathologic evidence of adaptive remodeling in the aortic site. Surgery for Acquired Cardiovascular Disease.2004;128(4):552-61. doi:10.1016/j.jtcvs.2004.04.016; Rutkovskiy, A., Malashicheva, A., Sullivan, G., Bogdanova, M., Kostareva, A., Stensløkken, K.-O., Fiane, A., Vaage, J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J Am Heart Assoc.2017;6(9):e006339. doi:10.1161/JAHA.117.006339; Cheng, S.-L., Shao, J.-S., Behrmann, A., Krchma, K., Towler, D. A. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(7): 1679–89. doi:10.1161/ATVBAHA.113.300647; Hjortnaes, J., Shapero, K., Goettsch, C., Hutcheson, J. D., Keegan, J., Kluin, J., Aikawa, E. Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis.2015;242(1):251–260. doi:10.1016/j.atherosclerosis.2015.07.008; Summerhill, V. I., Moschetta, D., Orekhov, A. N., Poggio, P., Myasoedova, V. A. Sex-Specific Features of Calcific Aortic Valve Disease. Int J Mol Sci. 2020; 21(16):5620. doi:10.3390/ijms21165620; Yao, M., Wang, X., Wang, X., Zhang, T., Chi, Y., Gao, F. The Notch pathway mediates the angiotensin II-induced synthesis of extracellular matrix components in podocytes. Int J Mol Med. 2015;36(1): 294-300. doi:10.3892/ijmm.2015.2193; Akat, K., Borggrefe, M., Kaden, J. J. Aortic valve calcification: basic science to clinical practice. Heart.2009; 95 (8): 616-23. doi:10.1136/hrt.2007.134783; Goody, P.R., Hosen, M.R., Christmann, D., Niepmann, S.T., Zietzer, A, Adam, M., Bönner, F., Zimmer, S., Nickenig, G., Jansen, F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler Thromb Vasc Biol.2020; 40(4):885-900. doi:10.1161/ATVBAHA.119.313067; Helske, S., Kupari, M., Lindstedt, K. A., Kovanen, P. T. Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol. 2007;18 (5): 483-91. doi:10.1097/MOL.0b013e3282a66099; Mohler, E. R. Mechanisms of aortic valve calcification. The American Journal of Cardiology. 2004; 94(11): 1396–1402. doi:10.1016/j.amjcard.2004.08.013; de Oliveira Sá, M. P.B., Cavalcanti, L. R. P., Perazzo, A. M., Gomes, R. A. F., Clavel, M.-A., Pibarot, P., Biondi-Zoccai, G., Zhigalov, K., Weymann, A., Ruhparwar, A., Lima, R.C. Calcific Aortic Valve Stenosis and Atherosclerotic Calcification. Curr Atheroscler Rep.2020;7;22(2):2. doi:10.1007/s11883-020-0821-7; Bogdanova, M., Zabirnyk, A., Malashicheva, A., Semenova, D., Kvitting, J.-P. E., Kaljusto, M.-L., Del Mar Perez, M., Kostareva, A., Stensløkken, K.-O., Sullivan, G. J., Rutkovskiy, A., Vaage. J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol. 2022;13:835825. doi:10.3389/fphar.2022.835825; Jian, B., Jones, P. L., Li, Q., Mohler, E. R., Schoen, F. J., Levy, R. J. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol.2001;159 (1): 321-7. doi:10.1016/S0002-9440(10)61698-7; Zhiduleva, E. V., Irtyuga, O. B., Shishkova, A. A., Ignat'eva, E. V., Kostina, A. S., Levchuk, K. A., Golovkin, A. S., Rylov, A. Yu., Kostareva, A. A., Moiseeva, O. M., Malashicheva, A. B., Gordeev, M. L. Cellular Mechanisms of Aortic Valve Calcification. Bull Exp Biol Med. 2018;164(3):371-375. doi:10.1007 /s10517-018-3992-2; Benton, J. A., Kern, H. B., Anseth, K. S. Substrate properties influence calcification in valvular interstitial cell culture. J Heart Valve Dis. 2008;17(6): 689-99.; Ghanbari, H., Viatge, H., Kidane, A. G., Burriesci, G., Tavakoli, M., Seifalian, A. M. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27(6):359-367. doi:10.1016/j.tibtech.2009.03.002; Rajput F. A., Zeltser R. Review. Aortic Valve Replacement. StatPearls Publishing. 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537136/ (accessed 23.06.2024); Ueshima, D., Fovino, L.N., Brener, S.J., Fabris, T., Scotti, A., Barioli, A., Giacoppo, D., Pavei, A., Fraccaro, C., Napodano, M., Tarantini, G. Transcatheter aortic valve replacement for bicuspid aortic valve stenosis with first- and new-generation bioprostheses: A systematic review and meta-analysis. Int J Cardiol. 2020;298:76-82. doi:10.1016/j.ijcard.2019.09.003; Фадеев А.А. Конструктивные формы и функциональные свойства протезов клапанов сердцаю Анналы хирургии. 2013;3: 9-18; Jiang, T., Hasan, S.M., Faluk, M., Patel, J. Evolution of Transcatheter Aortic Valve Replacement %7C Review of Literature. Curr Probl Cardiol. 2021;46(3):100600. doi:10.1016/j.cpcardiol.2020.100600; Joseph, J., Naqvi, S.Y., Giri, J., Goldberg, S. Review Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy. The American Journal of Medicine. 2017;130 (3): 253-263. doi:10.1016/j.amjmed.2016.10.005; Tully A., Chowdhury Y.S. Bioprosthetic Stented Pericardial Porcine Aortic Valve Replacement. StatPearls Publishing. 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK563200/ (accessed 23.06.2024); Bogdanova, M., Zabirnyk, A., Malashicheva, A., Zihlavnikova Enayati K., Karlsen T.A., Kaljusto M-L., Kvitting J-P. E., Dissen E., Sullivan G. J., Kostareva A., Stensløkken K-O., Rutkovskiy A., Vaage J., Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Scientific Reports. 2019; 9(1):12934. doi:10.1038/s41598-019-49016-0

  2. 2
    Academic Journal

    Συνεισφορές: Исследование выполнено при поддержке гранта РФФИ № 19-315-90051

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 10, № 3 (2021); 44-55 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 10, № 3 (2021); 44-55 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/946/597; Stewart B.F., Siscovick D., Lind B.K., Gardin J.M., Gottdiener J.S., Smith V.E., Kitzman D.W., Otto C.M. Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol. J Am Coll Cardiol; 1997;29:630-4.; Mathieu P., Boulanger M.-C. Basic Mechanisms of Calcific Aortic Valve Disease. Can J Cardiol. 2014;30(9):982-93. doi:10.1016/j.cjca.2014.03.029.; Fuery M.A., Liang L., Kaplan F.S., Mohler E.R. Vascular ossification: Pathology, mechanisms, and clinical implications. Bone 2018r;109:28-34. doi:10.1016/j.bone.2017.07.006.; Soor G.S., Vukin I., Leong S.W., Oreopoulos G., Butany J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology [Internet]. 2008;40:385-91. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0031302516323650 [cited 2018 Feb 28]; Demer LL, Tintut Y. Inflammatory , metabolic , and genetic mechanisms of vascular calcification . PubMed Commons. Arter Thromb Vasc Biol. 2014;34:715-23.; Li C.J., Madhu V, Balian G., Dighe A.S., Cui Q. Cross-Talk Between VEGF and BMP-6 Pathways Accelerates Osteogenic Differentiation of Human Adipose-Derived Stem Cells. J Cell Physiol. 2015;230(11):2671-82. doi:10.1002/jcp.24983; Kroeze R.J., Knippenberg M., Helder M.N. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells. Methods Mol Biol. 2011;702:233-48. doi:10.1007/978-1-61737-960-4_17; Khanna-Jain R., Vuorinen A., Sandor G.K., Suuronen R., Miettinen S. Vitamin D(3) metabolites induce osteogenic differentiation in human dental pulp and human dental follicle cells. J Steroid Biochem Mol Biol. 2010t;122(4):133-41. doi:10.1016/j.jsbmb.2010.08.001. 1; Elashry M.I., Baulig N., Heimann M., Bernhardt C., Wenisch S., Arnhold S. Osteogenic differentiation of equine adipose tissue derived mesenchymal stem cells using CaCl2. Res Vet Sci. 2018;117:45-53. doi:10.1016/j.rvsc.2017.11.0102/; Langenbach F., Handschel J. Effects of dexamethasone, ascorbic acid and р-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther [Internet]. BioMed Central; 2013;4:117. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24073831 [cited 2018 Nov 21]; Hamidouche Z., Hay E., Vaudin P., charbord P., Schule R., Marie P. J., Fromigue O. FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. FASEB J. 2008;22(11):3813-22. doi:10.1096/fj.08-106302/; Franceschi R.T., Iyer B.S. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res;[1992;7(2):235-46. doi:10.1002/jbmr.5650070216./; Fatherazi S., Matsa-Dunn D., Foster B.L., Rutherford R.B., Somerman M.J., Presland R.B. Phosphate regulates osteopontin gene transcription. J Dent Res [Internet]. Intern. and American Associations for Dental Research; 2009; 88(1): 39-44. doi:10.1177/0022034508328072; Almalki S.G., Agrawal D.K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation. 2016;92(1-2):41-51. doi:10.1016/j.diff.2016.02.005./; Felthaus O., Gosau M., Morsczeck C. ZBTB16 Induces Osteogenic Differentiation Marker Genes in Dental Follicle Cells Independent From RUNX2 . J Periodontol. 2014;85(5):e144-51. doi:10.1902/jop.2013.130445.; Zhang T., Xiong H., Kan L.X., Zhang C.K., Jiao X.F., Fu G., Zhang Q.-H., L L. u,. Tong J.-H, B.-W.Gu, M.Yu, Liu J.-X., Licht J., Waxman S., Zelent A., Chen E., Chen S.-J.Genomic sequence, structural organization, molecular evolution, and aberrant rearrangement of promyelocytic leukemia zinc finger gene. Proceedings of the National Academy of Sciences Sep 1999, 96 (20) 11422-11427; DOI:10.1073/pnas.96.20.11422; Fischer S., Kohlhase J., Bohm D., Schweiger B., Hoffmann D., Heitmann M., Horsthemke B., Wieczorek D. Biallelic loss of function of the promyelocytic leukaemia zinc finger (PLZF) gene causes severe skeletal defects and genital hypoplasia. J Med Gene. 2008;45(11):731-7. doi:10.1136/jmg.2008.059451. 3; Inoue I., Ikeda R., Tsukahara S. Current topics in pharmacological research on bone metabolism: Promyelotic leukemia zinc finger (PLZF) and tumor necrosis factor-a-stimulated gene 6 (TSG-6) identified by gene expression analysis play roles in the pathogenesis of ossification of the posterior longitudinal ligament. J. Pharmacol. Sci. 2006;100(3):205-10. doi:10.1254/jphs.fmj05004x5.; Hemming S., Cakouros D., Vandyke K., Davis M.J., Zannettino A.C.W., Gronthos S. Identification of novel EZH2 targets regulating osteogenic differentiation in mesenchymal stem cells. Stem Cells Dev. 2016;25(12):909-21. doi:10.1089/scd.2015.0384; Morsczeck C. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int. 2006;78(2):98-102. doi:10.1007/s00223-005-0146-0.; Kato M., Patel M.S., Levasseur R., Lobov I., Chang B. H., Glass D.A. 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157(2):303-14. doi:10.1083/jcb.200201089.; Morsczeck C., Schmalz G., Reichert T.E., Vollner F., Saugspier M., Viale-Bouroncle S., Driemel O. Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clin Oral Investig. 2009;13(4):383-91. doi:10.1007/s00784-009-0260-x.; Bilibina A.A., Anisimov S.V., Zaritskey A.Y., Dmitrieva R.I., Minullina I.R., Tarasova O.V. Bone marrow-and subcutaneous adipose tissue-derived mesenchymal stem cells: Differences and similarities. [Internet]. Cell Cycle. 2012;11:1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22189711[cited 2020 Apr 27]; Семенова Д.С., Костина А.С., Мустаева А.М., Клаузен П.Е., Добрынин М.А., Боярская Н.В., Домбровская Ю.А., Малашичева А.В., Енукашвили Н.И. Notch-зависимая активация остеогенного потенциала клеток периодонта. Трансляционная медицина. 2020;7(2):21-32. https://doi.org/10.18705/2311-4495-2020-7-2-21-32; Malashicheva A., Kanzler B., Tolkunova E., Trono D., Tomilin A. Lentivirus as a tool for lineage-specific gene manipulations. Genesis. 2007;45(7):456-9. doi:10.1002/dvg.20313.; Heo J.S., Choi Y, Kim H.-S., Kim H.O. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37(1):115-25. doi:10.3892/ijmm.2015.2413.; Wasim M., Carlet M., Mansha M., Greil R., Ploner C. , Trockenbacher A., Rainer J., Kofler R. PLZF/ZBTB16, a glucocorticoid response gene in acute lymphoblastic leukemia, intrferes with glucocorticoid-induced apoptosis. J Steroid Biochem Mol Biol. 2010;120(4-5):218-27. doi:10.1016/j.jsbmb.2010.04.019.; Kolesnichenko M., Vogt P.K. Understanding PLZF: Two transcriptional targets, REDD1 and smooth muscle a-actin, define new questions in growth control, senescence, selfrenewal and tumor suppression. Cell Cycle. 2011; 1;10(5):771-5. doi:10.4161/cc.10.5.14829.; Felicetti F., Bottero L., Felli N., Mattia G., Labbaye C., Alvino E., Peschle C., Colombo M.P, Care A. Role of PLZF in melanoma progression. Oncogene. 2004;23(26):4567-76. doi:10.1038/sj.onc.120759/; Vincent-Fabert C, Platet N, Vandevelde A, Poplineau M, Koubi M, Finetti P, et al. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression. Blood. 2016;127(15):1881-5. doi:10.1182/blood-2015-09-666974; Ikeda R., Yoshida K., Tsukahara S., Sakamoto Y., Tanaka H., Furukawa K., Inoue I. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem. 2005;280(9):8523-30. doi:10.1074/jbc.M409442200.

  3. 3
    Academic Journal

    Συνεισφορές: Исследование выполнено при поддержке гранта РФФИ № 19-315-90051

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 10, № 4 (2021); 122-130 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 10, № 4 (2021); 122-130 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1001/621; Iung B., Baron G., Butchart E.G., Delahaye F., GohlkeBärwolf C., Levang O.W., Tornos P., Vanoverschelde J.L., Vermeer F., Boersma E., Ravaud P., Vahanian A. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24(13):1231-43. doi:10.1016/s0195-668x(03)00201-x; Baumgartner H., Falk V., Bax J.J., De Bonis M., Hamm C., Holm P.J., Iung B., Lancellotti P., Lansac E., Rodriguez Muñoz D., Rosenhek R., Sjögren J., Tornos Mas P., Vahanian A., Walther T., Wendler O., Windecker S., Zamorano J.L.; ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739-2791. doi:10.1093/eurheartj/ehx391.; Dweck M.R., Khaw H.J., Sng G.K., Luo E.L., Baird A., Williams M.C., Makiello P., Mirsadraee S., Joshi N.V., van Beek E.J., Boon N.A., Rudd J.H., Newby D.E. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur Heart J. 2013;34(21):1567- 74. doi:10.1093/eurheartj/eht034.; Aikawa E., Libby P. A Rock and a Hard Place: Chiseling Away at the Multiple Mechanisms of Aortic Stenosis. Circulation. 2017;135(20):1951-1955. doi:10.1161/CIRCULATIONAHA.117.027776.; Hutcheson J.D., Aikawa E., Merryman W.D. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol. 2014;11(4):218-31. doi:10.1038/nrcardio.2014.1.; Leopold J.A. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 20121;5(4):605-14. doi:10.1161/CIRCINTERVENTIONS.112.971028.; Mathieu P., Boulanger M.C. Basic mechanisms of calcific aortic valve disease. Can J Cardiol. 2014;30(9):982-93. doi:10.1016/j.cjca.2014.03.029.; Egan K.P., Kim J.H., Mohler E.R. 3rd, Pignolo R.J. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler Thromb Vasc Biol. 2011;31(12):2965-71. doi:10.1161/ATVBAHA.111.234724.; Hruska K.A., Mathew S., Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005;97(2):105-14. doi:10.1161/01.RES.00000175571.53833.6c.; Wallby L., Janerot-Sjöberg B., Steffensen T., Broqvist M. T lymphocyte infiltration in non-rheumatic aortic stenosis: a comparative descriptive study between tricuspid and bicuspid aortic valves. Heart. 2002;88(4):348-51. doi:10.1136/heart.88.4.348.; Vattikuti R., Towler D.A. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004;286(5):E686-96. doi:10.1152/ajpendo.00552.2003.; Syväranta S., Helske S., Laine M., Lappalainen J., Kupari M., Mäyränpää M.I., Lindstedt K.A., Kovanen P.T. Vascular endothelial growth factor-secreting mast cells and myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler Thromb Vasc Biol. 2010;30(6):1220-7. doi:10.1161/ATVBAHA.109.198267; Schipani E., Maes C., Carmeliet G., Semenza G.L. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res. 2009;24(8):1347-53. doi:10.1359/jbmr.090602.; Seya K., Yu. Z., Kanemaru K., Daitoku K., Akemoto Y., Shibuya H., Fukuda I., Okumura K., Motomura S., Furukawa K. Contribution of bone morphogenetic protein-2 to aortic valve calcification in aged rat. J Pharmacol Sci. 2011;115(1):8- 14. doi:10.1254/jphs.10198fp.; Boström K.I., Rajamannan N.M., Towler D.A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 201;109(5):564-77. doi:10.1161/CIRCRESAHA.110.234278.; Butcher J.T., Tressel S., Johnson T., Turner D., Sorescu G., Jo H., Nerem R.M. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol. 2006;26(1):69-77. doi:10.1161/01.ATV.0000196624.70507.0d.; Boström K.I., Rajamannan N.M., Towler D.A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 2011109(5):564-77. doi:10.1161/CIRCRESAHA.110.234278.; Rajamannan N.M. Mechanisms of aortic valve calcification: the LDL-density-radius theory: a translation from cell signaling to physiology. Am J Physiol Heart Circ Physiol. 2010;298(1):H5-15. doi:10.1152/ajpheart.00824.2009.; Mikhaylova L., Malmquist J., Nurminskaya M. Regulation of in vitro vascular calcification by BMP4, VEGF and Wnt3a. Calcif Tissue Int. 2007;81(5):372-81. doi:10.1007/s00223-007-9073-6.; Massy Z.A., Mentaverri R., Mozar A., Brazier M., Kamel S. The pathophysiology of vascular calcification: are osteoclast-like cells the missing link? Diabetes Metab. 2008;34 (S1):S16-20. doi:10.1016/S1262-3636(08)70098-3.; Byon C.H., Sun Y., Chen J., Yuan K., Mao X., Heath J.M., Anderson P.G., Tintut Y., Demer L.L., Wang D., Chen Y. Runx2- upregulated receptor activator of nuclear factor κB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol. 2011;31(6):1387-96. doi:10.1161/ATVBAHA.110.222547.; Mohler E.R. 3rd, Gannon F., Reynolds C., Zimmerman R., Keane M.G., Kaplan F.S. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522-8. doi:10.1161/01.cir.103.11.1522.; Ortuño M.J., Ruiz-Gaspà S., Rodríguez-Carballo E., Susperregui A.R., Bartrons R., Rosa J.L., Ventura F. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem. 2010;285(42):31985-94. doi:10.1074/jbc.M110.123612.; Yang X., Matsuda K., Bialek P., Jacquot S., Masuoka H.C., Schinke T., Li L., Brancorsini S., Sassone-Corsi P., Townes T.M., Hanauer A., Karsenty G. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell. 2004;117(3):387-98. doi:10.1016/s0092-8674(04)00344-7.; Liu T.M., Lee E.H., Lim B., Shyh-Chang N. Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells. 2016;34(2):277-87. doi:10.1002/stem.2270.; Hemming S., Cakouros D., Vandyke K., Davis M.J., Zannettino A.C., Gronthos S. Identification of Novel EZH2 Targets Regulating Osteogenic Differentiation in Mesenchymal Stem Cells. Stem Cells Dev. 2016;25(12):909-21. doi:10.1089/scd.2015.0384.; Onizuka S., Iwata T., Park S.J., Nakai K., Yamato M., Okano T., Izumi Y. ZBTB16 as a Downstream Target Gene of Osterix Regulates Osteoblastogenesis of Human Multipotent Mesenchymal Stromal Cells. J Cell Biochem. 2016;117(10):2423-34. doi:10.1002/jcb.25634.; Saugspier M., Felthaus O., Viale-Bouroncle S., Driemel O., Reichert T.E., Schmalz G., Morsczeck C. The differentiation and gene expression profile of human dental follicle cells. Stem Cells Dev. 2010;19(5):707-17. doi:10.1089/scd.2010.0027.; Felthaus O., Gosau M., Morsczeck C. ZBTB16 induces osteogenic differentiation marker genes in dental follicle cells independent from RUNX2. J Periodontol. 2014;85(5):e144-51. doi:10.1902/jop.2013.130445; Kolesnichenko M., Vogt P.K. Understanding PLZF: two transcriptional targets, REDD1 and smooth muscle α-actin, define new questions in growth control, senescence, self-renewal and tumor suppression. Cell Cycle. 2011;10(5):771-5. doi:10.4161/cc.10.5.14829.; Dick J.E., Doulatov S. The role of PLZF in human myeloid development. Ann N Y Acad Sci. 2009;1176:150-3. doi:10.1111/j.1749-6632.2009.04965.x.; Buaas F.W., Kirsh A.L., Sharma M., McLean D.J., Morris J.L., Griswold M.D., de Rooij D.G., Braun R.E. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36(6):647-52. doi:10.1038/ng1366; Barna M., Hawe N., Niswander L., Pandolfi P.P. Plzf regulates limb and axial skeletal patterning. Nat Genet. 2000;25(2):166-72. doi:10.1038/76014.; Cheung M., Pei J., Pei Y., Jhanwar S.C., Pass H.I., Testa J.R. The promyelocytic leukemia zinc-finger gene, PLZF, is frequently downregulated in malignant mesothelioma cells and contributes to cell survival. Oncogene. 2010;29(11):1633-40. doi:10.1038/onc.2009.455.; Felicetti F., Bottero L., Felli N., Mattia G., Labbaye C., Alvino E., Peschle C., Colombo M.P., Carè A. Role of PLZF in melanoma progression. Oncogene. 2004;23(26):4567-76. doi:10.1038/sj.onc.1207597.; Vincent-Fabert Cю., Platet N., Vandevelde A., Poplineau M., Koubi M., Finetti P., Tiberi G., Imbert A.M., Bertucci F., Duprez E. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression. Blood. 2016;127(15):1881- 5. doi:10.1182/blood-2015-09-666974; Ambele M.A., Dessels C., Durandt C., Pepper M.S. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16(3):725-34. doi:10.1016/j.scr.2016.04.011.; Plaisier C.L., Bennett B.J., He A., Guan B., Lusis A.J., Reue K., Vergnes L. Zbtb16 has a role in brown adipocyte bioenergetics. Nutr Diabetes. 2012;2(9):e46. doi:10.1038/nutd.2012.21.; Fischer S., Kohlhase J., Böhm D., Schweiger B., Hoffmann D., Heitmann M., Horsthemke B., Wieczorek D. Biallelic loss of function of the promyelocytic leukaemia zinc finger (PLZF) gene causes severe skeletal defects and genital hypoplasia. J Med Genet. 2008;45(11):731-7. doi:10.1136/jmg.2008.059451.; Inoue I., Ikeda R., Tsukahara S. Current topics in pharmacological research on bone metabolism: Promyelotic leukemia zinc finger (PLZF) and tumor necrosis factor-alpha-stimulated gene 6 (TSG-6) identified by gene expression analysis play roles in the pathogenesis of ossification of the posterior longitudinal ligament. J Pharmacol Sci. 2006;100(3):205-10. doi:10.1254/jphs.fmj05004x5.; Morsczeck C. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int. 2006;78(2):98-102. doi:10.1007/s00223-005-0146-0.; Kato M., Patel M.S., Levasseur R., Lobov I., Chang B.H., Glass D.A. 2nd, Hartmann C., Li L., Hwang T.H., Brayton C.F., Lang R.A., Karsenty G., Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157(2):303-14. doi:10.1083/jcb.200201089.; Morsczeck C., Schmalz G., Reichert T.E., Völlner F., Saugspier M., Viale-Bouroncle S., Driemel O. Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clin Oral Investig. 2009;13(4):383-91. doi:10.1007/s00784-009-0260-x.; Ikeda R., Yoshida K., Tsukahara S., Sakamoto Y., Tanaka H., Furukawa K., Inoue I. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem. 2005;280(9):8523-30. doi:10.1074/jbc.M409442200.; Little R.D., Carulli J.P., Del Mastro R.G., Dupuis J., Osborne M., Folz C., Manning S.P., Swain P.M. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11-9. doi:10.1086/338450.; Lee K.S., Kim H.J., Li Q.L., Chi X.Z., Ueta C., Komori T., Wozney J.M., Kim E.G., Choi J.Y., Ryoo H.M., Bae S.C. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20(23):8783-92. doi:10.1128/MCB.20.23.8783-8792.2000.; Marofi F., Vahedi G., Solali S., Alivand M., Salarinasab S., Zadi Heydarabad M., Farshdousti Hagh M. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. J Cell Physiol. 2019;234(5):6230-6243. doi:10.1002/jcp.27352; Li J.Y., English M.A., Ball H.J., Yeyati P.L., Waxman S., Licht J.D. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem. 1997;272(36):22447-55. doi:10.1074/jbc.272.36.22447.; Melnick A., Ahmad K.F., Arai S., Polinger A., Ball H., Borden K.L., Carlile G.W., Prive G.G., Licht J.D. In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/ POZ domain reveals motifs and residues required for biological and transcriptional functions. Mol Cell Biol. 2000;20(17):6550-67. doi:10.1128/MCB.20.17.6550-6567.2000.; Wang N., Frank G.D., Ding R., Tan Z., Rachakonda A., Pandolfi P.P., Senbonmatsu T., Landon E.J., Inagami T. Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2. PLoS One. 2012;7(4):e35632. doi:10.1371/journal.pone.0035632.

  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2016); 34-40 ; Вестник Московского университета. Серия 16. Биология; № 4 (2016); 34-40 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/387/362; Justice B.A., Badr N.A., Felder R.A. 3D cell culture opens new dimensions in cell-based assays // Drug Discov. Today. 2009. Vol. 14. N 1. P. 102–107.; Sun L.Y., Lin S.Z., Li Y.S., Harn H.J., Chiou T.W. Functional cells cultured on microcarriers for use in regenerative medicine research // Cell Transplant. 2011. Vol. 20. N 1. P. 49–62.; Costa A.R., Withers J., Rodrigues M.E., McLoughlin N., Henriques M., Oliveira R., Rudd P.M., Azeredo J. The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody // Springerplus. 2013. Vol. 2. N 1. P. 25.; Chen A.K.-L., Reuveny S., Oh S.K.W. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction // Biotechnol. Adv. 2013. Vol. 31. N 7. P. 1032–1046.; Bonartsev A.P., Yakovlev S.G., Filatova E.V., Soboleva G.M., Makhina T.K., Bonartseva G.A., Shaĭtan K.V., Popov V.O., Kirpichnikov M.P. Sustained release of the antitumor drug paclitaxel from poly(3-hydroxybutyrate)-based microspheres // Biochem. (Mosc.), Suppl., Ser. B Biomed. Chem. 2012. Vol. 6. N 1. P. 42–47.; Yang Y., Rossi F.M.V., Putnins E.E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture // Biomaterials. 2007. Vol. 28. N 20. P. 3110–3120.; Chen M., Wang X., Ye Z., Zhang Y., Zhou Y., Tan W.-S. A modular approach to the engineering of a centimetersized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers // Biomaterials. 2011. Vol. 32. N. 30. P. 7532–7542.; Müller P., Bulnheim U., Diener A., Lüthen F., Teller M., Klinkenberg E.-D., Neumann H.-G., Nebe B., Liebold A., Steinhoff G., Rychly J. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells // J. Cell. Mol. Med. 2007. Vol. 12. N 1. P. 281–291.; Moisenovich M.M., Pustovalova O., Shackelford J., Vasiljeva T.V, Druzhinina T.V., Kamenchuk Y.A., Guzeev V.V, Sokolova O.S., Bogush V.G., Debabov V.G., Kirpichnikov M.P., Agapov I.I. Tissue regeneration in vivo within recombinant spidroin 1 scaffolds // Biomaterials. 2012. Vol. 33. N 15. P. 3887–3898.; Arkhipova A.Y., Kotlyarova M.S., Novichkova S.G., Agapova O.I., Kulikov D.A., Kulikov A.V., Drutskaya M.S., Agapov I.I., Moisenovich M.M. New silk fibroin-based bioresorbable microcarriers // Bull. Exp. Biol. Med. 2016. Vol. 160. N 4. P. 491–494.; Moisenovich M.M., Kulikov D.A., Arkhipova A.Y., Malyuchenko N.V., Kotlyarova M.S., Goncharenko A.V., Kulikov A.V., Mashkov A.E., Agapov I.I., Paleev F.N., Svistunov A.A., Kirpichnikov M.P. Fundamental bases for the use of silk fibroin-based bioresorbable microvehicles as an example of skin regeneration in therapeutic practice // Ter. Arkh. 2015. Vol. 87. N 12. P. 66–72; Correia C., Bhumiratana S., Yan L.-P., Oliveira A.L., Gimble J. M., Rockwood D., Kaplan D.L., Sousa R.A., Reis R.L., Vunjak-Novakovic G. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells // Acta Biomater. 2012. Vol. 8. N 7. P. 2483–2492.; Agapov I.I., Moisenovich M.M., Druzhinina T.V., Kamenchuk Y.A., Trofimov K.V., Vasilyeva T.V., Konkov A.S., Arhipova A.Y., Sokolova O.S., Guzeev V.V., Kirpichnikov M.P. Biocomposite scaffolds containing regenerated silk fibroin and nanohydroxyapatite for bone tissue regeneration // Dokl. Biochem. Biophys. 2011. Vol. 440. N 1. P. 228–230.; Yang L., Hedhammar M., Blom T., Leifer K., Johansson J., Habibovic. P, van Blitterswijk C.A. Biomimetic calcium phosphate coatings on recombinant spider silk fibres // Biomed. Mater. 2010. Vol. 5. N. 4. 045002.; Karpushkin E., Dušková-Smrčková M., Remmler T., Lapčíková M. Dušek K. Rheological properties of homogeneous and heterogeneous poly(2-hydroxyethyl methacrylate) hydrogels // Polym. Int. 2012. Vol. 61. N 2. P. 328–336.; Czekanska E.M., Stoddart M.J., Richards R.G., Hayes J.S. In search of an osteoblast cell model for in vitro research // Eur. Cell. Mater. 2012. Vol. 24. P. 1–17.; Moisenovich M.M., Arkhipova A.Y., Orlova A.A., Drutskaya M.S., Volkova S.V., Zacharov S.E., Agapov I.I., Kirpichnikov M.P. Composite Scaffolds containing silk fibroin, gelatin, and hydroxyapatite for bone tissue regeneration and 3D Cell Culturing // Acta Naturae. 2014. Vol. 6. N 1. P. 96–101.; Tseng P.C., Young T.H., Wang T.M., Peng H.W., Hou S.M., Yen M.L. Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension // Biomaterials. 2012. Vol. 33. N. 2. P. 556–564.; Al-Munajjed A.A., Plunkett N.A., Gleeson J.P., Weber T., Jungreuthmayer C., Levingstone T., Hammer J., O’Brien F.J. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique // J. Biomed. Mater. Res. Part B Appl. Biomater. 2009. Vol. 90B. N 2. P. 584–591.; Li X., Huang Y., Zheng L., Liu H., Niu X., Huang J., Zhao F., Fan Y. Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro // J. Biomed. Mater. Res. A2014. Vol. 102. N 4. P. 1092–1101.; Cheng Q., Rutledge K., Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications // Ann. Biomed. Eng. 2013. Vol. 41. N 5. P. 904–916.; Zaari N., Rajagopalan P., Kim S.K., Engler A.J., Wong J.Y. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response // Adv. Mater. 2004. Vol. 16. N 23–24. P. 2133–2137.; Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., M. Cordenonsi, Zanconato F., Le Digabel J., Forcato M., Bicciato S., Elvassore N., Piccolo S. Role of YAP/TAZ in mechanotransduction // Nature. 2011. Vol. 474. N 7350. P. 179–183.; Wang H.B., Dembo M., Wang Y.L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells // Am. J. Physiol. Cell Physiol. 2000. Vol. 279. N 5. P. C1345–1350.; Шрамм Г. Основы практической реологии и реометрии. М: КолосС, 2003. 312 c.

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Πηγή: Технологии живых систем. 2018. Т. 15, № 2. С. 22-29

    Περιγραφή αρχείου: application/pdf