Εμφανίζονται 1 - 20 Αποτελέσματα από 42 για την αναζήτηση '"ОСТЕОКЛАСТЫ"', χρόνος αναζήτησης: 0,66δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Bolʹ, Sustavy, Pozvonočnik, Vol 9, Iss 2, Pp 135-142 (2019)
    PAIN. JOINTS. SPINE; Том 9, № 2 (2019); 135-142
    Боль. Суставы. Позвоночник-Bolʹ, sustavy, pozvonočnik; Том 9, № 2 (2019); 135-142
    Біль. Суглоби. Хребет-Bolʹ, sustavy, pozvonočnik; Том 9, № 2 (2019); 135-142

    Περιγραφή αρχείου: application/pdf

  2. 2
    Academic Journal

    Πηγή: Modern Rheumatology Journal; Том 17, № 3 (2023); 60-65 ; Современная ревматология; Том 17, № 3 (2023); 60-65 ; 2310-158X ; 1996-7012

    Περιγραφή αρχείου: application/pdf

    Relation: https://mrj.ima-press.net/mrj/article/view/1432/1362; Bollerslev J, Andersen PE Jr. Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone. 1988;9(1):7-13. doi:10.1016/8756-3282(88)90021-x.; Loria-Cortes R, Quesada-Calvo E, Cordero-Chaverri C. Osteopetrosis in children: a report of 26 cases. J Pediatr. 1977 Jul;91(1): 43-7. doi:10.1016/s0022-3476(77)80441-1.; Старк З, Саварирайан Р. Остеопетроз. Нефрология. 2010;14(2):20-34.; Кириллов АГ. Аутосомно-рецессивный ОПТ Чувашии. Автореф. дис. канд. мед. наук. Москва; 2005.; Кириллов АГ. Аутосомно-рецессивный ОПТ: ранняя диагностика. Российский педиатрический журнал. 2006;(4):47-51.; Калягин АН, Белозерцева ЛВ, Щаднева СИ и др. Остеопетроз («мраморная» болезнь). Современная ревматология. 2014; 8(1):23-6. doi:10.14412/1996-7012-2014-1-23-26; Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis. 2009 Feb 20;4:5. doi:10.1186/1750-1172-4-5.; Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments. Dis Model Mech. 2021 May 1;14(5): dmm048940. doi:10.1242/dmm.048940. Epub 2021 May 10.; Penna S, Capo V, Palagano E, et al. One disease, many genes: implications for the treatment of osteopetroses. Front Endocrinol (Lausanne). 2019 Feb 19;10:85. doi:10.3389/fendo.2019.00085. eCollection 2019.; Jacome-Galarza CE, Percin GI, Muller JT, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019 Apr;568(7753):541-5. doi:10.1038/s41586-019-1105-7. Epub 2019 Apr 10.; Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013 Sep;9(9):522-36. doi:10.1038/nrendo.2013.137. Epub 2013 Jul 23.; Palagano E, Menale C, Sobacchi C, et al. Genetics of osteopetrosis. Curr Osteoporos Rep. 2018 Feb;16(1):13-25. doi:10.1007/s11914-018-0415-2.; Howaldt A, Nampoothiri S, Quell LM, et al. Sclerosing bone dysplasias with hallmarks of dysosteosclerosis in four patients carrying mutations in SLC29A3 and TCIRG1. Bone. 2019 Mar;120:495-503. doi:10.1016/j.bone.2018.12.002. Epub 2018 Dec 8.; Howaldt A, Hennig AF, Rolvien T, et al. Adult osteosclerotic metaphyseal dysplasia with progressive osteonecrosis of the jaws and abnormal bone resorption pattern due to a LRRK1 splice site mutation. J Bone Miner Res. 2020 Jul;35(7):1322-32. doi:10.1002/jbmr.3995. Epub 2020 Mar 19.; Kelly A, Younus A, Lekgwara P. Neurosurgical considerations in osteopetrosis. Interdisciplinary Neurosurgery. 2020;20. doi:10.1016/j.inat.2020.100679.; Arruda M, Coelho MCA., Moraes AB, et al. Bone mineral density and microarchitecture in patients with autosomal dominant osteopetrosis: A report of two cases. J Bone Miner Res. 2016 Mar;31(3):657-62. doi:10.1002/jbmr.2715. Epub 2015 Oct 20.; Wu CC, Econs MJ, DiMeglio LA, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the osteopetrosis working group. J Clin Endocrinol Metab. 2017 Sep 1;102(9):3111-23. doi:10.1210/jc.2017-01127.; Di Zanni E, Palagano E, Lagostena E, et al. Pathobiologic mechanisms of neurodegeneration in osteopetrosis derived from structural and functional analysis of 14 ClC-7 mutants. J Bone Miner Res. 2021 Mar;36(3): 531-45. doi:10.1002/jbmr.4200. Epub 2020 Nov 29.; Loke JY, Haslina MA, Kamalden TA. Osteopetrosis craniopathy: a rare cause of bilateral compressive optic neuropathy and facial nerve palsy. Postgrad Med J. 2019 Sep; 95(1127):513. doi:10.1136/postgradmedj2019-136527. Epub 2019 Jul 10.; Capo V, Penna S, Merelli I, et al. Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica. 2021 Jan 1;106(1):74-86. doi:10.3324/haematol.2019.238261.; Schulz AS, Moshous D, Steward CG, et al. Osteopetrosis. Consensus Guidelines for Diagnosis, Therapy and Follow-Up. 2015. https://Esid.Org/.2015.654.; Coudert AE, De Vernejoul MC, Muraca M, et al. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. Int J Endocrinol. 2015;2015:372156. doi:10.1155/2015/372156. Epub 2015 Mar 19.; Devi R, Siddaiahgari S, Lingappa L, et al. Case Report – Autosomal Recessive Infantile Malignant Osteopetrosis in India with novel mutation in TCIRG1 gene. European journal of human genetics. 2010;18:92.; Orchard PJ, Fasth AL, Le Rademacher JL, et al. Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood. 2015 Jul 9; 126(2):270-6. doi:10.1182/blood-2015-01-625541. Epub 2015 May 26.; Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet. 2021 Apr;22(4): 216-34. doi:10.1038/s41576-020-00298-5. Epub 2020 Dec 10.; Zhilyaev VM, Arapova SD, Mamedova EO, et al. Osteopetrosis: the follow-up of the disease in a patient who underwent hematopoietic stem cell transplantation at the age of 27 years. Osteoporosis and bone diseases. 2020; 23(1):14-9. doi:10.14341/osteo12434; Thrasher AJ, Williams DA. Evolving gene therapy in primary immunodeficiency. Mol Ther. 2017 May 3;25(5):1132-41. doi:10.1016/ j.ymthe.2017.03.018. Epub 2017 Mar 31.; Löfvall H, Rothe M, Schambach A, et al. Hematopoietic stem cell-targeted neonatal gene therapy with a clinically applicable lentiviral vector corrects osteopetrosis in oc/oc mice. Hum Gene Ther. 2019 Nov;30(11): 1395-404. doi:10.1089/hum.2019.047. Epub 2019 Jul 3.; Even-Or E, Stepensky P. How we approach malignant infantile osteopetrosis. Pediatr Blood Cancer. 2021 Mar;68(3):e28841. doi:10.1002/pbc.28841. Epub 2020 Dec 12.; Stepensky P, Grisariu S, Avni B, et al. Stem cell transplantation for osteopetrosis in patients beyond the age of 5 years. Blood Adv. 2019 Mar 26;3(6):862-8. doi:10.1182/bloodadvances.2018025890.; Key LL Jr, Rodriguiz RM, Willi SM, et al. Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med. 1995 Jun 15;332(24):1594-9. ssdoi: 10.1056/NEJM199506153322402.; Николаев НС, Борисова ЛВ, Дидиченко СН и др. ОПТ и эндопротезирование – клиническое наблюдение. Наука и инновации в медицине. 2017;2(4):65-72.

  3. 3
    Academic Journal

    Πηγή: Central Asian Journal of Academic Research; Vol. 3 No. 10 Part 3 (2025): Central Asian Journal of Academic Research; 37-46 ; Центральноазиатский журнал академических исследований; Том 3 № 10 Part 3 (2025): Центральноазиатский журнал академических исследований; 37-46

    Περιγραφή αρχείου: application/pdf

  4. 4
  5. 5
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 24, № 5 (2022); 911-930 ; Медицинская иммунология; Том 24, № 5 (2022); 911-930 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1521/1578; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1521/9288; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1521/9289; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1521/9290; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1521/9291; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1521/9292; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1521/9293; Adamopoulos I.E., Bowman E.P. Immune regulation of bone loss by Th17 cells. Arthritis Res. Ther., 2008, Vol. 10, no. 5, 225. doi:10.1186/ar2502.; Adamopoulos I.E., Chao C.C., Geissler R., Laface D., Blumenschein W., Iwakura Y. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis. Res. Ther., 2010, Vol. 12, R29. doi:10.1186/ar2936.; Adeel S., Singh K., Vydareny K.H., Kumari M., Shah E., Weitzmann M.N., Tangpricha V. Bone loss in surgically ovariectomized premenopausal women is associated with T Lymphocyte activation and thymic hypertrophy. J. Investig. Med., 2013, Vol. 61, pp. 1178-1185.; Ahern D.J., Brennan F.M. The role of Natural Killer cells in the pathogenesis of rheumatoid arthritis: major contributors or essential homeostatic modulators? Immunol. Lett., 2011, Vol. 136, pp. 115-121.; Akiyama K., Chen C., Wang D., Xu X., Qu C., Yamaza T. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell., 2012, Vol. 10, pp. 544-555.; Almeida C.R., Caires H.R., Vasconcelos D.P., Barbosa M.A. NAP-2 secreted by human NL cells can stimulate mesenchymal stem/stromal cell recruitment. Stem Cell Rep., 2016, Vol. 6, pp. 466-473.; Amarasekara D.S., Yun H., Kim S., Lee N., Kim H., Rho J. Regulation of osteoclast differentiation by cytokine networks. Immune Netw., 2018, Vol. 18, e8. doi:10.4110/in.2018.18.e8.; An G., Acharya C., Feng X., Wen K., Zhong M., Zhang L., Munshi N.C., Qiu L., Tai Y.T., Anderson K.C. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood, 2016, Vol. 128, pp. 1590-1603.; Arron J.R., Choi Y. Bone versus immune system. Nature, 2000, Vol. 408, pp. 535-536.; Askalonov A.A. Changes in some indices of cellular immunity in patients with uncomplicated and complicated healing of bone fractures. J. Hyg. Epidemiol. Microbiol. Immunol., 1981, Vol. 25, pp. 307-310.; Azuma Y., Kaji K., Katogi R., Takeshita S., Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J. Biol. Chem., 2000, Vol. 275, pp. 4858-4864.; Bartold P.M., Marshall R.I., Haynes D.R. Periodontitis and rheumatoid arthritis: a review. J. Periodontol., 2005, Vol. 76, no. 11, pp. 2066-2074.; Blin-Wakkach C., Wakkach A., Sexton P.M., Rochet N., Carle G.F. Hematological defects in the oc/oc mouse, a model of infantile malignant osteopetrosis. Leukemia, 2004, Vol. 18, pp. 1505-1511.; Bolzoni M., Ronchetti D., Storti P., Donofrio G., Marchica V., Costa F., Agnelli L., Toscani D., Vescovini R., Todoerti K., Bonomini S., Sammarelli G., Vecchi A., Guasco D., Accardi F., Palma B.D., Gamberi B., Ferrari C., Neri A., Aversa F., Giuliani N. IL21R expressing CD14+ CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts. Haematologica, 2017, Vol. 102, no. 4, pp. 773-784.; Bolzoni M., Storti P., Bonomini S., Todoerti K., Guasco D., Toscani D., Agnelli L., Neri A., Rizzoli V., Giuliani N. Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules. Exp. Hematol., 2014, Vol. 41, pp. 387-397.; Bolzoni M., Toscani D., Storti P., Marchica V., Costa F., Giuliani N. Possible targets to treat myeloma-related osteoclastogenesis. Exp. Rev. Hematol., 2018, Vol. 11, pp. 325-326.; Boyce B.F., Yao Z., Xing L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit. Rev. Eukaryot. Gene Expr., 2009, Vol.19, pp. 171-180.; Breuil Y., Ticchioni M., Testa J., Roux C.H., Ferrari P., Breittmayer J.P., Albert-Sabonnadière C., Durant J., de Perreti F., Bernard A., Euller-Ziegler L., Carle G.F. Immune changes in post-menopausal osteoporosis: the immunos study. Osteoporos Int., 2010, Vol. 21. pp. 805-814.; Brunetti G., Colucci S., Pignataro P., Coricciati M., Mori G., Cirulli N. T cells support osteoclastogenesis in an in vitro model derived from human periodontitis patients. J. Periodontol., 2005, Vol. 76, pp. 1675-1680.; Brunetti G., Rizzi R., Oranger A., Gigante I., Mori G., Taurino G., Mongelli T., Colaianni G., di Benedetto A., Tamma R., Ingravallo G., Napoli A., Faienza M.F., Mestice A., Curci P., Specchia G., Colucci S., Grano M. LIGHT/ TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget, 2014, Vol. 5, no. 24, pp. 12950-12967.; Calvani N., Cafforio P., Silvestris F., Dammacco F. Functional osteoclast-like transformation of cultured human myeloma cell lines. Br. J. Haematol., 2005, Vol. 130, pp. 926-938.; Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., Martin R.P., Schipani E., Divieti P., Bringhurst F.R., Milner L.A., Kronenberg H.M., Scadden D.T. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, Vol. 425, pp. 841-846.; Cantley M.D., Haynes D.R., Marino V., Bartold P.M. Pre-existing periodontitis exacerbates experimental arthritis in a mouse mode. J. Clin. Periodontol., 2011, Vol. 38, no. 6, pp. 532-541.; Cappariello A., Maurizi A., Veeriah V., Teti A. The great beauty of osteoclast. Arch. Biochem. Biophys., 2014, Vol. 561, pp. 13-21.; Capulli M., Paone R., Rucci N. Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys., 2014, Vol. 561, pp. 3-12.; Champagne C.M., Takebe J., Offenbacher S., Cooper L.F. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone, 2002, Vol. 30, pp. 26-31.; Chang M.K., Raggatt I.J., Alexander K.A., Kuliwaba J.S., Fazzalari N.L., Schroder K., Maylin E.R., Ripoll V.M., Hume D.A., Pettit A.R. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol., 2008, Vol. 181, pp. 1232-1244.; Chávez-Galán L., Olleros M.L., Vesin D., Garcia I. Much more than M1 and M2 macrophages, there are also CD169 + and TCR + macrophages. Front. Immunol., 2015, Vol. 6, 263. doi:10.3389/fimmu.2015.00263.; Chen L., Wei X.Q., Evans B., Jiang W., Aeschlimann D. IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur. J. Immunol., 2008, Vol. 38, pp. 2845-2854.; Chen X., Wang Z., Duan N., Zhu G., Schwarz E.M., Xie C. Osteoblast-osteoclast interactions. Connect Tissue Res., 2018, Vol. 59, no. 2, pp. 99-107.; Chitteti B.R., Cheng Y.H., Poteat B., Rodriguez-Rodriguez S., Goebel W.S., Carlesso N., Kacena M.A., Srour E.F. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood, 2010, Vol. 115, pp. 3239-3248.; Cho S.W., Soki F.N., Koh A.J., Eber M.R., Entezami P., Park S., van Rooijen N., McCauley L.K. Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc. Natl Acad. Sci. USA, 2014, Vol. 111, pp. 1545-1550.; Ciucci T., Ibáñez L., Boucoiran A., Birgy-Barelli E., Pène J., Abou-Ezzi G., Arab N., Rouleau M., Hébuterne X., Yssel H., Blin-Wakkach C., Wakkach A. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut, 2015, Vol. 64, pp. 1072-1081.; Corcione A., Benvenuto F., Ferretti E., Giunti D., Cappiello V., Cazzanti F., Risso M., Gualandi F., Mancardi G.L., Pistoia V., Uccelli A. Human mesenchymal stem cells modulate B-cell functions. Blood, 2006, Vol. 107, pp. 367-372.; Crotti T.N., Smith M.D., Weedon H. Receptor activator NF-κB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann. Rheum. Dis., 2002, Vol. 61, no. 12, pp. 1047-1054.; Crotti T., Smith M.D., Hirsch R., Receptor activator NF κB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J. Periodontal Res., 2015, Vol. 38, no. 4, pp. 380-383.; D’Amelio P., Grimaldi A., di Bella S., Brianza S.Z.M., Cristofaro M.A., Tamone C. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone, 2008, Vol. 43. pp. 92-100.; de Benedetti F., Rucci N., del Fattore A., Peruzzi B., Paro R., Longo M. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum., 2006, Vol. 54, pp. 3551-3363.; Deller T. Histologie. Zytologie, Histologie und mikroskopische Anatomie : das Lehrbuch. 5 th ed München: Elsevier, 2018.; Dohle E., Bischoff I., Böse T., Marsano A., Banfi A., Unger R., Kirkpatrick CJ. Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts. Eur. Cell. Mater., 2014, Vol. 27, pp. 149-165.; Dougall W.C., Glaccum M., Charrier K., Rohrbach K., Brasel K., de Smedt T. RANK is essential for osteoclast and lymph node development. Genes Dev., 1999, Vol. 13, pp. 2412-2424.; Duque G., Huang D.C., Dion N., Macoritto M., Rivas D., Li W., Li W., Yang X.F., Li J., Lian J., Marino F.T., Barralet J., Lascau V., Deschênes C., Ste-Marie L.G., Kremer R. Interferon-gamma plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J. Bone Miner. Res., 2011, Vol. 26, pp. 1472-1483.; Egawa T., Kawabata K., Kawamoto H., Amada K., Okamoto R., Fujii N., Fujii N., Kishimoto T., Katsura Y., Nagasawa T. The earliest stages of B cell development require chemokine stromal cell-derived factor/pre-B cell growth- stimulating factor. Immunity, 2001, Vol. 15, pp. 323-334.; Eghbali-Fatourechi G., Khosla S., Sanyal A., Boyle W.J., Lacey D.L., Riggs B.L. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest., 2003, Vol. 111, pp. 1221-1230.; El-Jawhari J.J., Jones E., Giannoudis P.V. The role of immune cells in bone haling; what we know, do not know and future perspectives. Injury, 2016, Vol. 47, pp. 2399-2406.; Ellmeier W., Jung S., Sunshine M.J., Hatam F., Xu Y., Baltimore D., Mano H., Littman D.R. Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J. Exp. Med., 2000, Vol. 192, pp. 1611-1624.; Feng S., Madsen S.H., Viller N.N., Neutzsky-Wulff A.V., Geisler C., Karlsson L. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology, 2015, Vol. 145, pp. 367-379.; Feng X., Teitelbaum S.L. Osteoclasts: new insights. Bone Res., 2013, Vol. 1, pp. 1-26.; Fernandez-Real J.M., Izquiredo M., Ortega F., Gorostiaga E., Gomez-Ambrosi J., Moreno-Navarrete J.S., Frühbeck G., Martínez C., Idoate F., Salvador J., Forga L., Ricart W., Ibañez J. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity and disposal with hypocaloric diet and resistance training. J. Clin. Endocrinol. Metab., 2009, Vol. 94, pp. 237-245.; Fujiwara Y., Piemontese M., Liu Y., Thostenson J.D., Xiong J., O’Brien C.A. RANKL (Receptor Activator of NFkB Ligand) produced by osteocytes is required for the increase in B cells and bone loss caused by estrogen deficiency in mice. J. Biol. Chem., 2016, Vol. 291, pp. 24838-24850.; Gallois A., Lachuer J., Yvert G., Wierinckx A., Brunet F., Rabourdin-Combe C., Delprat C., Jurdic P., Mazzorana M. Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes. J. Bone Miner. Res., 2010, Vol. 25, pp. 661-672.; Gao B., Deng R., Chai Y., Chen H., Hu B., Wang X., Zhu S., Cao Y., Ni S., Wan M., Yang L., Luo Z., Cao X. Macrophage-lineage TRAP + cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J. Clin. Invest., 2019, Vol. 129, pp. 2578-2594.; Ginaldi L., de Martinis M. Osteoimmunology and Beyond. Curr. Med. Chem., 2016, Vol. 23, no. 33, pp. 3754-3774.; Girasole G., Passeri G., Jilka R.L., Manolagas S.C. Interleukin 11: a new cytokine critical for osteoclast development. J. Clin. Invest., 1994, Vol. 93, pp. 1516-1524.; Goerdt S., Orfanos C.E. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity., 1999, Vol. 10, pp. 137-142.; Gowen M., MacDonald B.R., Russel R.G. Actions of recombinant human gamma-interferon and tumor necrosis factor alpha on the proliferation and osteoblastic characteristics of human trabecular bone cells in vitro. Arthritis Rheum., 1988, Vol. 31, pp. 1500-1507.; Guihard P., Boutet M.A., Brounais B., David E., Brion R., Delecrin J. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells, 2012, Vol. 30, pp. 762-772.; Hajishengallis G., Moutsopoulos N.M., Hajishengallis E., Chavakis T. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin. Immunol., 2016, Vol. 28, pp. 146-158.; Hanna R.N., Carlin L.M., Hubbelin H.G., Nackiewicz D., Green A.M., Punt J.A. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C-monocytes. Nat. Immunol., 2011, Vol. 12, pp. 778-785.; Harvey G.P., Fitzsimmons T.R., Dhamarpatni A.A.S.S.K., Marchant C., Haynes D.R., Bartold P.M. Expression of peptidylarginine deiminase-2 and -4, citrullinated proteins and anti-citrullinated protein antibodies in human gingiva. J. Periodontal Res., 2013, Vol. 48, no. 2, pp. 252-261.; Hashizume M., Hayakawa N., Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford), 2008, Vol. 47, pp. 1635-1640.; Haynes D.R., Barg E., Crotti T.N., Holding C., Weedon H., Atkins G.J., Zannetino A., Ahern M.J., Coleman M., Roberts-Thomson P.J., Kraan M., Tak P.P., Smith M.D. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatology., 2003, Vol. 42, no. 1, pp. 123-134.; Horton J.E., Raisz L.G., Simmons H.A., Oppenheim J.J., Mergenhagen S.E. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science, 1972, Vol. 177, pp. 793-795.; Hughes D.E., Dai A., Tiffee J.C., Li H.H., Mundy G.R., Boyce B.F. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat. Med., 1996, Vol. 2, pp. 1132-1136.; Hwang S.Y., Kim J.Y., Kim K.W., Park M.K., Moon Y., Kim W.U. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res. Ther., 2004, Vol. 6, pp. 120-128.; Hwang Y.C., Jeong I.K., Ahn K.J., Chung H.Y. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-age male subjects. Diabetes Met. Res. Rev., 2009, Vol. 25, pp. 768-772.; Ito H. Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and possible cell sources. Mod. Rheumatol., 2011, Vol. 21, pp. 113-121.; Ivanovic D.V., di Battista J.A., Martel-Pelletier J., Jolicoeur P.C., He Y., Zhang M. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J. Immunol., 1998, Vol. 160, pp. 3513-3521.; Jarry C.R., Durante P.M., Freitas F.F., de Macedo C.G., Clemente-Napimoga J.T., Saba-Chujfi E. Secreted osteoclastogenic factor of activated T cells (SOFAT), a novel osteoclast activator, in chronic periodontitis. Hum. Immunol., 2013, Vol. 74, pp. 861-866.; Ji J.D., Park-Min K.H., Shen Z., Fajardo R.J., Goldring S.R., McHugh K.P., Ivashkiv L.B. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors. J. Immunol., 2009, Vol. 183, pp. 7223-7233.; Kaneshiro S., Ebina K., Shi K., Higuchi C., Hirao M., Okamoto M. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J. Bone Miner. Metab., 2014, Vol. 32, pp. 378-392.; Kawai T., Matsuyama T., Hosokawa Y. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am. J. Pathol., 2006, Vol. 169, pp. 987-998.; Kawai T., Eisen-Lev R., Seki M., Eastcott W., Wilson M.E., Taubman M.A. Requirement of B7 costimulation for Th1-mediated inflammatory bone resorption in experimental periodontal disease. J. Immunol., 2000,Vol. 164, no. 4, pp. 2102-2109.; Kim J.W., Lee M.S., Lee C.H., Kim H.Y., Chae S.U., Kwak H.B. Effect of interferon-gamma on the fusion of mononuclear osteoclasts into bone-resorbing osteoclasts. BMB Rep., 2012, Vol. 45, pp. 281-286.; Kim Y.G., Lee C.K., Nah S.S., Mun S.H., Yoo B., Moon H.B. Human CD4+ CD25 + regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun., 2007, Vol. 357, pp. 1046-1052.; Kitaura H., Zhou P., Kim H.J., Novack D.V., Ross F.P., Teitelbaum S.L. M-CSF mediates TNF-induced inflammatory osteolysis. J. Clin. Invest., 2005, Vol. 115, pp. 3418-3427.; Klyushnenkova E., Mosca J.D., McIntosh K.R. Human mesenchymal stem cells suppress allogeneic T cell response in vitro: implications for allogenic transplantation. Blood, 1998, Vol. 92, 642a. doi:10.1182/blood-2004-04-1559.; Koga T., Inui M., Inoue K., Kim S., Suematsu A., Kobayashi E., Iwata T., Ohnishi H., Matozaki T., Kodama T., Taniguchi T., Takayanagi H., Takai T. Costimulatory signals mediated by ITAM motif cooperate with RANKL for bone homeostasis. Nature, 2004, Vol. 428, pp. 758-763.; Kohara H., Kitaura H., Fujimura Y., Yoshimatsu M., Morita Y., Eguchi T. IFN-gamma directly inhibits TNFalpha-induced osteoclastogenesis in vitro and in vivo and induces apoptosis mediated by Fas/Fas ligand interactions. Immunol. Lett., 2011, Vol. 137, pp. 53-61.; Kollet O., Dar A., Shivtiel S., Kalinkovich A., Lapid K., Sztainberg Y. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med., 2006, Vol. 12, pp. 657-664.; Komine M., Kukita A., Kukita T., Ogata Y., Hotokebuchi T., Kohashi O. Tumor necrosis factor-alpha cooperates with receptor activator of nuclear factor kappaB ligand in generation of osteoclasts in stromal cell-depleted rat bone marrow cell culture. Bone, 2001, Vol. 28, pp. 474-483.; Kong Y.Y., Yoshida H., Sarosi I., Tan H.L., Timms E., Capparelli C., Morony S., Oliveira-dos-Santos A.J., van G., Itie A., Khoo W., Wakeham A., Dunstan C.R., Lacey D.L., Mak T.W., Boyle W.J. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, Vol. 397, pp. 315-323.; Kotake S., Udagawa N., Hakoda M., Yano K., Tsuda E., Takahashi K., Furuya T., Ishiyama S., Kim K.J., Saito S., Nishikawa T., Takahashi N., Togari A., Tomatsu T., Suda T., Kamatani N. Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum., 2001, Vol. 44, no. 5, pp. 1003-1012.; Kudo O., Sabokbar A., Pocock A., Itonaga I., Fujikawa Y., Athanasou N.A. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone, 2003, Vol. 32. pp. 1-7.; Kwak H.B., Ha H., Kim H.N., Lee J.H., Kim H.S., Lee S. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum., 2008, Vol. 58, pp. 1332-1342.; Lacey D.L., Timms E., Tan H.L., Kelley M.J., Dunstan C.R., Burgess T., Elliott R., Colombero A., Elliott G., Scully S., Hsu H., Sullivan J., Hawkins N., Davy E., Capparelli C., Eli A., Qian Y.X., Kaufman S., Sarosi I., Shalhoub V., Senaldi G., Guo J., Delaney J., Boyle W.J. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998, Vol. 93, pp. 165-176.; Lawson M.A., McDonald M.M., Kovacic N., Hua Khoo W., Terry R.L., Down J. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun., 2015, Vol. 6, 8983. doi:10.1038/ncomms9983.; Li X., Wei W., Huynh H., Zuo H., Wang X., Wang Y. Nur77 prevents excessive osteoclastogenesis by inducing ubiquitin ligase Cbl-b to mediate NFATc1. Elife, 2014, Vol. 4, e072. doi:10.1155/2014/263625.; Liu H., Luo T., Tan J., Li M., Guo J. Osteoimmunology’ offers new perspectives for the treatment of pathological bone loss. Curr. Pharm. Des., 2017, Vol. 23, no. 41, pp. 6272-6278.; Lubberts E., Koenders M.I., van der Berg W.B. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res. Ther., 2005, Vol. 7, pp. 29-37.; Lüllmann-Rauch R., Paulsen F. Taschenlehrbuch Histologie. 10 Tabellen. 4 th ed Stuttgart: Thieme, 2012.; Lundberg K., Wegner N., Yucel-Lindberg T., Venables P. J. Periodontitis in RA-the citrullinated enolase connection. Nat. Rev. Rheumatol., 2010, Vol. 6, no. 12, pp. 727-730.; Luz-Crawford P., Kurte M., Bravo-Alegría J., Contreras R., Nova-Lamperti E., Tejedor G., Noël D., Jorgensen C., Figueroa F., Djouad F., Carrión F. Mesenchymal stem cells regenerate a CD4+ CD25+ Foxp3 + regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res. Ther., 2013, Vol. 4, 65. doi:10.1186/scrt216.; Maddur M.S., Miossec P., Kaveri S.V., Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol., 2012, Vol. 181, pp. 8-18.; Manabe N., Kawaguchi H., Chikuda H., Miyaura C., Inada M., Nagai R. Connection between B lymphocyte and osteoclast differentiation pathways. J. Immunol., 2001, Vol. 167, pp. 2625-2631.; Manolagas S.C., O’Brien C.A., Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat. Rev. Endocrinol., 2013, Vol. 9, pp. 699-712.; Mansour A., Abou-Ezzi G., Sitnicka E., Jacobsen S.E., Wakkach A., Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med., 2012, Vol. 209, pp. 537-549.; Mansour A., Wakkach A., Blin-Wakkach C. Emerging roles of osteoclasts in the modulation of bone microenvironment and immune suppression in multiple myeloma. Front. Immunol., 2017, Vol. 8, 954. doi:10.3389/fimmu.2017.00954.; Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, Vol. 25, pp. 677-686.; Maruhashi T., Kaifu T., Yabe R., Seno A., Chung S.H., Fujikado N., Iwakura Y. DCIR maintains bone homeostasis by regulating IFN-gamma production in T cells. J. Immunol., 2015, Vol. 194, pp. 5681-5691.; Matsumoto T., Kuriwaka-Kido R., Kondo I., Kido S. Regulation of osteoblast differentiation by interleukin-11 via AP-1 and Smad signaling. Endocr J., 2012, Vol. 59, pp. 91-101.; Michalski M.N., McCauley L.K. Macrophages and skeletal health. Pharmacol Ther., 2017, Vol. 174, pp. 43-54.; Miller J.P., Izon D., DeMuth W., Gerstein R., Bhandoola A., Allman D. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J. Exp. Med., 2002, Vol. 196, pp. 705-711.; Miyaura C., Onoe Y., Inada M., Maki K., Ikuta K., Ito M., Suda T. Increased B-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovarian functions: similarity to estrogen deficiency. Proc. Natl Acad. Sci. USA, 1997, Vol. 94, pp. 9360-9065.; Mohamad S.F., Xu L., Ghosh J., Childress P.J., Abeysekera I., Himes E.R. Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Adv., 2017, Vol. 1, pp. 2520-2528.; Mohty M., Malard F., Mohty B., Savani B., Moreau P., Terpos E. The effects of bortezomib on bone disease in patients with multiple myeloma. Cancer, 2014, Vol. 120, pp. 618-623.; Moon Y.M., Yoon B.Y., Her Y.M., Oh H.J., Lee J.S., Kim K.W. IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Res. Ther., 2012, Vol. 14, R246. doi:10.1186/ar4089.; Mori G., D’Amelio P., Faccio R., Brunetti G. The Interplay between the bone and the immune system. Clin. Dev. Immunol., 2013, Vol. 2013, 720504. doi:10.1155/2013/720504.; Mortaz E., Alipoor S.D., Adcock I.M., Mumby S., Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol., 2018, Vol. 9, 2171. doi:10.3389/fimmu.2018.; Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, Vol. 8, pp. 958-969.; Moutsopoulos N.M., Konkel J., Sarmadi M., Eskan M.A., Wild T., Dutzan N. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci. Transl. Med., 2014, Vol. 6, 229ra40. doi:10.1126/scitranslmed.3007696.; Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, Vol. 41, pp. 14-20.; Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat. Rev. Immunol., 2006, Vol. 6, pp. 107-116.; Nakase T., Yoshikawa H. Potential roles of bone morphogenetic proteins (BMPs) in skeletal repair and regeneration. J. Bone Miner. Metab., 2006, Vol. 24, pp. 425-433.; Nam D., Mau E., Wang Y., Wright D., Silkstone D., Whetstone H., Whyne C., Alman B. T-lymphocytes enable osteoblast maturation via IL-17F during early phase of fracture repair. PLoS One, 2012, Vol. 7, e40044. doi:10.1371/journal.pone.0040044.; Noonan K., Marchionni L., Anderson J., Pardoll D., Roodman G.D., Borrello I. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood, 2010, Vol. 116, pp. 3554-3563.; Okamoto K., Nakashima T., Shinohara M., Negishi-Koga T., Komatsu N., Terashima A., Sawa S., Nitta T., Takayanagi H. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol. Rev., 2017, Vol. 97, pp. 1295-1349.; Omar O.M., Granéli C., Ekström K., Karlsson C., Johansson A., Lausmaa J. The stimulation of an osteogenic response by classical monocyte activation. Biomaterials, 2011, Vol. 32, pp. 8190-8204.; Onal M., Xiong J., Chen X., Thosten J.D., Almeida J.D., Manolagas S.C., O’Brien C.A. Receptor activator of nuclear factor kB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem., 2012, Vol. 287, pp. 29851-29860.; Pacifici R., Brown C., Puscheck E., Friedrich E., Slatopolsky E., Maggio D. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc. Natl Acad. Sci. USA, 1991, Vol. 88, pp. 5134-5138.; Palumbo A., Anderson K. Multiple myeloma. N. Engl. J. Med., 2011, Vol. 364, pp. 1046-1060.; Pettit A.R., Walsh N.C., Manning C., Goldring S.R., Gravallese E.M. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology, 2006, Vol. 45, no. 9, pp. 1068-1076.; Piva R., Penolazzi L., Lambertini E., Giordano S., Gambari R. Induction of apoptosis of human primary osteoclasts treated with a transcription factor decoy mimicking a promoter region of estrogen receptor alpha. Apoptosis, 2005, Vol. 10, pp. 1079-1094.; Ponzetti M., Rucci N. Updates on osteoimmunology: what’s new on the cross-talk between bone and immune system. Front. Endocrinol., 2019, Vol. 10, 236. doi:10.3389/fendo.2019.00236.; Poubelle P.E., Chakravarti A., Fernandes M.J., Doiron K., Marceau A.A. Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res. Ther., 2007, Vol. 9, no. 2, R25. doi:10.1186/ar2137.; Pugliese L.S., Gonçalves T.O., Popi A.F., Mariano M., Pesquero J.B., Lopes J.D. B-1 lymphocytes differentiate into functional osteoclast-like cells. Immunobiology, 2012, Vol. 217, pp. 336-344.; Raisz L.G. Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartilage, 1999, Vol. 7, pp. 419-421.; Richardson J., Hill A.M., Johnston C.J., McGregor A., Norrish A.R., Eastwood D., Lavy C.B. Fracture healing in HIV-positive populations. J. Bone Joint Surg. Br., 2008, Vol. 90, pp. 988-994.; Rifas L., Weitzmann M.N. A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. Arthritis Rheumatol., 2009, Vol. 60, pp. 3324-3335.; Rivollier A., Mazzorana M., Tebib J., Piperno M., Aitsiselmi T., Rabourdin-Combe C., Jurdic P., Servet-Delprat C. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood., 2004, Vol. 104, pp. 4029-4037.; Roodman G.D. Pathogenesis of myeloma bone disease. Leukemia, 2009, Vol. 23, pp. 435-441.; Santiago-Schwarz F., Anand P., Liu S., Carsons S.E. Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses. J. Immunol., 2001, Vol. 167, pp.1758-1768.; Sato K., Suematsu A., Okamoto K., Yamaguchi A., Morishita Y., Kadono Y., Tanaka S., Kodama T., Akira S., Iwakura Y., Cua D.J., Takayanagi H. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med., 2006, Vol. 203, pp. 2673-2682.; Sato M., Asada N., Kawano Y., Wakahashi K., Minagawa K., Kawano H. Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab., 2013, Vol. 18, pp. 749-758.; Schlundt C., Reinke S., Geissler S., Bucher C. H., Giannini C., Märdian S. Individual Effector/Regulator T cell ratios impact bone regeneration. Front. Immunol., 2019, Vol. 10, 1954. doi:10.3389/fimmu.2019.01954.; Scholtysek C., Ipseiz N., Böhm C., Krishnacoumar B., Stenzel M., Czerwinski T., Palumbo-Zerr K., Rothe T., Weidner D., Klej A., Stoll C., Distler J., Tuckermann J., Herrmann M., Fabry B., Goldmann W.H., Schett G., Krönke G. NR4A1 regulates motility of osteoclast precursors and serves as target for the modulation of systemic bone turnover. J. Bone Miner. Res., 2018, Vol. 33, pp. 2035-2047.; Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol., 2004, Vol. 75, pp. 163-189.; Scott D.L., Wolfe F., Hizinga T.W. Rheumatoid arthritis. Lancet, 2010, Vol. 376, pp. 1094-108.; Seifert M.F., Marks S.C. Jr. Morphological evidence of reduced bone resorption in the osteosclerotic (oc) mouse. Am. J. Anat., 1985, Vol. 172, pp. 141-153.; Shinohara M., Koga T., Okamoto K., Sakaguchi S., Arai K., Yasuda H., Takai T., Kodama T., Morio T., Geha R.S., Kitamura D., Kurosaki T., Ellmeier W., Takayanagi H., Takayanagi H. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell, 2008, Vol. 132, pp. 794-806.; Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S., Luthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., Shimamoto G., DeRose M., Elliott R., Colombero A., Tan H.L., Trail G., Sullivan J., Davy E., Bucay N., Renshaw-Gegg L., Hughes T.M., Hill D., Pattison W., Campbell P., Sander S., Van G., Tarpley J., Derby P., Lee R., Boyle W.J. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, Vol. 89, pp. 309-319.; Söderström K., Stein E., Colmenero P., Purath U., Müller-Ladner U., de Matos C.T., Tarner I.H., Robinson W.H., Engleman E.G. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc. Natl Acad. Sci USA, 2010, Vol. 107, pp. 13028-13033.; Srivastava R.K., Dar H.Y., Mishra P.K. Immunoporosis: immunology of osteoporosis-role of T cells. Front. Immunol., 2018, Vol. 9, 657. doi:10.3389/fimmu.2018.00657.; Srivastava S., Toraldo G., Weitzmann M.N., Cenci S., Ross F.P., Pacifici R. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL) induced JNK activation. J. Biol. Chem., 2001, Vol. 276, pp. 8836-8840.; Steinman R.M., Banchereau J. Taking dendritic cells into medicine. Nature, 2007, Vol. 449, pp. 419-426.; Suga K., Saitoh M., Fukushima S., Takahashi K., Nara H., Yasuda S., Miyata K. Interleukin-11 induces osteoblast differentiation and acts synergistically with bone morphogenetic protein-2 in C3H10T1/2 cells. J. Interferon Cytokine Res., 2001, Vol. 21, pp. 695-707.; Tacke R., Hilgendorf I., Garner H., Waterborg C., Park K., Nowyhed H. The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Sci. Rep., 2015, Vol. 5, 10055. doi:10.1038/srep10055.; Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol., 2007, Vol. 7, pp. 292-304. doi:10.1038/nri2062.; Takayanagi H., Iizuka H., Juji T. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum., 2000, Vol. 43, no. 2, pp. 259-269.; Takeda H., Kikuchi T., Soboku K., Okabe I., Mizutani H., Mitani A., Ishihara Y., Noguchi T. Effect of IL-15 and natural killer cells on osteoclasts and osteoblasts in a mouse coculture. Inflammation, 2014, Vol. 37, pp. 657-669.; Tang M., Tian L., Luo G., Yu X. Interferon-gamma-mediated osteoimmunology. Front. Immunol., 2018, Vol. 9, pp. 9-13.; Terpos E., Ntanasis-Stathopoulos I., Gavriatopoulou M., Dimopoulos M.A. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J., 2018, Vol. 8, 7. doi:10.1038/s41408-017-0037-4.; Thomas R., MacDonald K.P., Pettit A.R., Cavanagh L.L., Padmanabha J., Zehntner S. Dendritic cells and the pathogenesis of rheumatoid arthritis. J. Leukoc. Biol., 1999, Vol. 66, pp. 286-292.; Tian B., Wang N., Jiang Q., Tian L., Hu L., Zhang Z. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect. J. Mater. Sci. Mater. Med., 2021, Vol. 7, no. 32 (6), 63. doi:10.1007/s10856-021-06533-7.; Timlin M., Toomey D., Condron C., Power C., Street J., Murray P., Bouchier-Hayes D. Fracture hematoma is a potent proinflammatory mediator of neutrophil function. J. Trauma, 2005, Vol. 58, pp. 1223-1229.; Tsukasaki M., Huynh N.C.-N., Okamoto K., Muro R., Muro R., Terashima A., Kurikawa Y., Komatsu N., Pluemsakunthai W., Nitta T., Abe T., Kiyonari H., Okamura T., Sakai M., Matsukawa T., Matsumoto M., Kobayashi Y., Penninger J.M., Takayanagi H. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat. Metab., 2020, Vol. 2, pp. 1382-1390.; van Tuyl L.H.D., Voskuyl A.E., Boers M. Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann. Rheum. Dis., 2010, Vol. 69, no. 9, pp. 1623-1628.; Varga C., Maglio M., Ghobrial I.M., Richardson P.G. Current use of monoclonal antibodies in the treatment of multiple myeloma. Br. J. Haematol., 2018, Vol. 181, pp. 447-459.; Vi L., Baht G.S., Whetstone H., Mg A., Wei Q., Poon R. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J. Bone Miner. Res., 2015, Vol. 30, pp. 1090-1102.; Vi L., Baht G.S., Soderblom E.J., Whetstone H., Wei Q., Furman B. Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat. Commun., 2018, Vol. 9, 5191. doi:10.1038/s41467-018-07666-0; Walker D.G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science, 1975, Vol. 190, pp. 784-785.; Walker D.G., Schwarz E.M., O’Keefe R.J., Ma L., Looney R.J., Ritchlin C.T. Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum., 2004, Vol. 50, pp. 265-276.; Wang C.W., Yu S.H., Fretwurst T., Larsson L., Sugai J.V., Oh J. Maresin 1 promotes wound healing and socket bone regeneration for alveolar ridge preservation. J. Dent. Res., 2020, Vol. 99, pp. 930-937.; Wei J., Karsenty G. An overview of the metabolic functions of osteocalcin. Curr. Osteopor. Rep., 2013, Vol. 13, pp. 80-85.; Weitzmann M.N. T-cells and B-cells in osteoporosis. Curr. Opin. Endocrinol. Diabetes Obes., 2014, Vol. 21, pp. 461-467.; Wu X., Chen H., Wang Y., Gu Y. Akt2 affects periodontal inflammation via altering the M1/M2 ratio. J. Dent. Res., 2020, Vol. 99, pp. 577-587.; Xiong Q., Zhang I., Ge W., Tang P. The roles of interferons in osteoclasts and osteoclastogenesis. Joint Bone Spine, 2016, Vol. 83, pp. 276-281.; Yaccoby S. Advances in the understanding of myeloma bone disease and tumour growth. Br. J. Haematol., 2010, Vol. 149, pp. 311-321.; Yao Z., Li P., Zhang Q., Schwarz E.M., Keng P., Arbini A., Boyce B.F., Xing L. Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J. Biol. Chem., 2006, Vol. 281, pp. 11846-11855.; Yasuda H., Shima N., Nakagawa N., Yamaguchi K., Kinosaki M., Mochizuki S., Tomoyasu A., Yano K., Goto M., Murakami A., Tsuda E., Morinaga T., Higashio K., Udagawa N., Takahashi N., Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA, 1998, Vol. 95, pp. 3597-3602.; Yeap B.B., Chubb S.A., Flicker L., McCul K.A., Ebeling P.R., Beilby J.P., Norman P.E. Reduced serum total osteocalcin is associate with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. Eur. J. Endocrinol., 2010, Vol. 163, pp. 265-272.; Zaiss M.M., Axmann R., Zwerina J., Polzer K., Gückel E., Skapenko A., Schulze-Koops H., Horwood N., Cope A., Schett G. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum., 2007, Vol. 56, pp. 4104-4412.; Zaiss M.M., Frey B., Hess A., Zwerina J., Luther J., Nimmerjahn F., Engelke K., Kollias G., Hünig T., Schett G., David J.P. Regulatory T cells protect from local and systemic bone destruction in arthritis. J. Immunol., 2010, Vol. 184, pp. 7238-7246.; Zhang J., Niu C., Ye L., Huang H., He X., Tong W.G., Ross J., Haug J., Johnson T., Feng J.Q., Harris S., Wiedemann L.M., Mishina Y., Li L. Identification of the hematopoietic stem cell niche and control of the niche size. Nature, 2003, Vol. 425, pp. 836-841.; Zhou A., Wu B., Yu H., Tang Y., Liu J., Jia Y., Yang X., Xiang L. Current understanding of osteoimmunology in certain osteoimmune diseases. Front. Cell Dev. Biol., 2021, Vol. 9, 698068. doi:10.3389/fcell.2021.698068.; Zhou A., Yu H., Liu J., Zheng J., Jia Y., Wu B. Role of Hippo-YAP signaling in osseointegration by regulating osteogenesis, angiogenesis, and osteoimmunology. Front. Cell Dev. Biol., 2020, Vol. 8, 780. doi:10.3389/fcell.2020.00780.; Zhu J., Emerson S.G. A new bone to pick: osteoblasts and the haematopoitic stem-cell niche. Bioessays, 2004, Vol. 26. pp. 595-599.; Zhu J., Garrett R., Jung Y., Kim N., Wang J., Joe G.J., Hexner E., Choi Y., Taichman R.S., Emerson S.G. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood, 2007, Vol. 109, pp. 3706-3712.; https://www.mimmun.ru/mimmun/article/view/1521

  6. 6
  7. 7
  8. 8
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 11, № 2 (2020); 6-18 ; Медицинский вестник Юга России; Том 11, № 2 (2020); 6-18 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2020-11-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1062/563; Horton J.E., Raisz L.G., Simmons H.A., Oppenheim J.J., Mergenhagen S.E. Bone resorbing activity in supernatant fl uid from cultured human peripheral blood leukocytes // Science. – 1972. – V.177. – P.793-795. https://doi.org/10.1126/science.177.4051.793; Chen X., Wang Z., Duan N., Zhu G., Schwarz E.M., Xie C. Osteoblast-osteoclast interactions // Connect Tissue Res. – 2018. – V.59, №2. – Р.99-107. https://doi.org/10.1080/03008207.2017.1290085; Arron J.R., Choi Y. Bone versus immune system // Nature. – 2000. – V.408. – Р.535-536. https://doi.org/10.1038/35046196; Ginaldi L., De Martinis M. Osteoimmunology and Beyond // Curr. Med. Chem. – 2016. – V.23, №33. – Р.3754-3774. https://doi.org/10.2174/0929867323666160907162546; Liu H., Luo T., Tan J., Li M., Guo J. Osteoimmunology’ Offers New Perspectives for the Treatment of Pathological Bone Loss // Curr Pharm Des. – 2017. – V.23, №41. – Р. 6272-6278. https://doi.org/10.2174/1381612823666170511124459; Srivastava R.K., Dar H.Y., Mishra P.K. Immunoporosis: Immunology of Osteoporosis-Role of T Cells // Front Immunol. – 2018. – V.9. – Р.657. https://doi.org/10.3389/fimmu.2018.00657; Hu L., Yin C., Zhao F., Ali A., Ma J., Qian A. Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment // Int J Mol Sci. – 2018. – V.19, №2. – Р.360. https://doi.org/10.3390/ijms19020360; Chen Q., Shou P., Zheng C., Jiang M., Cao G. et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? // Cell Death Diff er. – 2016. – V.23, №7. – P.1128-1139. https://doi.org/10.1038/cdd.2015.168; Guder C., Gravius S., Burger C., Wirtz D.C., Schildberg F.A. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System // Front Immunol. – 2020. – V.11. – P.58. https://doi.org/10.3389/fimmu.2020.00058; Ono T., Takayanagi H. Osteoimmunology in bone fracture healing // Curr Osteoporos Rep. – 2017. – V.15, №4. – P.367-375. https://doi.org/10.1007/s11914-017-0381-0; Gong L., Zhao Y., Zhang Y., Ruan Z. The macrophage polarization regulates MSC osteoblast differentiation in vitro // Ann Clin Lab Sci. – 2016. – V.46, №1. – P.65-71. PMID: 26927345; Han L., Wang B., Wang R., Gong S., Chen G., Xu W. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor // Stem Cell Res Ther. – 2019. – V.10, №1. – P.377. https://doi.org/10.1186/s13287-019-1498-0; Vallés G., Bensiamar F., Maestro-Paramio L., García-Rey E., Vilaboa N., Saldaña L. Influence of inflammatory conditions provided by macrophages on osteogenic ability of mesenchymal stem cells // Stem Cell Res Ther. – 2020. – V.11, №1. – P.57. https://doi.org/10.1186/s13287-020-1578-1; Поворознюк В.В., Резниченко Н.А., Майлян Э.А. Регуляция эстрогенами ремоделирования костной ткани // Репродуктивная эндокринология. – 2014. – T.15, №1. – С.14-18.; Майлян Э.А. Регуляция витамином D метаболизма костной ткани // Медицинский вестник Юга России. – 2017. – T.8, №1. – C.12-20. https://doi.org/10.21886/2219-8075-2017-1-12-20; Майлян Э.А. Современные представления об этиологии и патогенезе постменопаузального остеопороза // Проблемы остеологии. – 2015. – T.18, №2. – С.3-11.; Han Y., You X., Xing W., Zhang Z., Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts // Bone Res. – 2018. – №6. – P.16. https://doi.org/10.1038/s41413-018-0019-6; Kenkre J.S., Bassett J. The bone remodelling cycle // Ann Clin Biochem. – 2018. – V.55, №3. – P. 308-327. https://doi.org/10.1177/0004563218759371; Yuan F.L., Wu Q.Y., Miao Z.N., Xu M.H., Xu R.S. et al. Osteoclast-Derived Extracellular Vesicles: Novel Regulators of Osteoclastogenesis and Osteoclast-Osteoblasts Communication in Bone Remodeling // Front Physiol. – 2018 . – V.9. – P.628. https://doi.org/10.3389/fphys.2018.00628; Matsuoka K., Park K.A., Ito M., Ikeda K, Takeshita S. Osteoclast-derived complement component 3a stimulates osteoblast diff erentiation // J Bone Miner Res. – 2014. – V.29, №7. – P.1522-1530. https://doi.org/10.1002/jbmr.2187; Wang L., Liu S., Zhao Y., Liu D., Liu Y. et al. Osteoblastinduced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass // Cell Death Differ. – 2015. – V.22, №10. – Р.1654-1664. https://doi.org/10.1038/cdd.2015.14; Delgado-Calle J., Sato A.Y., Bellido T. Role and mechanism of action of sclerostin in bone // Bone. – 2017. – V.96. – P.29-37. https://doi.org/10.1016/j.bone.2016.10.007; Ota K., Quint P., Ruan M., Pederson L., Westendorf J.J. et al. Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization // J Cell Biochem. – 2013. – V.114, №8. – P.1901-1907. https://doi.org/10.1002/jcb.24537; Ignatius A., Schoengraf P., Kreja L., Liedert A., Recknagel S. et al. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β // J Cell Biochem. – 2011. – V.112, №9. – P.2594-2605. https://doi.org/10.1002/jcb.23186; Meshcheryakova A., Mechtcheriakova D., Pietschmann P. Sphingosine 1-phosphate signaling in bone remodeling: multifaceted roles and therapeutic potential // Expert Opin Ther Targets. – 2017. – V.21, №7. – P.725-737. https://doi.org/10.1080/14728222.2017.1332180; Kim B.J., Lee Y.S., Lee S.Y., Baek W.Y., Choi Y.J. et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation // J Clin Invest. – 2018. – V.128, №4. – P.1429-1441. https://doi.org/10.1172/JCI91086; Kim B.J., Koh J.M. Coupling factors involved in preserving bone balance // Cell Mol Life Sci. – 2019. – V.76, №7. – P.1243-1253. https://doi.org/10.1007/s00018-018-2981-y; Поворознюк В.В., Резниченко Н.А., Майлян Э.А. Роль иммунных факторов в патогенезе постменопаузального остеопороза // Проблемы остеологии. – 2013. – Т.16, №3. – С.3-7.; Weitzmann M.N., Pacifi ci R. Estrogen defi ciency and bone loss: an inflammatory tale // J. Clin. Invest. – 2006. – V.116, №5. – P.1186-1194. https://doi.org/10.1172/JCI28550; Ono T., Nakashima T. Recent advances in osteoclast biology // Histochem Cell Biol. – 2018. – V.149, №4. – P.325-341. https://doi.org/10.1007/s00418-018-1636-2; Ono T., Hayashi M., Sasaki F., Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond // Infl amm Regen. – 2020. – V.40. – P.2. https://doi.org/10.1186/s41232-019-0111-3; Boyce B.F., Xiu Y., Li J., Xing L., Yao Z. NF-κB-Mediated Regulation of Osteoclastogenesis // Endocrinol Metab (Seoul). – 2015. – V.30, №1. – Р.35-44. https://doi.org/10.3803/EnM.2015.30.1.35; Phetfong J., Sanvoranart T., Nartprayut K., Nimsanor N., Seenprachawong K. et al. Osteoporosis: the current status of mesenchymal stem cell-based therapy // Cell Mol Biol Lett. – 2016. – V.21. – P.12. https://doi.org/10.1186/s11658-016-0013-1; Amarasekara D.S., Yun H., Kim S., Lee N., Kim H., Rho J. Regulation of Osteoclast Diff erentiation by Cytokine Networks // Immune Netw. – 2018. – V.18, №1. – Р.8. https://doi.org/10.4110/in.2018.18.e8; Weitzmann M.N. Bone and the Immune System // Toxicol Pathol. – 2017. – V.45, №7. – Р.911-924. https://doi.org/10.1177/0192623317735316; Okamoto K., Nakashima T., Shinohara M., Negishi-Koga T., Komatsu N. et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems // Physiol Rev. – 2017. – V.97, №4. – Р.1295-1349. https://doi.org/10.1152/physrev.00036.2016; Tobeiha M., Moghadasian M.H., Amin N., Jafarnejad S. Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling // Biomed Res Int. – 2020. – V.2020. – Р.6910312. https://doi.org/10.1155/2020/6910312; Li Y., Toraldo G., Li A., Yang X., Zhang H. et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo // Blood. – 2007. – V.109, №9. – Р.3839-3848. https://doi.org/10.1182/blood-2006-07-037994; Jung S.M., Kim K.W., Yang C.W., Park S.H., Ju J.H. Cytokine-mediated bone destruction in rheumatoid arthritis // J Immunol Res. – 2014. – V.2014. – Р.263625. https://doi.org/10.1155/2014/263625; Brincat S.D., Borg M., Camilleri G., Calleja-Agius J. The role of cytokines in postmenopausal osteoporosis // Minerva Ginecol. – 2014. – V.66, №4. – Р.391-407.PMID: 25020058; Dar H.Y., Azam Z., Anupam R., Mondal R.K., Srivastava R.K. Osteoimmunology: The Nexus between bone and immune system // Front Biosci (Landmark Ed). – 2018. – V.23. – Р.464-492. https://doi.org/10.2741/4600; Kany S., Vollrath J.T., Relja B. Cytokines in inflammatory Disease // Int J Mol Sci. – 2019. – V.20, №23. – Р.6008. https://doi.org/10.3390/ijms20236008; De Martinis M., Sirufo M.M., Suppa M., Ginaldi L. IL-33/IL-31 Axis in Osteoporosis // Int J Mol Sci. – 2020. – V.21, №4. – Р.1239. https://doi.org/10.3390/ijms21041239; Park-Min K.H. Mechanisms involved in normal and pathological osteoclastogenesis // Cell Mol Life Sci. – 2018. – V.75, №14. – Р.2519-2528. https://doi.org/10.1007/s00018-018-2817-9; https://www.medicalherald.ru/jour/article/view/1062

  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; № 1 (2017); 12-20 ; Медицинский вестник Юга России; № 1 (2017); 12-20 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2017-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/353/384; https://www.medicalherald.ru/jour/article/downloadSuppFile/353/38; Zerwekh J.E. Blood biomarkers of vitamin D status. // Am. J. Clin. Nutr. – 2008. – V.87(4). – P.1087–1091.; Holick M.F., Chen T.C. Vitamin D deficiency: a worldwide problem with health consequences. // Am. J. Clin. Nutr. – 2008. – V.87(4). – P.1080–1086.; Holick M.F. Vitamin D: evolutionary, physiological and health perspectives. // Curr. Drug Targets. – 2011. – V.12(1). – P.4–18.; Wacker M., Holick M.F. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. // Nutrients. – 2013. V.5(1). – P.111–148. doi:10.3390/nu5010111; Поворознюк В.В., Резниченко Н.А., Майлян Э.А. Внескелетные эффекты витамина D // Боль. Суставы. Позвоночник.– 2014.– №1–2.– С.19–25.; Мальцев С.В., Рылова Н.В. Витамин D и иммунитет // Практическая медицина.– 2015.– №1.– С.114–120.; Поворознюк В.В., Снежицкий В.А., Янковская Л.В., Майлян Э.А., Резниченко Н.А., Майлян Д.Э. Значение витамина D в патогенезе сердечно-сосудистых заболеваний // Журнал Гродненского государственного медицинского университета.– 2015.– №2.– С.6–14.; Драпкина О.М., Шепель Р.Н. Плейотропные эффекты витамина D // Рациональная фармакотерапия в кардиологии.– 2016.– №2.– С.227–233. doi:10.20996/1819-6446-2016-12-2-227-233; Bouillon R., Carmeliet G., Verlinden L., van Etten E., Verstuyf A., Luderer H.F. et al. Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. // Endocrine Reviews. – 2008. – V.29(6). – P.726–776. doi:10.1210/er.2008-0004; Wolf G. The discovery of vitamin D: the contribution of Adolf Windaus. // J. Nutr. – 2004. – V.134(6). – P.1299–1302.; Tang J.Y., Fu T., Lau C., Oh D.H., Bikle D.D., Asgari M.M. Vitamin D in cutaneous carcinogenesis: Part I. // J. Am. Acad. Dermatol. – 2012. – V.67(5). – P.803–816. doi:10.1016/j.jaad.2012.05.044; Мальцев С.В., Мансурова Г.Ш. Метаболизм витамина D и пути реализации его основных функций // Практическая медицина.– 2014.– №9.– С.12–18.; Bikle D.D., Gee E., Halloran B., Haddad J.G. Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. // J. Clin. Invest. – 1984. – V.74. – P.1966–1971.; Bikle D.D. Vitamin D and bone. // Curr. Osteoporos. Rep. – 2012. V.10(2). – P.151–159. doi:10.1007/s11914-012-0098-z; Holick M.F. Vitamin D Deficiency. // N. Engl. J. Med. – 2007. – V.357. – P.266–281. doi:10.1056/NEJMra070553; Razzaque M.S. The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. // Nat. Rev. Endocrinol. – 2009. – V.5(11). – P.611–619. doi:10.1038/nrendo.2009.196; Van Driel M., Koedam M., Buurman C.J., Hewison M., Chiba H., Uitterlinden A.G. et al. Evidence for auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. // FASEB J. – 2006. – V.20(13). –P.2417–2419.; Atkins G.J., Anderson P.H., Findlay D.M., Welldon K.J., Vincent C., Zannettino A.C. et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. //Bone. – 2007. – V.40(6). – P.1517–1528.; Binkley N., Ramamurthy R., Krueger D. Low vitamin D status: definition, prevalence, consequences, and correction. // Endocrinol. Metab. Clin. North. Am. – 2010. – V.39(2). – P.287– 301. doi:10.1016/j.ecl.2010.02.008; Blomberg J.M. Vitamin D metabolism, sex hormones, and male reproductive function. // Reproduction. – 2012. – V.144(2). – P.135–152. doi:10.1530/REP-12-0064; Захарова Н., Васильева С.В., Дмитриева Ю А., Мозжухина М.В., Евсеева Е. А. Коррекция недостаточности витамина D // Эффективная фармакотерапия. Педиатрия.– 2014.– №1.– С.38–44.; Tripkovic L., Lambert H., Hart K., Smith C.P., Bucca G., Penson S. et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. // Am. J. Clin. Nutr. – 2012. – V.95(6). – P.1357–1364. doi:10.3945/ajcn.111.031070; Fleet J.C., Schoch R.D. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. // Crit. Rev. Clin. Lab. Sci. – 2010. – V.47(4). – P.181–195. doi:10.3109/10408363.2010.536429; Xue Y., Fleet J.C. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. // Gastroenterology. – 2009. – V.136(4). – P.1317–1327. doi:10.1053/j.gastro.2008.12.051; Nordin B.E., Need A.G., Morris H.A., O’Loughlin P.D., Horowitz M. Effect of age on calcium absorption in postmenopausal women. // Am. J. Clin. Nutr. – 2004. – V.80(4). – P.998–1002.; Heaney R.P., Dowell M.S., Hale C.A., Bendich A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. // J. Am. Coll. Nutr. – 2003. – V.22(2). – P.142–146.; Aloia J.F., Chen D.G., Yeh J.K., Chen H. Serum vitamin D metabolites and intestinal calcium absorption efficiency in women. // Am. J. Clin. Nutr. – 2010. – V.92(4). – P.835–840. doi:10.3945/ajcn.2010.29553; Ten Bolscher M., Netelenbos J.C., Barto R., Van Buuren L.M., Van Der Vijgh W.J. Estrogen regulation of intestinal calcium absorption in the intact and ovariectomized adult rat. // J. Bone Miner. Res. – 1999. – V.14(7). – P.1197–1202.; Van Abel M., Hoenderop J.G., van der Kemp A.W., van Leeuwen J.P., Bindels R.J. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. // Am. J. Physiol. Gastrointest. Liver Physiol. – 2003. – V.285(1). – P.78–85.; Boivin G., Mesguich P., Pike J.W., Bouillon R., Meunier P.J., Haussler M.R. et al. Ultrastructural immunocytochemical localization of endogenous 1,25-dihydroxyvitamin D3 and its receptors in osteoblasts and osteocytes from neonatal mouse and rat calvaria. // Bone Miner. – 1987. – V.3(2). – P.125–136.; Biswas P., Zanello L.P. 1alpha,25(OH)(2) vitamin D(3) induction of ATP secretion in osteoblasts.// J. Bone Miner. Res. – 2009. – V.24(8). – P.1450-1460. doi:10.1359/jbmr.090306; Min B. Effects of Vitamin D on Blood Pressure and Endothelial Function. // Korean J. Physiol. Pharmacol. – 2013. – V.17(5). – P.385–392.; Haussler M.R., Haussler C.A., Jurutka P.W., Thompson P.D., Hsieh J.C., Remus L.S. et al. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. // J. Endocrinol. – 1997. – V.154(Suppl). – P.57–73.; Whitfield G.K., Hsieh J.C., Jurutka P.W., Selznick S.H., Haussler C.A., MacDonald P.N. et al. Genomic actions of 1,25-dihydroxyvitamin D3. // J. Nutr. – 1995. – V.125(6 Suppl). – P.1690–1694.; Haussler M.R., Whitfield G.K., Kaneko I., Forster R., Saini R., Hsieh J.C. et al. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. // Rev. Endocr. Metab. Disord. – 2012. – V.13(1). – P.57–69. doi:10.1007/s11154-011-9199-8; Suda T., Takahashi N., Abe E. Role of vitamin D in bone resorption. // J. Cell. Biochem. – 1992. – V.49(1). – P.53–58.; Nordin B.E. Evolution of the calcium paradigm: the relation between vitamin D, serum calcium and calcium absorption. // Nutrients. – 2010. – V.2(9). – P. 997–1004. doi:10.3390/nu2090997; https://www.medicalherald.ru/jour/article/view/353

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Rheumatology Science and Practice; Vol 48, No 4 (2010); 83-86 ; Научно-практическая ревматология; Vol 48, No 4 (2010); 83-86 ; 1995-4492 ; 1995-4484 ; 10.14412/1995-4484-2010-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/1085/758; Jackson J.B.S. A boneless arm. Boston Med Surg J 1838;18:368-9. Jackson J.B.S. Absorption of the humerus after fracture. Boston Med Surg J 1872;10:245-7. Gorham L.W., Stout A.P. Massive osteolysis (acute spontaneous absorption of bone, phantom bone, disappearing bone): its relation to hemangiomatosis. J Bone Joint Surg (Am) 1955;37-A:985-1004. Gowin W., Rahmanzadeh R. Radiologic diagnosis of massive idiopathic osteolysis (Gorham-Stout Syndrome). Rontgenpraxis 1985;38:128-34 Horst M., Zsernaviczky J., Delling G. A rare case of so-called idiopathic osteolysis associated with a lymphangioma of the fibula. Z Orthop 1979;117:88-95. Flц rchinger A., Bottger E., Claass-Bottger F. et al. Gorham Stout syndrome of the spine: case report and review o literature. Rofo- Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1998;168:68-76. Tilling G., Skobowytsh B. Disappearing bone disease, Morbus Gorham: report of a case. Acta Orthop Scand 1968;39:398-406. Johnson P.M., McClure J.G. Observations of massive osteolysis: a review of the literature and report of a case. Radiology 1958;71:28-42. Thompson J.S., Schurman D.J. Massive osteolysis: case report and review of the literature. Clin Orthop 1974;103:206-11. Gorham L.W., Wright A.W., Schultz H.H., Maxon F.C. Disappearing bones: a rare form of massive osteolysis: report of 2 cases, autopsy findings. Am J Med 1954;17:674-82. Knoch H.-G. Die Gorhamsche Krankheit aus klinischer Sicht. Zentralbl Chir 1963;18:674-83. Young J.W., Galbraith M., Cunningham J. et al. Progressive vertebral collapse in diffuse angiomatosis. Metab Bone Dis Relat Res 1983;5:53-60. Heyden G., Kindblom L.-G., Nielsen J.M. Disappearing bone disease: a clinical and histological study. J Bone Joint Surg (Am) 1977;59-A:57-61. Spieth M.E., Greenspan A., Forrester D.M. et al. Gorham's disease of the radius: radiographic, scintigraphic, and MRI findings with pathologic correlation: a case report and review of the literature. Skeletal Radiol 1997;26:659-63. Kery L., Wouters H.W. Massive osteolysis: report of two cases. J Bone Joint Surg (Br) 1970;52-B:452-9. Burkhard O., Beyer J., Schrezenmeir J. et al. A case of idiopathic multicentric osteolysis. Med Klin 1989;84:364-8. Milner S.M., Baker S.L. Disappearing bones. J Bone Joint Surg (Br) 1958;40- B:502-13. Chambers T.J. The cellular basis of bone resorption. Clin Orthop 1980;151:283-93. Handl-Zeller L., Hohenberg G. Radiotherapy of Morbus Gorham-Stout: the biological value of low irradiation dose. Br J Radiol 1990;63:206-8. Dunbar S.F., Rosenberg A., Mankin H. et al. Gorham's massive osteolysis: the role of radiation therapy and a review of the literature. Int J Radiat Oncol Biol Phys 1993;26:491-7. Stц ve J., Reichelt A. Massive osteolysis of the pelvis, femur and sacral bone with a Gorham-Stout syndrome. Arch Orthop Trauma Surg 1995;114:207-10. Hardegger F., Simpson L.A., Segmueller G. The syndrome of idiopathic osteolysis: classification, review and case report. J Bone Joint Surg (Br), 1985;67-B:89-93.

  18. 18
  19. 19
  20. 20