Showing 1 - 20 results of 35 for search '"ОСТЕОИНДУКЦИЯ"', query time: 1.23s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: Работа выполнена в рамках программы НИР Государственного задания на 2021–2023 гг. «Биоактивный остеосинтез повреждений длинных трубчатых костей», а также в рамках программы развития ФГАОУ ВО «Национальный исследовательский Томский политехнический университет».

    Source: Acta Biomedica Scientifica; Том 7, № 4 (2022); 201-211 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3661/2395; Губочкин Н.Г., Микитюк С.И., Иванов В.С. Пересадка кровоснабжаемых костных трансплантатов для лечения ложных суставов и дефектов костей. Гений ортопедии. 2014; (4): 5-10.; Тихилов Р.М., Кочиш А.Ю., Лушников С.П. Новый способ одномоментной несвободной пластики двумя кровоснабжаемыми костными аутотрансплантатами при ложных суставах обеих костей предплечья. Травматология иортопедия России. 2010; (1): 89-93. doi:10.21823/2311-2905-2010-0-1-89-93; Нагиева С.Э., Исмаилова Ф.Э., Нагиев Э.Р. Перспективы трансплантации костной ткани при замещении дефектов нижней челюсти (обзор литературы). Научное обозрение. Медицинские науки. 2016; (4): 69-77.; Анастасиева Е.А., Садовой М.А., Воропаева А.А., Кирилова И.А. Использование аутои аллотрансплантатов для замещения костных дефектов при резекциях опухолей костей. Травматология и ортопедия России. 2017; 23(3): 148-155. doi:10.21823/2311-2905-2017-23-3-148-155; Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cell. Injury. 2011; 42(2): 77-81. doi:10.1016/j.injury.2011.06.014; Власова Т.И., Арсентьева Е.В., Худайберенова Г.Д., Полякова Д.И. Современный взгляд на использование костных заменителей и возможность усиления их остеогенности клеточными технологиями. Медицинский вестник Башкортостана. 2020; 15(2): 53-58.; Тарасов А.Н. Костно-пластические вмешательства при лечении доброкачественных опухолей костей. Практическая медицина. 2019; 17(1): 59-63.; Хмелевская С.А. Регенеративная медицина и проблема бессмертия. Социально-политические науки. 2018; (3): 192-193.; Нурмухаметов М.Р., Макаров М.А., Бялик Е.И., Хренников Я.Б., Бялик В.Е., Нестеренкo В.А. Применение техники аутологичного индуцированного матрицей хондрогенеза в лечении пациентов с остеоартритом первого плюснефалангового сустава. Гений ортопедии. 2021; 27(2): 220-226. doi:10.18019/1028-4427-2021-27-2220-226; Ларионов П.М., Садовой М.А., Самохин А.Г., Рожнова О.М., Гусев А.Ф., Принц В.Я. и др. Создание тканеинженерного эквивалента костной ткани и перспективы его использования в травматологии и ортопедии. Хирургия позвоночника. 2014; (3): 77-85.; Ribeiro C, Pärssinen J, Sencadas V, Correia V, Miettinen S, Hytönen VP, et al. Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. J Biomed Mater Res. 2015; 103(6): 2172-5217. doi:10.1002/jbm.a.35368; Bolbasov EN, Lapin IN, Svetlichnyi VA, Lenivtseva YD, Malashicheva A, Malashichev Y, et al. The formation of calcium phosphate coatings by pulse laser deposition on the surface of polymeric ferroelectric. Applied Surface Science. 2015; 349: 420429. doi:10.1016/j.apsusc.2015.05.025; Thone M, Reychler H. Auto-transplantation of an impacted or retained maxillary canine. Rev Stomatol Chir Maxillofac. 2002; 103(5): 288-293. (In French).; Митрофанов А.И., Чевардин А.Ю. Технология комбинированного остеосинтеза при лечении больных с последствиями травм длинных трубчатых костей (технология остеосинтеза). Гений ортопедии. 2014; (3): 13-15.; Popkov AV, Popkov DA, Gorbach EN, Kononovich NA, Kulbakin DE, Choynzonov EL, et al. Solution blow spinning of PLLA/hydroxyapatite composite scaffolds for bone tissue engineering. Biomedical Materials (Bristol): Materials for tissue engineering and regenerative medicine. 2021; 16(5): 055005. doi:10.1088/1748605X/ac11ca; Рогожина А.С. Сравнительный анализ биосовместимости матриц на основе поликапролактона, содержащих гидроксиапатит и фатерит. Бюллетень медицинских интернетконференций. 2018; 8(9): 458.; Козадаев М.Н. Исследование биосовместимости скаффолда на основе поликапролактона в условиях in vivо. Бюллетень медицинских интернет-конференций. 2016; 6(8): 1423-1424.; Иванов А.Н., Куртукова М.О., Чибрикова Ю.А., Кустодов С.В.; Тяпкина Д.А., Бугаева И.О. и др. Сравнительная характеристика микроциркуляторных изменений у белых крыс при подкожных имплантационных тептах матриц из поликапролактона, содержащих ватерит и гидроксиапатит. Саратовский научно-медицинский журнал. 2019; 15(1): 98-103.; Арутюнян И.В., Тенчурин Т.Х., Кананыхина Е.Ю., Черников В.П., Васюкова О.А., Ельчанинов А.В и др. Нетканые материалы на основе поликапролактона для тканевой инженерии: выбор структуры и способа заселения. Гены и клетки. 2017; 12(1): 62-71. doi:10.23868/201703009; Севостьянова В.В., Миронов А.В., Глушкова Т.В., Бураго А.Ю., Матвеева В.Г., Антонова Л.В. Регенерация кровеносного сосуда на основе графта из поликапролактона в экспериментальном исследовании. Сибирский медицинский журнал. 2016; 31(1): 53-57.; Захарова И.С., Смирнова А.М., Живень М.К., Саая Ш.Б., Шевченко А.И., Закиян С.М. и др. Разработка тканеинженерных конструкций на основе смеси хитозана и поликапролактона для сосудистой хирургии. Гены и клетки. 2016; 11(4): 50-56.; Jeong GJ, Ahn GR, Park SJ, Hong JY, Kim BJ. A randomized, patient/evaluator-blinded, split-face study to compare the efficacy and safety of polycaprolactone and polynucleotide fillers in the correction of crow’s feet: The latest biostimulatory dermal filler for crow’s feet. J Cosmet Dermatol. 2020; 19(7): 1593-1599. doi:10.1111/jocd.13199; Попков А.В., Попков Д.А., Кобызев А.Е., Горбач Е.Н., Кононович Н.А., Горбач Е.С. Положительный опыт полнослойного замещения дефекта суставного хряща при использовании деградируемого имплантата с биоактивной поверхностью в сочетании с обогащённой тромбоцитами плазмой крови (экспериментальное исследование). Гений ортопедии. 2020; 26(3): 392-397. doi:10.18019/1028-4427-2020-26-3-392; Jia Z, Li H, Cao R, Xiao K, Lu J, Zhao D, et al. Electrospun nanofibrous membrane of fish collagen/polycaprolactone for cartilage regeneration. J Transl Res. 2020; 12(7): 3754-3766.; Liu Y, Tian K, Hao J, Yang T, Geng X, Zhang W. Biomimetic polyglycerol sebacate/polycaprolactone blend scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2019; 30(5): 53. doi:10.1007/s10856-019-6257-3; Teoh SH, Goh BT, Lim J. Three-dimensional printed polycaprolactone scaffolds for bone regeneration success and future perspective. Tissue Eng Part A. 2019; 25(13-14): 931-935. doi:10.1089/ten.TEA.2019.0102; Liu Y, Wang R, Chen S, Xu Z, Wang Q, Yuan P, et al. Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair. Int J Biol Macromol. 2020; 148: 153162. doi:10.1016/j.ijbiomac.2020.01.109; Zhang B, Liwei G, Hongyi C, Vetnikos Y, Huang J, Narayan R, et al. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry. J Mech Behav Biomed Mater. 2020; 104: 103665. doi:10.1016/j.jmbbm.2020.103665; Kosik-Kozioł A, Heljak M, Święszkowski W. Mechanical properties of hybrid triphasic scaffolds for osteochondral tissue engineering. Materials Letters. 2020; 261: 126893. doi:10.1016/j.matlet.2019.126893; https://www.actabiomedica.ru/jour/article/view/3661

  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 11, № 3 (2019); 234-243 ; Трансплантология; Том 11, № 3 (2019); 234-243 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2019-11-3

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/447/517; https://www.jtransplantologiya.ru/jour/article/view/447/526; Andrabi S, Sarmast AH, Kirmani AR, Bhat AR. Cranioplasty: Indications, procedures, and outcome – An institutional experience. Surg Neurol Int. 2017;8(1):91. PMID: 28607825 https://doi.org/10.4103/sni.sni_45_17; Aydin S, Kucukyuruk B, Abuzayed B, Aydin S, Sanus GZ. Cranioplasty: Review of materials and techniques. J Neurosci Rural Pract. 2011;2(2):162–167. PMID: 21897681 https://doi.org/10.4103/0976-3147.83584; Ang CY, Loh DS, Chaw HW, Chin PL. Simple Novel Bone Bank Storage: The Singapore General Hospital Experience. Biopreserv Biobank. 2012;10(6):526–528. PMID: 24845139 https://doi.org/10.1089/bio.2012.0048; Still M, Kane A, Roux A, Zanello M, Dezamis E, Parraga E, et al. Independent Factors Affecting Postoperative Complication Rates After Custom-Made Porous Hydroxyapatite Cranioplasty: A Single- Center Review of 109 Cases. World Neurosurg. 2018;114:e1232–e1244. PMID: 29625304 https://doi.org/10.1016/j.wneu.2018.03.181; van de Vijfeijken SECM, Münker TJAG, Spijker R, Spijker R, Karssemakers LHE, Vandertop WP, et al. Autologous bone is inferior to alloplastic cranioplasties Safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg. 2018;117:443–452.e8. PMID: 29879511 https://doi.org/10.1016/j.wneu.2018.05.193; Zanotti B, Zingaretti N, Verlicchi A, Robiony M, Alfieri A, Parodi PC. Cranioplasty: Review of Materials. J Craniofac Surg. 2016;27(8):2061–2072. PMID: 28005754 https://doi.org/10.1097/SCS.0000000000003025; Muñoz XM, Bonardi JP, Silva LF, Reis EN, Pires WR, Fabris AL, et al. Cranioplasty With Poly-Methyl Methacrylate Resin. J Craniofac Surg. 2017;28(1):294–295. PMID: 27906847 https://doi.org/10.1097/SCS.0000000000003226; Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: A review. Mater Sci Eng C. 2016;66:315–322. PMID: 27207068 https://doi.org/10.1016/j.msec.2016.04.101; Pikis S, Goldstein J, Spektor S. Potential neurotoxic effects of polymethylmethacrylate during cranioplasty. J Clin Neurosci. 2015;22(1):139–143. PMID: 25085727 https://doi.org/10.1016/j.jocn.2014.06.006; Tian Y, Lu T, He F, Xu Y, Shi H, Shi X, et al. β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids Surf B Biointerfaces. 2018;167:318–327. PMID: 29679808 https://doi.org/10.1016/j.colsurfb.2018.04.028; Chen TM, Tsai JC, Burnouf T. Cranioplasty Using Osteoconductive Scaffold and Platelet Glue. J Trauma. 2008;65(6):1321–1327. PMID: 19077621 https://doi.org/10.1097/TA.0b013e3181574edf; Karamese M, Toksoz MR, Selimoglu MN, Akdağ O, Toy H, Tosun Z. Comparison of Bone Dust With Other Types of Bone Grafts for Cranioplasty. J Craniofac Surg. 2014;25(4):1155–1158. PMID: 25006886 https://doi.org/10.1097/SCS.0000000000000765; Tseng CL, Chang GW, Ou KL, Chou WT, Wu TH, et al. Cranioplasty Using a Novel Osteoconductive Scaffold and Platelet Gel. Ann Plast Surg. 2016;76(Suppl 1):S125–S129. PMID: 26808739 https://doi.org/10.1097/SAP.0000000000000696; Feroze RA, Agarwal N, Sekula RF. Utility of Calcium Phosphate Cement Cranioplasty following Supraorbital Approach for Tumor Resection. Int J Neurosci. 2018;128(12):1199–1203 PMID: 29952679 https://doi.org/10.1080/00207454.2018.1492573; Feroze AH, Walmsley GG, Choudhri O, Lorenz HP, Grant GA, Edwards MS. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. J Neurosurg. 2015;123(4):1098–1107. PMID: 25699411 https://doi.org/10.3171/2014.11.JNS14622; Sun Y, Hu Y, Yuan Q, Yu J, Wu X, Du Z, et al. Association between metal hypersensitivity and implant failure in patients who underwent titanium cranioplasty. J Neurosurg. 2018 Jul 1:1–7. PMID: 29979123 https://doi.org/10.3171/2018.1.JNS171804 [Epub ahead of print].; Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19. PMID: 24684331 https://doi.org/10.3171/2014.2.FOCUS13561; Missori P, Morselli C, Domenicucci M. Transplantation of autologous cranioplasty in Europe as part of bone organ. Acta Neurochir (Wien). 2014;156(10): 2015–2016. PMID: 25160852 https://doi.org/10.1007/s00701-014-2207-5; Plum AW, Tatum SA. A comparison between autograft alone, bone cement, and demineralized bone matrix in cranioplasty. Laryngoscope. 2015;125(6):1322–1327. PMID: 25641743 https://doi.org/10.1002/lary.25158; Sahoo NK, Tomar K, Thakral A, Rangan NM. Complications of Cranioplasty. J Craniofac Surg. 2018;29(5):1344–1348. PMID: 29533253 https://doi.org/10.1097/SCS.0000000000004478; Carson LV, Goodrich JT, Prestigiacomo CJ. Introduction: History of craniotomy, cranioplasty, and perioperative care. Neurosurg Focus. 2014;36(4):Introduction. PMID: 24684341 https://doi.org/10.3171/2014.2.FOCUS1470; Beainy F, El Amm C, Abousleimane Y, Mapstone T, Beidas O, Workman M. Biomechanical Effects of Cranioplasty for Defects Using Autogenous Calvarial Bone. J Craniofac Surg. 2012;23(2):e152–e155. PMID: 22446454 https://doi.org/10.1097/SCS.0b013e31824cdc0d; Mrad MA, Murrad K, Antonyshyn O. Analyzing the Cost of Autogenous Cranioplasty Versus Custom-Made Patient-Specific Alloplastic Cranioplasty. J Craniofac Surg. 2017;28(5):1260–1263. PMID: 28582300 https://doi.org/10.1097/SCS.0000000000003708; Morton RP, Abecassis IJ, Hanson JF, Barber J, Nerva JD, Emerson SN, et al. Predictors of infection after 754 cranioplasty operations and the value of intraoperative cultures for cryopreserved bone flaps. J Neurosurg. 2016;125(3):766–770. PMID: 26771856 https://doi.org/10.3171/2015.8.JNS151390; Chan DYC, Mok YT, Lam PK, Tong CSW, Ng SCP, Sun TFD, et al. Cryostored autologous skull bone for cranioplasty? A study on cranial bone flaps’ viability and microbial contamination after deep-frozen storage at –80°C. J Clin Neurosci. 2017;42:81–83. PMID: 28431953 https://doi.org/10.1016/j.jocn.2017.04.016; Jin S, Kim SD, Ha SK, Lim DJ, Lee H, You HJ. Analysis of the factors affecting surgical site infection and bone flap resorption after cranioplasty with autologous cryopreserved bone: the importance of temporalis muscle preservation. Turk Neurosurg. 2018;28(6):882–888. PMID: 29165749 https://doi.org/10.5137/1019-5149.JTN.21333-17.2; Anto D, Manjooran RP, Aravindakshan R, Lakshman K, Morris R. Cranioplasty using autoclaved autologous skull bone flaps preserved at ambient temperature. J Neurosci Rural Pract. 2017;8(4):595–600. PMID: 29204021 https://doi.org/10.4103/jnrp.jnrp_270_17; Mracek J, Hommerova J, Mork J, Richtr P, Priban V. Complications of cranioplasty using a bone flap sterilised by autoclaving following decompressive craniectomy. Acta Neurochir (Wien). 2015;157(3):501–506. PMID: 25588749 https://doi.org/10.1007/s00701-014-2333-0; Wui S-H, Kim KM, Ryu YJ, Kim I, Lee SJ, Kim J, et al. The Autoclaving of Autologous Bone is a Risk Factor for Surgical Site Infection After Cranioplasty. World Neurosurg. 2016;91:43–49. PMID: 27032525 https://doi.org/10.1016/j.wneu.2016.03.066; Zhang J, Peng F, Liu Z, Luan J, Liu X, Fei C, et al. Cranioplasty with autogenous bone flaps cryopreserved in povidone iodine: a long-term follow-up study. J Neurosurg. 2017;127(6):1449–1456. PMID: 28186447 https://doi.org/10.3171/2016.8.JNS16204; Corliss B, Gooldy T, Vaziri S, Kubilis P, Murad G, Fargen K. Complications After In Vivo and Ex Vivo Autologous Bone Flap Storage for Cranioplasty: A Comparative Analysis of the Literature. World Neurosurg. 2016;96:510–515. PMID: 27647038 https://doi.org/10.1016/j.wneu.2016.09.025; Alves Junior AC, Hamamoto Filho PT, Gonçalves MP, Palhares Neto AA, Zanini MA. Cranioplasty: An Institutional Experience. J Craniofac Surg. 2018;29(6):1402–1405. PMID: 29554074 https://doi.org/10.1097/SCS.0000000000004512; Nguyen H, Doan N, Wolfla C, Pollock G. Fenestration of bone flap during interval autologous cranioplasty. Surg Neurol Int. 2015;6:190. PMID: 26759735 https://doi.org/10.4103/2152-7806.172535; Sun J, Chen H, Wang J. Cranioplasty With Mandibular Outer Cortex Bone Grafts. J Craniofac Surg. 2017;29(1):153–155. PMID: 29194252 https://doi.org/10.1097/SCS.0000000000004176; Kim JH, Kim JH, Kwon TH, Chong K, Hwang SY, Yoon WK. Aseptic Bone Flap Resorption after Cranioplasty with Autologous Bone: Incidence, Risk Factors, and Clinical Implications. World Neurosurg. 2018;115:e111–e118. PMID: 29626687 https://doi.org/10.1016/j.wneu.2018.03.197; Lemée J-M, Petit D, Splingard M, Menei P. Autologous bone flap versus hydroxyapatite prosthesis in first intention in secondary cranioplasty after decompressive craniectomy: A French medico-economical study. Neurochirurgie. 2013;59(2):60–63. PMID: 23414773 https://doi.org/10.1016/j.neuchi.2012.10.138; Wolff A, Santiago GF, Belzberg M, Huggins C, Lim M, Weingart J, et al. Adult Cranioplasty Reconstruction With Customized Cranial Implants. J Craniofac Surg. 2018;29(4):887–894. PMID: 29489570 https://doi.org/10.1097/SCS.0000000000004385; Gilardino MS, Karunanayake M, Al-Humsi T, Izadpanah A, Al-Ajmi H, Marcoux J, et al. A Comparison and Cost Analysis of Cranioplasty Techniques. J Craniofac Surg. 2015;26(1):113–117. PMID:25534061 https://doi.org/10.1097/SCS.0000000000001305; Honeybul S, Morrison DA, Ho KM, Lind CRP, Geelhoed E. A randomised controlled trial comparing autologous cranioplasty with custom-made titanium cranioplasty: long-term follow-up. Acta Neurochir (Wien). 2018;160(5):885–891. PMID: 29546554 https://doi.org/10.1007/s00701-018-3514-z; Malcolm JG, Mahmooth Z, Rindler RS, Allen JW, Grossberg JA, Pradilla G, et al. Autologous Cranioplasty is Associated with Increased Reoperation Rate: A Systematic Review and Meta-Analysis. World Neurosurg. 2018;116:60–68. PMID: 29753896 https://doi.org/10.1016/j.wneu.2018.05.009; Korhonen TK, Salokorpi N, Niinimäki J, Serlo W, Lehenkari P, Tetri S. Quantitative and qualitative analysis of bone flap resorption in patients undergoing cranioplasty after decompressive craniectomy. J Neurosurg. 2018;130(1):312–321. PMID: 29473777 https://doi.org/10.3171/2017.8.JNS171857; Korhonen TK, Tetri S, Huttunen J, Lindgren A, Piitulainen JM, Serlo W, et al. Predictors of primary autograft cranioplasty survival and resorption after craniectomy. J Neurosurg. May 1: 1–8. PMID: 29749908 https://doi.org/10.3171/2017.12.JNS172013 [Epub ahead of print].; Krishnan P, Kartikueyan R, Roychowdhury S. Near-total bone flap resorption following autologous bone cranioplasty in a child. Pediatr Neurosurg. 2016;51(2):109–110. PMID: 26674532 https://doi.org/10.1159/000441681; LEÃO RS, Maior JRS, Lemos CAA, Vasconcelos BCDE, Montes MAJR, Pellizzer EP, et al. Complications with PMMA compared with other materials used in cranioplasty: a systematic review and meta-analysis. Braz Oral Res. 2018;32:e31. PMID: 29898018 https://doi.org/10.1590/1807-3107bor-2018. vol32.0031; Fu KJ, Barr RM, Kerr ML, Shah MN, Fletcher SA, Sandberg DI, et al. An Outcomes Comparison Between Autologous and Alloplastic Cranioplasty in the Pediatric Population. J Craniofac Surg. 2016;27(3):593–597. PMID: 27035597 https://doi.org/10.1097/SCS.0000000000002491; Mohamad SA, Mohd Haspani MS, Idris B. There are No Differences between Factors Determining Graft infection in Autologous Bone Flap Replacement and Acrylic Cranioplasty: A Prospective Observational Study at Hospital Kuala Lumpur. Malaysian J Med Sci. 2016;23(5):83–90. PMID: 27904429 https://doi.org/10.21315/mjms2016.23.5.11; Lindner D, Schlothofer-Schumann K, Kern BC, Marx O, Müns A, Meixensberger J. Cranioplasty using custommade hydroxyapatite versus titanium: a randomized clinical trial. J Neurosurg. 2017;126(1):175–183. PMID: 26918471 https://doi.org/10.3171/2015.10.JNS151245; Moles A, Heudes PM, Amelot A, Cristini J, Salaud C, Roualdes V, et al. Long-Term Follow-Up Comparative Study of Hydroxyapatite and Autologous Cranioplasties: Complications, Cosmetic Results, Osseointegration. World Neurosurg. 2018;111:e395–e402. PMID: 29277595 https://doi.org/10.1016/j.wneu.2017.12.082; Lethaus B, Bloebaum M, Koper D, Poort-Ter Laak M, Kessler P. Interval cranioplasty with patient-specific implants and autogenous bone grafts – Success and cost analysis. J Cranio- Maxillofacial Surg. 2014;42(8):1948–1951. PMID: 25443869 https://doi.org/10.1016/j.jcms.2014.08.006; Thesleff T, Lehtimäki K, Niskakangas T, Huovinen S, Mannerström B, Miettinen S, et al. Cranioplasty with Adipose-Derived Stem Cells, Beta-Tri calcium Phosphate Granules and Supporting Mesh: Six-Year Clinical Follow- Up Results. Stem Cells Transl Med. 2017;6(7):1576–1582. PMID: 28504874 https://doi.org/10.1002/sctm.16-0410; Piitulainen JM, Kauko T, Aitasalo KM, Vuorinen V, Vallittu PK, Posti JP. Outcomes of Cranioplasty with Synthetic Materials and Autologous Bone Grafts. World Neurosurg. 2015;83(5):708–714. PMID: 25681593 https://doi.org/10.1016/j.wneu.2015.01.014; Morales-Gómez JA, Garcia-Estrada E, Leos-Bortoni JE, Delgado-Brito M, Flores-Huerta LE, De La Cruz- Arriaga AA, et al. Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. J Neurosurg. 2018 Jun 1:1–7. PMID: 29905512 https://doi.org/10.3171/2017.12.JNS172574 [Epub ahead of print].; Макаров М.С., Пономарев И.Н. Роль богатой тромбоцитами плазмы в репарации дефектов костной ткани. Хирургия. Журнал им. Н.И. Пирогова. 2015;(10):94-99. Makarov MS, Ponomarev IN. Platelet rich plasma in bones defects regeneration. Pirogov Russian Journal of Surgery = Khirurgiya. Zhurnal imeni N.I. Pirogova. 2015;(10):94–99. (In Russ.). https://doi.org/10.17116/hirurgia20151094-99; https://www.jtransplantologiya.ru/jour/article/view/447

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20