Εμφανίζονται 1 - 14 Αποτελέσματα από 14 για την αναζήτηση '"ОРГАНОПРОТЕКТИВНЫЕ"', χρόνος αναζήτησης: 0,56δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: General Reanimatology; Том 18, № 5 (2022); 44-59 ; Общая реаниматология; Том 18, № 5 (2022); 44-59 ; 2411-7110 ; 1813-9779

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2261/1659; https://www.reanimatology.com/rmt/article/view/2261/1668; Soldatov P.E., D’iachenko A.I., Pavlov B.N., Fedotov A.P., Chuguev A.P. Survival of laboratory animals in argon-containing hypoxic gaseous environments. (in Rus.) Aviakosm Ekolog Med. 1998; 32 (4): 33–37. PMID: 9858985; Hafner C., Qi H., Soto-Gonzalez L., Doerr K., Ullrich R., Tretter E.V., Markstaller K., Klein K.U. Argon preconditioning protects airway epithelial cells against hydrogen peroxide-induced oxidative stress. Eur Surg Res. 2016; 57 (3-4): 252–262. DOI:10.1159/000448682. PMID: 27560977; Brücken A., Kurnaz P., Bleilevens C., Derwall M., Weis J., Nolte K., Rossaint R., Fries M. Dose dependent neuroprotection of the noble gas argon after cardiac arrest in rats is not mediated by K (ATP)-channel opening. Resuscitation. 2014; 85 (6): 826–832. DOI:10.1016/j.resuscitation.2014.02.014. PMID: 24582739; Lemoine S., Blanchart K., Souplis M., Lemaitre A., Legallois D., Coulbault L., Simard C., Allouche S., Abraini J.H., Hanouz J-L., Rouet R., Sallé L., Guinamard R., Manrique A. Argon exposure induces postconditioning in myocardial ischemia-reperfusion. J Cardiovasc Pharmacol Ther 2017; 22 (6): 564–573. DOI:10.1177/1074248417702891. PMID: 28381122; Mayer B., Soppert J., Kraemer S., Schemmel S., Beckers C., Bleilevens C., Rossaint R., CoburnN., Goetzenich A., Stoppe C. Argon induces protective effects in cardiomyocytes during the second window of preconditioning. Int J Mol Sci 2016; 17 (7): 1159. DOI:10.3390/ijms17071159. PMID: 27447611; Ulbrich F., Kaufmann K., Roesslein M., Wellner F., Auwärter V., Kempf J., Loop T., Buerkle H., Goebel U. Argon mediates anti-apoptotic signaling and neuroprotection via inhibition of toll-Like receptor 2 and 4. PLoS One. 2015; 10 (12): e0143887. DOI:10.1371/journal.pone.0143887. PMID: 26624894.; Ulbrich F., Lerach T., Biermann J., Kaufmann K.B., Lagreze W.A., Buerkle H., Loop T., Goebel U. Argon mediates protection by interleukin-8 suppression via a TLR2/TLR4/STAT3/NF-κB pathway in a model of apoptosis in neuroblastoma cells in vitro and following ischemia-reperfusion injury in rat retina in vivo. J Neurochem. 2016 Sep; 138 (6): 859–873. DOI:10.1111/jnc.13662. PMID: 27167824; Spaggiari S., Kepp O., Rello-Varona S., Chaba K., Adjemian S., Pype J., Galluzzi L., Lemaire M., Kroemer G. Antiapoptotic activity of argon and xenon. Cell Cycle. 2013; 12 (16): 2636–2642. DOI:10.4161/cc.25650. PMID: 23907115; Fahlenkamp A.V., Rossaint R., Coburn M. Neuroprotection by noble gases: new developments and insights. (in Germ.) Anaesthesist. 2015; 64 (11): 855–858. DOI:10.1007/s00101-015-0079-6. PMID: 26329914; Fahlenkamp A.V., Rossaint R., Haase H., Al Kassam H., Ryang Y-M., Beyer C., Coburn M. The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol. 2012; 674 (2): 104–111. DOI:10.1016/j.ejphar.2011.10.045. PMID: 22094065; Zhao H., Mitchell S., Ciechanowicz S., Savage S., Wang T., Ji X., Ma D. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2. Oncotarget. 2016; 7 (18): 25640–51. DOI:10.18632/oncotarget.8241. PMID: 27016422.; Zhao H., Mitchell S., Koumpa S., Cui Y.T., Lian Q., Hagberg H., Johnson M.R., Takata M., Ma D. Heme oxygenase-1 mediates neuroprotection conferred by argon in combination with hypothermia in neonatal hypoxia-ischemia brain injury. Anesthesiology. 2016; 125 (1): 180–192. DOI:10.1097/ALN.0000000000001128. PMID: 27065095; Harris K., Armstrong S.P., Campos-Pires R., Kiru L., Franks N.P., Dickinson R. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site. Anesthesiology 2013; 119 (5): 1137–1148. DOI:10.1097/ALN.0b013e3182a2a265. PMID: 23867231; David H.N., Haelewyn B., Risso J-J., Abraini J.H. Modulation by the noble gas argon of the catalytic and thrombolytic efficiency of tissue plasminogen activator. Naunyn Schmiedebergs Arch Pharmacol 2013; 386 (1): 91–95. DOI:10.1007/s00210-012-0809-0. PMID: 23142817; Höllig A., Weinandy A., Liu J., Clusmann H., Rossaint R., Coburn M. Beneficial properties of argon after experimental subarachnoid hemorrhage: early treatment reduces mortality and influences hippocampal protein expression. Crit Care Med. 2016; 44 (7): e520–9. DOI:10.1097/CCM.0000000000001561. PMID: 26751611; Zhuang L., Yang T., Zhao H., Fidalgo A.R., Vizcaychipi M.P., Sanders R.D., Yu B., Takata M., Johnson M.R., Ma D. The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med 2012; 40 (6): 1724–1730. DOI:10.1097/CCM.0b013e3182452164. PMID: 22610177; Fahlenkamp A.V., Coburn M., de Prada A., Gereitzig N., Beyer C., Haase H., Rossaint R., Gempt J., Ryang Y-M. Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med Gas Res. 2014; 4: 11. DOI:10.1186/2045-9912-4-11. PMID: 25671080; Ulbrich F, Schallner N, Coburn M, Loop T, Lagrèze WA, Biermann J, Goebel U. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats. PLoS One. 2014; 9 (12): e115984. DOI:10.1371/journal.pone.0115984. PMID: 25535961; Ulbrich F, Kaufmann KB, Coburn M, Lagreze WA, Roesslein M, Biermann J, Buerkle H, Loop T, Goebel U. Neuroprotective effects of Argon are mediated via an ERK1/2 dependent regulation of hemeoxygenase-1 in retinal ganglion cells. J Neurochem. 2015; 134 (4): 717–727. DOI:10.1111/jnc.13115. PMID: 25876941; Abraini J.H., Kriem B., Balon N., Rostain J-C., Risso J-J. Gammaaminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg. 2003; 96 (3): 746–749. DOI:10.1213/01.ANE.0000050282.14291.38. PMID: 12598256; Faure A., Bruzzese L., Steinberg J.G., Jammes Y., Torrents J., Berdah S.V., Garnier E., Legris T., Loundou A., Chalopin M., Magalon G., Guieu R., Fenouillet E., Lechevallier E. Effectiveness of pure argon for renal transplant preservation in a preclinical pig model of heterotopic autotransplantation. J Transl Med. 2016; 14: 40. DOI:10.1186/s12967-016-0795-y. PMID: 26847569; Liu J., Nolte K., Brook G., Liebenstund L., Weinandy A., Höllig A., Veldeman M., Willuweit A., Langen K.J., Rossaint R., Coburn M. Poststroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: a randomized controlled animal study. Crit Care. 2019; 23 (1): 198. DOI:10.1186/s13054-019-2493-7. PMID: 31159847; De Roux Q., Lidouren F., Kudela A., Slassi L., Kohlhauer M., Boissady E., Chalopin M., Farjot G., Billoet C., Bruneval P., Ghaleh B., Mongardon N., Tissier R. Argon attenuates multiorgan failure in relation with HMGB1 inhibition. Int J Mol Sci. 2021; 22 (6): 3257. DOI:10.3390/ijms22063257. PMID: 33806919; Qi H., Soto-Gonzalez L., Krychtiuk K.A., Ruhittel S., Kaun C., Speidl W.S., Kiss A., Podesser B.K., Yao S., Markstaller K., Klein K.U., Tretter V. Pretreatment with argon protects human cardiac myocyte-like progenitor cells from oxygen glucose deprivation-induced cell death by activation of AKT and differential regulation of mapkinases. Shock. 2018; 49 (5): 556–563. DOI:10.1097/SHK.0000000000000998. PMID: 29658909; David H.N., Dhilly M., Degoulet M., Poisnel G., Meckler C., Vallée N., Blatteau J.É., Risso J.J., Lemaire M., Debruyne D., Abraini J.H. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens. Transl Psychiatry. 2015; 5 (7): e594. DOI:10.1038/tp.2015.27. PMID: 26151922; Grüßer L., Blaumeiser-Debarry R., Krings M., Kremer B., Höllig A., Rossaint R., Coburn M. Argon attenuates the emergence of secondary injury after traumatic brain injury within a 2-hour incubation period compared to desflurane: an in vitro study. Med Gas Res 2017; 7 (2): 93–100. DOI:10.4103/2045-9912.208512. PMID: 28744361; Moro F., Fossi F., Magliocca A., Pascente R., Sammali E., Baldini F., Tolomeo D., Micotti E., Citerio G., Stocchetti N., Fumagalli F., Magnoni S., Latini R., Ristagno G., Zanier E.R. Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. Br J Anaesth. 2020; 126 (1): 256–264. DOI:10.1016/j.bja.2020.08.027. PMID: 32977957; Creed J., Cantillana-Riquelme V., Yan B.H., Ma S., Chu D., Wang H., Turner D.A., Laskowitz D.T., Hoffmann U. Argon inhalation for 24 h after closed-head injury does not improve recovery, neuroinflammation, or neurologic outcome in mice. Neurocrit Care. 2021; 34 (3): 833-843. DOI:10.1007/s12028-020-01104-0. PMID: 32959200; Koziakova M., Harris K., Edge C.J., Franks N.P., White I.L., Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019; 123 (5): 601–609. DOI:10.1016/j.bja.2019.07.010. PMID: 31470983; Savary G., Lidouren F., Rambaud J., Kohlhauer M., Hauet T., Bruneval P., Costes B., Cariou A., Ghaleh B., Mongardon N., Tissier R. Argon attenuates multiorgan failure following experimental aortic crossclamping. Br J Clin Pharmacol. 2018; 84 (6): 1170–1179. DOI:10.1111/bcp.13535. PMID: 29388238; Wang Y-Z., Li T-T., Cao H-L., Yang W-C. Recent advances in the neuroprotective effects of medical gases. Med Gas Res. 2019; 9 (2): 80–87. DOI:10.4103/2045-9912.260649. PMID: 31249256; Zhang J., Liu W., Bi M., Xu J., Yang H., Zhang Y. Noble gases therapy in cardiocerebrovascular diseases: the novel stars? Front Cardiovasc Med. 2022; 9: 802783. DOI:10.3389/fcvm.2022.802783. PMID: 35369316; Edge C.J., Dickinson R. Argon: a noble, but not inert, treatment for brain trauma? Br J Anaesth. 2021; 126 (1): 41–43. DOI:10.1016/j.bja.2020.09.028. PMID: 33097180; Schneider F.I., Krieg S.M., Lindauer U., Stoffel M., Ryang Y-M. Neuroprotective effects of the inert gas argon on experimental traumatic brain injury in vivo with the controlled cortical impact model in mice. Biology (Basel). 2022; 11 (2): 158. DOI:10.3390/biology11020158. PMID: 35205025; Greenwood A., Evans J., Smit E. New brain protection strategies for infants with hypoxic-ischaemic encephalopathy. Paediatrics and Child Health. 2018; 28 (9): 405–411. ISSN 1751-7222. DOI:10.1016/j.paed.2018.06.004; De Giorgio D., Magliocca A., Fumagalli F., Novelli D., Olivari D., Staszewsky L., Latini R., Ristagno G. Ventilation with the noble gas argon in an in vivo model of idiopathic pulmonary arterial hypertension in rats. Med Gas Res. 2021; 11 (3): 124–125. DOI:10.4103/2045-9912.314333. PMID: 33942784; Suleiman S., Klassen S., Katz I., Balakirski G., Krabbe J., von Stillfried S., Kintsler S., Braunschweig T., Babendreyer A., Spillner J., Kalverkamp S., Schröder T., Moeller M., Coburn M., Uhlig S., Martin C., Rieg A.D. Argon reduces the pulmonary vascular tone in rats and humans by GABA-receptor activation. Sci Rep. 2019; 9 (1): 1902. DOI:10.1038/s41598-018-38267-y. PMID: 30760775; Le Nogue, D., Lavaur, J., Milet, A., Ramirez-Gil J-F., Katz I., Lemaire M., Farjot G., Hirsch E.C., Michel P.P. Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases. J Neural Transm (Vienna). 2020; 127 (1): 27–34 DOI:10.1007/s00702-019-02112-x. PMID: 31807953; Kundu S.K., Chakraborty C., Yagihara S., Teoh S.L., Das S. Anesthetic molecule interaction of noble gases with proteins and lipids and their effect: a review. Curr Drug Deliv. 2018; 15 (10): 1381–1392. DOI:10.2174/1567201815666180820101255. PMID: 30124152; Htun Y., Nakamura S., Kusaka T. Hydrogen and therapeutic gases for neonatal hypoxic-ischemic encephalopathy: potential neuroprotective adjuncts in translational research. Pediatr Res. 2021; 89 (4): 753–759. DOI:10.1038/s41390-020-0998-z. PMID: 32505123; Solevåg A.L., Schmölzer G.M., Cheung P.Y. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med. 2019; 142: 113–122. DOI:10.1016/j.freeradbiomed.2019.04.028. PMID: 31039399; Nair S.G. Argon: the future organ protectant? Ann Card Anaesth. 2019; 22 (2): 111–112. DOI:10.4103/aca.ACA_180_18. PMID: 30971590; Moher D., Liberati A., Tetzlaff J., Altman D.G., PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6 (7): e1000097. DOI:10.1371/journal.pmed.1000097. PMID: 19621072; Alshami A., Einav S., Skrifvars M.B., Varon J. Administration of inhaled noble and other gases after cardiopulmonary resuscitation: a systematic review. Am J Emerg Med. 2020; 38 (10): 2179–2184. DOI:10.1016/j.ajem.2020.06.066. PMID: 33071073; Rohel A., Rossaint R., Coburn M. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp. 2020; 8 (1): 11. DOI:10.1186/s40635-020-0294-6. PMID: 32096000; Deng R-M., Li H-Y., Li X., Shen H-T., Wu D-G., Wang Z., Chen G. Neuroprotective effect of helium after neonatal hypoxic ischemia: a narrative review. Med Gas Res. 2021; 11 (3): 121–123. DOI:10.4103/2045-9912.314332. PMID: 33942783.; Gardner A.J., Menon D.K. Moving to human trials for argon neuroprotection in neurological injury: a narrative review. Br J Anaesth. 2018; 120 (3): 453-468. DOI:10.1016/j.bja.2017.10.017. PMID: 29452802; Höllig A., Coburn M. Noble gases and neuroprotection: summary of current evidence. Curr Opin Anaesthesiol. 2021; 34 (5): 603–606. DOI:10.1097/ACO.0000000000001033. PMID: 34224430; De Deken J., Rex S., Lerut E., Martinet W., Monbaliu D., Pirenne J., Jochmans I. Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation. Br J Surg. 2018; 105 (8): 1051–1060. DOI:10.1002/bjs.10796. PMID: 29603122; Magliocca A., Fries M. Inhaled gases as novel neuroprotective therapies in the postcardiac arrest period. Curr Opin Crit Care. 2021; 27 (3): 255–260. DOI:10.1097/MCC.0000000000000820. PMID: 33769417; Shin S.S, Hwang M., Diaz-Arrastia R., Kilbaugh T.J. Inhalational gases for neuroprotection in traumatic brain injury. J Neurotrauma. 2021; 38 (19): 2634–2651. DOI:10.1089/neu.2021.0053. PMID: 33940933.; Diao M-Y., Zhu Y., Yang J., Xi S-S., Wen X., Gu Q., Hu W. Hypothermia protects neurons against ischemia/reperfusion-induced pyroptosis via m6A-mediated activation of PTEN and the PI3K/Akt/GSK-3β signaling pathway. Brain Res Bull. 2020; 159: 25-31. DOI:10.1016/j.brainresbull.2020.03.011. PMID: 32200003; Fu X., Zhong X., Chen X., Yang D., Zhou Z., Liu Y. GSK-3β activates NF-κB to aggravate caerulein-induced early acute pancreatitis in mice. Ann Transl Med. 2021; 9 (22): 1695. DOI:10.21037/atm-21-5701. PMID: 34988204; Кузовлев А.Н., Шпичко А.И., Рыжков И.А., Гребенчиков О.А., Шабанов А.К., Хусаинов Ш.Ж., Цоколаева, З. И., Лобанов А.В. Влияние ксенона на фосфорилирование киназы гликогенсинтазы-3β и антиоксидантные ферменты в мозге крыс. Журнал им. Н.В. Склифосовского Неотложная медицинская помощь. 2020; 9 (4): 564–572. DOI.10.23934/2223-9022-2020-9-4-564-57213; Filev A.D., Silachev D.N., Ryzhkov I.A., Lapin K.N., Babkina A.S., Grebenchikov O.A., Pisarev V.M. Effect of xenon treatment on gene expression in brain tissue after traumatic brain injury in rats. Brain Sci. 2021; 11 (7): 889. DOI:10.3390/brainsci11070889. PMID: 34356124; Черпаков Р.А., Гребенчиков О.А. Влияние концентрации хлорида лития на его нейропротекторные свойства при ишемическом инсульте у крыс. Общая реаниматология. 2021; 17 (5): 101–110. DOI:10.15360/1813-9779-2021-5-101-110; Jawad N., Rizvi M., Gu J., Adeyi O., Tao G., Maze M., Ma D. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett. 2009; 460 (3): 232–236. DOI:10.1016/j.neulet.2009.05.069. PMID: 19500647; Ma S., Chu D., Li L., Creed J.A., Ryang Y-M., Sheng H., Yang W., Warner D.S., Turner D.A., Hoffmann U. Argon inhalation for 24 hours after onset of permanent focal cerebral ischemia in rats provides neuroprotection and improves neurologic outcome. Crit Care Med. 2019 47 (8): e693–e699. DOI:10.1097/CCM.0000000000003809. PMID: 31094741; Kremer B, Coburn M, Weinandy A, Nolte K, Clusmann H, Veldeman M, Höllig A. Argon treatment after experimental subarachnoid hemorrhage: evaluation of microglial activation and neuronal survival as a subanalysis of a randomized controlled animal trial. Med Gas Res. 2020; 10 (3): 103–109. DOI:10.4103/2045-9912.296039. PMID: 33004706; Brücken A, Kurnaz P, Bleilevens C, Derwall M, Weis J, Nolte K, Rossaint R., Fries M. Delayed argon administration provides robust protection against cardiac arrest-induced neurological damage. Neurocrit Care. 2015; 22: 112–2. DOI:10.1007/s12028-014-0029-1. PMID: 25081369; Zuercher P., Springe D., Grandgirard D., Leib S.L., Grossholz M., Jakob S., Takala J., Haenggi M. A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model. BMC Neurol. 2016; 16: 43. DOI:10.1186/s12883-016-0565-8. PMID: 27044425; Fumagalli F., Olivari D., Boccardo A., De Giorgio D., Affatato R., Ceriani S., Bariselli S., Sala G., Cucino A., Zani D., Novelli D., Babini G., Magliocca A., Russo I., Staszewsky L., Salio M., Lucchetti J., Maisano A.M., Fiordaliso F., Furlan R., Gobbi M., Luini M.V., Pravettoni D., Scanziani E., Belloli A., Latini R., Ristagno G. Ventilation with argon improves survival with good neurological recovery after prolonged untreated cardiac arrest in pigs. J Am Heart Assoc. 2020; 9 (24): e016494. DOI:10.1161/JAHA.120.016494. PMID: 33289464; Ristagno G., Fumagalli F., Russo I., Tantillo S., Zani D.D., Locatelli V., De Maglie M., Novelli D., Staszewsky L., Vago T., Belloli A., Di Giancamillo M., Fries M., Masson S., Scanziani E., Latini R. Postresuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock. 2014; 41 (1): 72–78. DOI:10.1097/SHK.0000000000000049. PMID: 24088999; Loetscher P.D., Rossaint J., Rossaint R., Weis J., Fries M., Fahlenkamp A., Ryang Y-M, Grottke O., Coburn M. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care 2009; 13 (6): R206. DOI:10.1186/cc8214. PMID: 20017934; Alderliesten T., Favie L.M., Neijzen R.W., Auwärter V., Nijboer C.H,. Marges R.E., Rademaker C.M., Kempf J., van Bel F., Groenendaal F. Neuroprotection by argon ventilation after perinatal asphyxia: a safety study in newborn piglets. PLoS One 2014; 9 (12): e113575. DOI:10.1371/journal.pone.0113575. PMID: 25460166; Broad K.D., Fierens I., Fleiss B., Rocha-Ferreira E., Ezzati M., Hassell J., Alonso-Alconada D., Bainbridge A., Kawano G., Ma D., Tachtsidis I., Gressens P., Golay X., Sanders R.D., Robertson N.J. Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis. 2016; 87: 29–38. DOI:10.1016/j.nbd.2015.12.001. PMID: 26687546; Zhao H., Luo X., Zhou Z., Liu J., Tralau-Stewart C., George A.J.T., Ma D. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats. Kidney Int. 2014; 85 (1): 112–123. DOI:10.1038/ki.2013.334. PMID: 24025645; Soo E., Marsh C., Steiner R., Stocks L., McKay D.B. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando). 2020; 34 (1): 100514. DOI:10.1016/j.trre.2019.100514. PMID: 31645271; Irani Y., Pype J.L., Martin A.R., Chong C.F., Daniel L., Gaudart J., Ibrahim Z., Magalon G., Lemaire M., Hardwigsen J. Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011; 1 (1): 272–282. DOI:10.1159/000335197. PMID: 22470401; Kiss A., Shu H., Hamza O., Santer D., Tretter E.V., Yao S., Markstaller K., Hallström S., Podesser B.K., Klein K.U. Argon preconditioning enhances postischaemic cardiac functional recovery following cardioplegic arrest and global cold ischaemia. Eur J Cardiothorac Surg. 2018; 54 (3): 539–546. DOI: 0.1093/ejcts/ezy104. PMID: 29547976; Westenberger G., Sellers J., Fernando S., Junkins S., Han S.M., Min K., Lawan A. Function of mitogen-activated protein kinases in hepatic inflammation. J Cell Signal. 2021; 2 (3): 172–180. PMID: 34557866; Lin Y., Xu Y., Zhang Z. Sepsis-induced myocardial dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting mitochondria. Inflammation. 2020; 43 (4): 1184–1200. DOI:10.1007/s10753-020-01233-w. PMID: 32333359; Liu X., Wei B., Bi Q., Sun Q., Li L., He J., Weng Y., Zhang S., Mao G., Bao Y., Wan S., Shen X.Z., Yan J., Shi P. MPTP-induced impairment of cardiovascular function. Neurotox Res. 2020; 38 (1): 27–37. DOI:10.1007/s12640-020-00182-4. PMID: 32198706; Chen M.W., Santos P., Kulikowicz E., Koehler R.C., Lee J.K., Martin L.J. Targeting the mitochondrial permeability transition pore for neuroprotection in a piglet model of neonatal hypoxic-ischemic encephalopathy. J Neurosci Res. 2021; 99 (6): 1550–1564. DOI:10.1002/jnr.24821. PMID: 33675112; Schauer A., Barthel P., Adams V., Linke A., Poitz D.M., Weinbrenner C. Pharmacological pre- and postconditioning with levosimendan protect H9c2 cardiomyoblasts from anoxia/reoxygenation-induced cell death via PI3K/Akt signaling. J Cardiovasc Pharmacol. 2021; 77 (3): 378–385. DOI:10.1097/FJC.0000000000000969. PMID: 33662980; Raupach A., Reinle J., Stroethoff M., Mathes A., Heinen A., Hollmann M.W., Huhn R., Bunte S. Milrinone-induced pharmacological preconditioning in cardioprotection: hints for a role of mitochondrial mechanisms. J Clin Med. 2019; 8 (4): 507. DOI:10.3390/jcm8040507. PMID: 31013843; Intachai K., C. Chattipakorn S.C., Chattipakorn N., Shinlapawittayatorn K. Revisiting the cardioprotective effects of acetylcholine receptor activation against myocardial ischemia/reperfusion injury. Intl J Mol Sci. 2018; 19 (9): 2466. DOI:10.3390/ijms19092466. PMID: 30134547; Rout A., Tantry U.S., Novakovic M., Sukhi A., Gurbel P.A. Targeted pharmacotherapy for ischemia reperfusion injury in acute myocardial infarction. Expert Opin Pharmacother. 2020; 21 (15): 1851–1865. DOI:10.1080/14656566.2020.1787987. PMID: 32659185; Shanmugam K., Boovarahan S.R., Prem P, Sivakumar B., Kurian G.A. Fisetin attenuates myocardial ischemia-reperfusion injury by activating the reperfusion injury salvage kinase (RISK) signaling pathway. Front Pharmacol. 2021; 12: 566470. DOI:10.3389/fphar.2021.566470. PMID: 33762932; Yang X., Yue R., Zhang J., Zhang X., Liu Y., Chen C., Wang X., Luo H., Wang W.E., Chen X., Wang H.J., Jose P.A., Wang H., Zeng C. Gastrin protects against myocardial ischemia/reperfusion injury via activation of RISK (Reperfusion Injury Salvage Kinase) and SAFE (Survivor Activating Factor Enhancement) pathways. J Am Heart Assoc. 2018; 7 (14): e005171. DOI:10.1161/JAHA.116.005171. PMID: 30005556; Ma H., Hao J., Liu H., Yin J., Qiang M., Liu M., He S., Zeng D., Liu X., Lian C., Gao Y. Peoniflorin preconditioning protects against myocardial ischemia/reperfusion injury through inhibiting myocardial apoptosis: RISK pathway involved. Appl Biochem Biotechnol. 2022; 194 (3): 1149–1165. DOI:10.1007/s12010-021-03680-z. PMID: 34596828; Li J., Jia Z., Zhang Q., Dai J., Kong J., Fan Z., Li G. Inhibition of ERK1/2 phosphorylation attenuates spinal cord injury induced astrocyte activation and inflammation through negatively regulating aquaporin-4 in rats. Brain Res Bull. 2021; 170: 162–173. DOI:10.1016/j.brainresbull.2021.02.014. PMID: 33592275; Xiao K., Liu P., Yan P., Liu Y, Song L., Liu Y., Xie L. N6-methyladenosine reader YTH N6-methyladenosine RNA binding protein 3 or insulin like growth factor 2 mRNA binding protein 2 knockdown protects human bronchial epithelial cells from hypoxia/reoxygenation injury by inactivating p38 MAPK, AKT, ERK1/2, and NF-κB pathways. Bioengineered. 2022; 13 (5): 11973-11986. DOI:10.1080/21655979.2021.1999550. PMID: 34709120; Li J., Fu X., Cao S., Li J., Xing S., Li D., Dong Y., Cardin D., Park H.W., Mauvais-Jarvis F., Zhang H. Membrane-associated androgen receptor (AR) potentiates its transcriptional activities by activating heat shock protein 27 (HSP27). J Biol Chem. 2018; 293 (33): 12719–12729. DOI:10.1074/jbc.RA118.003075. PMID: 29934310; Fawzy M.A., Maher S.A., Bakkar S.M., El-Rehany M.A., Fathy M. Pantoprazole attenuates MAPK (ERK1/2, JNK, p38)-NF-κB and apoptosis signaling pathways after renal ischemia/reperfusion injury in rats. Int J Mol Sci. 2021; 22 (19): 10669. DOI:10.3390/ijms221910669. PMID: 34639009; Zhao Z., Zhang Y., Wang C., Wang X., Wang Y., Zhang H. Angiotensin II upregulates RANKL/NFATC1 expression in synovial cells from patients with rheumatoid arthritis through the ERK1/2 and JNK pathways. J Orthop Surg Res. 2021; 16 (1): 297. DOI:10.1186/s13018-021-02451-0. PMID: 33952303; Ouyang W., Frucht D.M. Erk1/2 inactivation-induced c-Jun degradation is regulated by protein phosphatases, UBE2d3, and the C-terminus of c-Jun. Int J Mol Sci. 2021; 22 (8): 3889. DOI:10.3390/ijms22083889. PMID: 33918729; Goebel U., Scheid S., Spassov S., Schallner N., Wollborn J., Buerkle H., Ulbrich F. Argon reduces microglial activation and inflammatory cytokine expression in retinal ischemia/reperfusion injury. Neural Regen Res. 2021; 16 (1): 192-198. DOI:10.4103/1673-5374.290098. PMID: 32788476; Kimura M., Oda Y., Hirose Y., Kimura H., Yoshino K., Niitsu T., Kanahara N., Shirayama Y., Hashimoto K., Iyo M. Upregulation of heat-shock protein HSP-70 and glutamate transporter-1/glutamine synthetase in the striatum and hippocampus in haloperidol-induced dopamine-supersensitivity-state rats. Pharmacol Biochem Behav. 2021; 211: 173288. DOI:10.1016/j.pbb.2021.173288. PMID: 34653399; Rastogi S., Haldar C. Role of melatonin and HSF-1HSP-70 in modulating cold stress-induced immunosuppression in a tropical rodent- Funambulus pennanti. J Therm Biol. 2020; 87: 102456. DOI:10.1016/j.jtherbio.2019.102456. PMID: 32001016; Schmitz S.M., Dohmeier H., Stoppe C., Alizai P.H., Schipper S., Neumann U.P., Coburn M., Ulmer T.F. Inhaled argon impedes hepatic regeneration after ischemia/reperfusion injury in rats. Int J Mol Sci. 2020; 21 (15): 5457. DOI:10.3390/ijms21155457. PMID: 32751707; Teng W., Fan J., Zhang W.X. Iron-catalyzed selective denitrification over N-doped mesoporous carbon. ACS Appl Mater Interfaces. 2020; 12 (25): 28091–28099. DOI:10.1021/acsami.0c03953. PMID: 32413255; Bickels J., Campanacci D.A. Local adjuvant substances following curettage of bone tumors. J Bone Joint Surg Am. 2020; 102 (2): 164–174. DOI:10.2106/JBJS.19.00470. PMID: 31613863; Ismail M., Nielsen T.K., Lagerveld B., Garnon J., Breen D, King A., van Strijen M., Keeley F.X. Jr. Renal cryoablation: multidisciplinary, collaborative and perspective approach. Cryobiology. 2018; 83: 90–94. DOI:10.1016/j.cryobiol.2018.06.002. PMID: 29890126; Lundell R.V., Wuorimaa T., Räisänen-Sokolowski A., Sundholm J.K., Rintamäki H., Rissanen S., Parkkola K. Comparison of argon and air as thermal insulating gases in drysuit dives during military Arctic diving equipment development tests. Undersea Hyperb Med. 2019; 46 (4): 429–435. PMID: 31509899; Nycz M., Paradowska E., Arkusz K., Pijanowska D.G. Influence of geometry and annealing temperature in argon atmosphere of TiO₂ nanotubes on their electrochemical properties. Acta Bioeng Biomech. 2020; 22 (1): 165–177. PMID: 32307458; Tan Y.W., Ye Y., Sun L. Argon-helium cryoablation for thoracic vertebrae with metastasis of hepatocellular carcinoma-related hepatitis B: a case report. World J Clin Cases. 2020; 8 (2): 377–381. DOI:10.12998/wjcc.v8.i2.377. PMID: 32047788; Ning J., Zhao H., Chen B., Mi E.Z., Yang Z., Qing W., Lam K.W.J., Yi B., Chen Q., Gu J., Ichim T. Bogin V., Lu K. Ma D. Argon mitigates impaired wound healing process and enhances wound healing in vitro and in vivo. Theranostics. 2019; 9 (2): 477–490. DOI:10.7150/thno.29361. PMID: 30809288; Li X., Zhang Z.W., Wang Z., Li J.Q., Chen G. The role of argon in stroke. Med Gas Res. 2018; 8 (2): 64–66. DOI:10.4103/2045-9912.235129. PMID: 30112168; Murgu S., Laxmanan B., Stoy S., Egressy K., Chaddha U., Farooqui F., Brunner R., Hogarth K., Chaney M. Evaluation of safety and shortterm outcomes of therapeutic rigid bronchoscopy using total intravenous anesthesia and spontaneous assisted ventilation. Respiration. 2020; 99 (3): 239–247. DOI:10.1159/000504679. PMID: 31851991; Material safety data sheet gaseous argon, Universal Industrial Gases, Inc. Available from: http://www.uigi.com/MSDS_gaseous_Ar.html. [Revision Date: April 25, 2015].; Nespoli F., Redaelli S., Ruggeri L., Fumagalli F., Olivari D., Ristagno G. A complete review of preclinical and clinical uses of the noble gas argon: evidence of safety and protection. Ann Card Anaesth. 2019; 22 (2): 122–135. DOI:10.4103/aca.ACA_111_18. PMID: 30971592; Cucino A., Ruggeri L., Olivari D., De Giorgio D., Latini R., Ristagno G. Safety of ventilation with an argon and oxygen gas mixture. Br J Anaesth. 2019; 122 (2): e31–e32. DOI:10.1016/j.bja.2018.11.010. PMID: 30686325; Campos-Pires R., Koziakova M., Yonis A.Y., Pau A., Macdonald W., Harris K., Edge C.J., Franks N.P., Mahoney P.F., Dickinson R. Xenon protects against blast-induced traumatic brain injury in an in vitro model. J Neurotrauma. 2018; 35 (8): 1037–1044. DOI:10.1089/neu.2017.5360. PMID: 29285980; Campos-Pires R., Hirnet T., Valeo F., Ong B.E., Radyushkin K.A., Aldhoun J., Saville J., Edge C.J., Franks N.P., Thal S.C., Dickinson R. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth. 2019; 123 (1): 60–73. DOI:10.1016/j.bja.2019.02.032. PMID: 31122738; Filev A.D., Silachev D.N., Ryzhkov I.A., Lapin K.N., Babkina A.S., Grebenchikov O.A., Pisarev V.M. Effect of xenon treatment on gene expression in brain tissue after traumatic brain injury in rats. Brain Sci. 2021: 11 (7); 889. DOI:10.3390/brainsci11070889. PMID: 34356124; Moro F., Fossi F., Magliocca A., Pascente R., Sammali E., Baldini F., Tolomeo D., Micotti E., Citerio G., Stocchetti N., Fumagalli F., Magnoni S., Latini R., Ristagno G., Zanier E.R. Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. Br J Anaesth. 2021; 126 (1): 256–264. DOI:10.1016/j.bja.2020.08.027. PMID: 32977957; Zhang M., Cui Y., Cheng Y., Wang Q., Sun H. The neuroprotective effect and possible therapeutic application of xenon in neurological diseases. J Neurosci Res. 2021; 99 (12): 3274–3283. DOI:10.1002/jnr.24958. PMID: 34716615; Maze M., Laitio T. Neuroprotective properties of xenon. Mol Neurobiol. 2020 Jan; 57 (1): 118–124. DOI:10.1007/s12035-019-01761-z. PMID: 31758401; Wang J., Li R. Peng Z., Hu B., Rao X., Li J. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-κB signaling pathways. Int J Mol Med. 2020; 45 (1): 61-80. DOI:10.3892/ijmm.2019.4402. PMID: 31746367; Zewinger S., Reiser J., Jankowski V., Alansary D., Hahm E., Triem S,. Klug M., Schunk S.J., Schmit D., Kramann R., Körbel C., Ampofo E., Laschke M.W., Selejan S.R., Paschen A., Herter T., Schuster S., Silbernagel G., Sester M., Sester U., Aßmann G., Bals R., Kostner G., Jahnen-Dechent W., Menger M.D., Rohrer L., März W., Böhm M., Jankowski J., Kopf M., Latz E., Niemeyer B.A., Fliser D., Laufs U., Speer T. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020; 21 (1): 30-41. DOI:10.1038/s41590-019-0548-1. PMID: 31819254.; Mitsui Y., Hou L., Huang X., Odegard K.C., Pereira L.M., Yuki K. Volatile anesthetic sevoflurane attenuates toll-like receptor1/2 activation. Anesth Analg. 2020; 131 (2): 631–639. DOI:10.1213/ANE.0000000000004741. PMID: 32149756.; https://www.reanimatology.com/rmt/article/view/2261

  2. 2
  3. 3
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 30, № 2 (2015); 29-35 ; Сибирский журнал клинической и экспериментальной медицины; Том 30, № 2 (2015); 29-35 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2015-30-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/163/164; Лазебник Л.Б., Комиссаренко И.А. Лечение артериальной гипертонии у больных старших возрастов с высоким риском развития сердечно-сосудистых осложнений // Рос. кардиол. журн. - 2006. - № 5(61). - С. 82-87.; Сунцов Ю.И., Болотская Л.Л., Маслова О.В. и др. Эпидемиология сахарного диабета и прогноз его распространенности в Российской Федерации // Сахарный диабет. - 2011. -№ 1. - С. 15-18.; Daugherty S.L., Powers J.D., Magid D.J. Incidence and prognosis of resistant hypertension in hypertensive patients // Circulation. - 2012. - Vol. 125(13). - P 1635-1642.; Caterina A.R., Leone A.M. Why beta-blockers should not be used as first choice in uncomplicated hypertension // Am. J. Cardiol. - 2010. - Vol. 105. - P 1433-1438.; Law M.R., Morris J.K., Wald N.J. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies // BMJ. - 2009. - Vol. 338. - P. b1665.; Lemke H., de Castro A.G., Schlattmann P. at al. Cerebrovascular reactivity over time-course - from major depressive episode to remission // J. Psychiatr. Res. - 2010. - Vol. 44(3). - P 132-136.; Maeda M. et al. The sympathoexcitatory pathway from the CVL to the RVL for controlling brain vessels // Tzu Chi Medical Journal. - 2008. - Vol. 20, Issue 4. - P. 243-247.; Mancia G., Fagard R., Narkiewicz K. et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Task Force Members // J. Hypertension. - 2013. - Vol. 31(7). - Р 1281-1357.; Mahfoud F., Schlaich M., Kindermann I. et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study // Circulation. - 2011. -Vol. 123. - P 1940-1946.; Pancholy S. Meta-analysis of the effect of renal denervation on blood pressure and pulse pressure in patients with resistant systemic hypertension // Am. J. Cardiol. - 2014. - Vol. 114, Issue 6. - P. 856-861.; Gijo n-Conde T., Graciani A., Banegas J.R. Resistant hypertension: demography and clinical characteristics in 6292 patients in a primary health care setting // Rev. Esp. Cardiol. - 2014. -Vol. 67(4). - Р. 270-276.; Oliva R.V., Bakris G.L. Sympathetic activation in resistant hypertension: theory and therapy // Semin. Nephrology. - 2014. - Vol. 34, No. 5. - P. 550-559.; Parati G., Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure // Eur. Heart J. - 2012. - Vol. 33. - P 1058-1066.; Shim C.Y., Hong G.R., Park S. et al. Impact of central hemodynamics on left ventricular function in individuals with an exaggerated blood pressure response to exercise // J. Hypertension. - 2015. - Vol. 33. - P 612-620.; Howard J.P., Nowbar A.N., Francis D.P. Size of blood pressure reduction from renal denervation: insights from meta-analysis of antihypertensive drug trials of 4,121 patients with focus on trial design: the CONVERGE report // Heart. - 2013. -Vol. 99(21). - Р 1579-1587.; Zeymer U. et al. Incidence of resistant hypertension and prognostic impact on clinical events during 2-year follow-up in outpatients with hypertension results of the registry // J. Hypertension. - 2013. - Vol. 31, Suppl. A. - P. 117.; https://www.sibjcem.ru/jour/article/view/163

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14