Εμφανίζονται 1 - 20 Αποτελέσματα από 95 για την αναζήτηση '"ОПУХОЛЬ ГОЛОВНОГО МОЗГА"', χρόνος αναζήτησης: 0,78δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Science Foundation (grant No. 25-25-00391)., Работа выполнена при поддержке Российского научного фонда (грант № 25-25-00391).

    Πηγή: Advances in Molecular Oncology; Vol 11, No 4 (2024); 23-40 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 23-40 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  4. 4
    Academic Journal

    Πηγή: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 3 No. 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 383-387 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 3 № 6 (2024): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 383-387 ; 2181-3469

    Περιγραφή αρχείου: application/pdf

  5. 5
  6. 6
  7. 7
    Conference

    Περιγραφή αρχείου: application/pdf

    Relation: Молодежь и современные информационные технологии : сборник трудов XX Международной научно-практической конференции студентов, аспирантов и молодых учёных, 20-22 марта 2023 г., г. Томск; http://earchive.tpu.ru/handle/11683/77987

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/77987

  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Medical science of Uzbekistan; No. 3 (2023): May-June; 09-11 ; Медицинская наука Узбекистана; № 3 (2023): Май-Июнь; 09-11 ; O`zbekiston tibbiyot ilmi; No. 3 (2023): May-Iyun; 09-11 ; 2181-3612

    Περιγραφή αρχείου: application/pdf

  12. 12
    Academic Journal

    Πηγή: Medical Visualization; Том 26, № 2 (2022); 18-38 ; Медицинская визуализация; Том 26, № 2 (2022); 18-38 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1046/720; Broggi M., Broggi G. Stereotactic biopsy: an established procedure, but still modern? Wld Neurosurg. 2015; 83 (3): 285–287. http://doi.org/10.1016/j.wneu.2014.08.059; Apuzzo M.L., Chandrasoma P.T., Cohen D. et al. Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses. Neurosurgery. 1987; 20 (6): 930–937. http://doi.org/10.1227/00006123-198706000-00019; Kondziolka D., Lunsford L.D. The role of stereotactic biopsy in the management of gliomas. J. Neurooncol. 1999; 42 (3): 205–213. http://doi.org/10.1023/a:1006105415194; Weber M.A., Giesel F.L., Stieltjes B. MRI for identification of progression in brain tumors: from morphology to function. Exp. Rev. Neurother. 2008; 8: 1507–1525.; Coffey R.J., Lunsford L.D. Stereotactic surgery for mass lesions of the midbrain and pons. Neurosurgery. 1985; 17 (1): 12–18. http://doi.org/10.1227/00006123-198507000-00003; Heper A.O., Erden E., Savas A. et al. An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. Surg. Neurol. 2005; 64 (Suppl. 2): S82–88. http://doi.org/10.1016/j.surneu.2005.07.055; Gralla J., Nimsky C., Buchfelder M. et al. Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl. Neurochir. 2003; 64 (4): 166–170. http://doi.org/10.1055/s-2003-44620; Tilgner J., Herr M., Ostertag C., Volk B. Validation of intraoperative diagnoses using smear preparations from stereotactic brain biopsies: intraoperative versus final diagnosis –influence of clinical factors. Neurosurgery. 2005; 56 (2): 257–265. http://doi.org/10.1227/01.neu.0000148899.39020.87; Dammers R., Schouten J.W., Haitsma I.K. et al. Towards improving the safety and diagnostic yield of stereotactic biopsy in a single centre. Acta Neurochir. 2010; 152 (11): 1915–1921. http://doi.org/10.1007/s00701-010-0752-0; Callovini G.M. Is it appropriate to redefine the indication for stereotactic brain biopsy in the MRI era? Correlation with final histological diagnosis in supratentorial gliomas. Minim. Invasive Neurosurg. 2008; 51 (2): 109–113. http://doi.org/10.1055/s-2008-1058096; McGirt M.J., Woodworth G.F., Coon A.L. et al. Independent predictors of morbidity after imageguided stereotactic brain biopsy: a risk assessment of 270 cases. J. Neurosurg. 2005; 102 (5): 897–901. http://doi.org/10.3171/jns.2005.102.5.0897; Chen C.C., Hsu P.W., Erich Wu T.W. et al. Stereotactic brain biopsy: Single center retrospective analysis of complications. Clin. Neurol. Neurosurg. 2009; 111 (10): 835–839. http://doi.org/10.1016/j.clineuro.2009.08.013; Regis J., Bouillot P., Rouby-Volot F. et al. Pineal region tumors and the role of stereotactic biopsy: review of the mortality, morbidity, and diagnostic rates in 370 cases. Neurosurgery. 1996; 39 (5): 907–912: discussion 912–904.67.; Yap L., Crooks D., Warnke P. Low grade astrocytoma of the pituitary stalk. Acta Neurochir. 2007; 149 (3): 307–311:discussion 311–302.68. http://doi.org/10.1007/s00701-006-1090-0; Dellaretti M., Reyns N., Touzet G. et al. Stereotactic biopsy for brainstem tumors: comparison of transcerebellar with transfrontal approach. Stereotact. Funct. Neurosurg. 2012; 90 (2): 79–83. http://doi.org/10.1159/000335502; Kickingereder P., Willeit P., Simon T., Ruge M.I. Diagnostic value and safety of stereotactic biopsy for brainstem tumors: a systematic review and meta-analysis of 1480 cases. Neurosurgery. 2013; 72 (6): 873–881. http://doi.org/10.1227/NEU.0b013e31828bf445; Goncalves-Ferreira A.J., Herculano-Carvalho M., Pimentel J. Stereotactic biopsies of focal brainstem lesions. Surg. Neurol. 2003; 60 (4): 311–320. discussion 320. http://doi.org/10.1016/s0090-3019(03)00379-3; https://medvis.vidar.ru/jour/article/view/1046

  13. 13
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках Федеральной целевой программы «Развитие фармацевтической и медицинской промышленности Российской Федерации на период до 2020 года и дальнейшую перспективу» по теме «Доклинические исследования радиофармацевтического препарата на основе меченной 99mТс производной глюкозы для радионуклидной диагностики онкологических заболеваний». Шифр «2015-14-№ 08-0008». Государственный контракт 14. № 08.11.0033 от 19.05.2015.

    Πηγή: Bulletin of Siberian Medicine; Том 20, № 4 (2021); 131-142 ; Бюллетень сибирской медицины; Том 20, № 4 (2021); 131-142 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4590/3111; Katsanos A.H., Alexiou G.A., Fotopoulos A.D., Jabbour P., Kyritsis A.P., Sioka C. Performance of 18F-FDG, 11C-Methionine, and 18F-FET PET for Glioma Grading: A Meta-analysis. Clin. Nucl. Med. 2019; 44 (11): 864–869. DOI:10.1097/RLU.0000000000002654.; Horky L.L., Treves S.T. PET and SPECT in brain tumors and epilepsy. Neurosurg. Clin. N. Am. 2011; 22 (2): 169–1884. DOI:10.1016/j.nec.2010.12.003. 3. Roelcke U. Imaging brain tumors with PET, SPECT, and ultrasonography. Handb. Clin. Neurol. 2012; 104: 135–142. DOI:10.1016/B978-0-444-52138-5.00010-4.; Inubushi M., Tatsumi M., Yamamoto Y. et al. European research trends in nuclear medicine. Ann. Nucl. Med. 2018; 32 (9): 579–582. DOI:10.1007/S12149-018-1303-7.; Lotan E., Friedman K.P., Davidson T., Shepherd T.M. Brain 18F-FDG-PET: Utility in the Diagnosis of Dementia and Epilepsy. Isr. Med. Assoc. J. 2020; 22 (3): 178–184.; Karpuz M., Silindir-Gunay M., Ozer A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm. 2018; 33 (2): 39–51. DOI:10.1089/CBR.2017.2378.; Terada H., Kamata N. Contribution of the combination of (201)Tl SPECT and (99m)T(c)O(4)(–) SPECT to the differential diagnosis of brain tumors and tumor-like lesions. A preliminary report. J. Neuroradiol. 2003; 30 (2): 91–94.; Le Jeune F.P., Dubois F., Blond S., Steinling M. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J. Neurooncol. 2006; 77 (2): 177–183. DOI:10.1007/s11060-005-9018-8.; Cecchin D., Chondrogiannis S., Della Puppa A. et al. Presurgical 99mTc-sestamibi brain SPET/CT versus SPET: a comparison with MRI and histological data in 33 patients with brain tumours. Nucl. Med. Commun. 2009; 30 (9): 660–668. DOI:10.1097/MNM.0b013e32832ea9b7.; Shibata Y., Yamamoto T., Takano S. et al. Direct comparison of thallium-201 and technetium-99m MIBI SPECT of a glioma by receiver operating characteristic analysis. J. Clin. Neurosci. 2009; 16 (2): 264–269. DOI:10.1016/J.JOCN.2008. 04.010.; Choi J.Y., Kim S.E., Shin H.J., Kim B.T., Kim J.H. Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J. Neurooncol. 2000; 46 (1): 63–70. DOI:10.1023/a:1006391701818.; Alexiou G.A., Fotopoulos A.D., Tsiouris S., Voulgaris S., Kyritsis A.P. 99mTc-tetrofosmin SPECT for the evaluation of cerebral lesions. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37 (12): 2403–2004. DOI:10.1007/s00259-010-1602-2.; Fan Y.X., Luo R.C., Li G.P., Huang K. Di Yi Jun Yi Da Xue Xue Diagnostic value of 99mTc-MIBI brain SPECT for brain glioma. Bao. 2004; 24 (10): 1184–1185.; Bleichner-Perez S., Le Jeune F., Dubois F., Steinling M. 99mTc-MIBI brain SPECT as an indicator of the chemotherapy response of recurrent, primary brain tumors. Nucl. Med. Commun. 2007; 28 (12): 888–894. DOI:10.1097/MNM.0b013e3282f1646c.; Palumbo B., Lupattelli M., Pelliccioli G.P., Chiarini P., Moschini T.O., Palumbo I., Siepi D., Buoncristiani P., Nardi M., Giovenali P., Palumbo R.Q. Association of 99mTc-MIBI brain SPECT and proton magnetic resonance spectroscopy (1H-MRS) to assess glioma recurrence after radiotherapy J. Nucl. Med. Mol. Imaging. 2006; 50 (1): 88–93.; Langen K.J., Coenen H.H., Roosen N., Kling P., Muzik O., Herzog H., Kuwert T., Stöcklin G., Feinendegen L.E. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J. Nucl. Med. 1990; 31 (3): 281–286.; Hellwig D., Ketter R., Romeike B.F., Sell N., Schaefer A., Moringlane J.R., Kirsch C.M., Samnick S. Validation of brain tumour imaging with p-[123I]iodo-L-phenylalanine and SPECT. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (9): 1041– 1049. DOI:10.1007/s00259-005-1807-y.; Pauleit D., Floeth F., Tellmann L., Hamacher K., Hautzel H., Müller H.W., Coenen H.H., Langen K.J. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodoalpha-methyl-L-tyrosine SPECT in brain tumors. J. Nucl. Med. 2004; 45 (3): 374–381.; Langen K.J., Roosen N., Coenen H.H., Kuikka J.T., Kuwert T., Herzog H., Stöcklin G., Feinendegen L.E. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J. Nucl. Med. 1991; 32 (6): 1225–1229.; Rainer E., Wang H., Traub-Weidinger T., Widhalm G., Fueger B., Chang J., Zhu Z., Marosi C., Haug A., Hacker M., Li S. The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (13): 2396–2403. DOI:10.1007/s00259-018-4088-y.; Hellwig D., Ketter R., Romeike B.F., Schaefer A., Farmakis G., Grgic A., Moringlane J.R., Steudel W.I., Kirsch C.M., Samnick S. Prospective study of p-[123I]-iodo-L-phenylalanine and SPECT for the evaluation of newly diagnosed cerebral lesions: specific confirmation of glioma. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37 (12): 2344–2353. DOI:10.1007/s00259-010-1572-4.; Sun D., Liu Q., Liu W., Hu W. Clinical application of 201Tl SPECT imaging of brain tumors. J. Nucl. Med. 2000; 41 (1): 5–10.; Kahn D., Follett K.A., Bushnell D.L., Nathan M.A., Piper J.G., Madsen M., Kirchner P.T. Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. Am. J. Roentgenol. 1994; 163 (6): 1459–1465. DOI:10.2214/ajr.163.6.7992747.; Sugo N., Yokota K., Kondo K., Harada N., Aoki Y., Miyazaki C., Nemoto M., Kano T., Ohishi H., Seiki Y. Early dynamic 201Tl SPECT in the evaluation of brain tumours. Nucl. Med. Commun. 2006; 27 (2): 143–149. DOI:10.1097/01.mnm.0000191853.34574.3f. PMID: 16404227.; Otsuka H., Shinbata H., Hieda M., Yamashita K., Kitamura H., Senba T., Kashihara K., Tagashira H. The retention indices of 201Tl-SPECT in brain tumors. Ann. Nucl. Med. 2002; 16 (7): 455–459. DOI:10.1007/BF02988641.; Nose A., Otsuka H., Nose H., Otomi Y., Terazawa K., Harada M. Visual and semi-quantitative assessment of brain tumors using (201)Tl-SPECT. J. Med. Invest. 2013; 60 (1-2): 121–126. DOI:10.2152/jmi.60.121.; Suchorska B., Tonn J.C., Jansen N.L. PET imaging for brain tumor diagnostics. Curr. Opin. Neurol. 2014; 27 (6): 683–688. DOI:10.1097/WCO.0000000000000143.; How Does It Work? Positron emission tomography. BMJ. 2003; 28: 326 (7404): 1449. DOI:10.1136/bmj.326.7404.1449.; Karpuz M., Silindir-Gunay M., Ozer A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm. 2018; 33 (2): 39–51.; Di Chiro G., Brooks R.A., Patronas N.J. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumor. Ann. Neurol. 1984; 15: 138–146. DOI:10.1002/ana.410150727.; La Fougere C., Suchorska B., Bartenstein P. et al. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol. 2011; 13 (8): 806–819. DOI:10.1093/neuonc/nor054.; Chen W., Silverman D.H., Delaloye S. et al. 18F-FDOPA PET imaging of brain tumours: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med. 2006; 47 (6): 904–911.; Kosaka N., Tsuchida T., Uematsu H. et al. 18F-FDG PET of common enhancing malignant brain tumors. Am. J. Roentgenol. 2008; 190 (6): 365–369. DOI:10.2214/AJR.07.2660.; Yamashita K., Yoshiura T., Hiwatashi A. et al. Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (18)F-fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013; 55 (2): 135–143. DOI:10.1007/s00234-012-1089-6.; Omuro A.M., Leite C.C., Mokhtari K. et al. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 2006; 5 (11): 937– 948. DOI:10.1016/S1474-4422(06)70597-X.; Prieto E., Marti-Climent J.M., Dominguez-Prado I. et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J. Nucl. Med. 2011; 52 (6): 865–872.; Lee J.W., Kang K.W., Park S.H., Lee S.M., Paeng J.C., Chung J.K., Lee M.C., Lee D.S. 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. European Journal of Nuclear Medicine and Molecular Imaging. 2009; 36 (10): 1574–1582. DOI:10.1007/s00259-009-1133-x.; Koç Z.P., Kara P.Ö., Dağtekin A. Detection of unknown primary tumor in patients presented with brain metastasis by F-18 fluorodeoxyglucose positron emission tomography/computed tomography. CNS Oncol. 2018; 7 (2): CNS12. DOI:10.2217/cns-2017-0018.; Colavolpe C., Metellus P., Mancini J. et al. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J. Neurooncol. 2012; 107 (3): 527–535. DOI:10.1007/s11060-011-0771-6.; Colavolpe C., Chinot O., Metellus P. et al. FDG-PET predicts survival in recurrent high-grade gliomas treated with bevaci zumab and irinotecan. Neuro Oncol. 2012; 14 (5): 649–657. DOI:10.1093/neuonc/nos012.; Spence A.M., Muzi M., Graham M.M. et al. 2-[(18)F]Fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin. Cancer Res. 2002; 8 (4): 971–979.; Charnley N., West C.M., Barnett C.M., et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006; 66 (2): 331–338. DOI:10.1016/J.IJROBP.2006.04.043.; Caroline I., Rosenthal M.A. Imaging modalities in highgrade gliomas: pseudoprogression, recurrence, or necrosis? J. Clin. Neurosci. 2012; 19 (5): 633–637. DOI:10.1016/j.jocn.2011.10.003.; Nihashi T., Dahabreh I.J., Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. Am. J. Neuroradiol. 2013; 34 (5): 944–950. DOI:10.3174/ajnr. A3324.; Basu S., Alavi A. Molecular imaging (Pet) of brain tumors? Nneuroimaging. Clin. N. Amer. 2009; 19 (4): 625–646. DOI:10.1016/j.nic.2009.08.012.; Katsanos A.H., Alexiou G.A., Fotopoulos A.D., Jabbour P., Kyritsis A.P., Sioka C. Performance of 18F-FDG, 11C-Methionine, and 18F-FET PET for Glioma Grading: A Meta-analysis. Clinical Nuclear Medicine. 2019; 44 (11): 864–869. DOI:10.1097/RLU.0000000000002654.; Glaudemans A.W., Enting R.H., Heesters M.A. et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging. 2013; 40 (4): 615–635. DOI:10.1007/s00259-012-2295-5.; He Q., Zhang L., Zhang B., Shi X., Yi C., Zhang X. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma. BMC Cancer. 2019: 19 (1): 332. DOI:10.1186/s12885-019-5560-1.; Takenaka S., Asano Y., Shinoda J. et al. Comparison of (11) C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol. Med. Chir. (Tokyo). 2014; 54 (4): 280–289. DOI:10.2176/nmc.oa2013-0117.; Filss C.P., Galldiks N., Stoffels G., Sabel M., Wittsack H.J., Turowski B., Antoch G., Zhang K., Fink G.R., Coenen H.H. et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J. Nucl. Med. 2014; 55 (4): 540–545. DOI:10.2967/jnumed.113.129007.; Kebir S., Weber M., Lazaridis L. et al. Hybrid 11C-MET PET/MRI combined with «machine learning» in glioma diagnosis according to the revised glioma WHO classification 2016. Clin. Nucl. Med. 2019; 44 (3): 214–220. DOI:10.1097/RLU.0000000000002398.; Jung T.Y., Jung S., Ryu H.S. et al. The application of magnetic resonance imaging-deformed 11c-methionine-positron emission tomography images in stereotactic radiosurgery. Stereotact. Funct. Neurosurg. 2019; 97 (4): 217–224. DOI:10.1159/000503732.; Hotta M., Minamimoto R., Miwa K. 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci. Rep. 2019; 9 (1): 156–166. DOI:10.1038/s41598-019-52279-2.; Skvortsova T.Y., Gurchin A.F., Savintseva Z.I. C-methionine PET in assessment of brain lesions in patients with glial tumors after combined treatment. Zh. Vopr. Neirokhir. im. N.N. Burdenko. 2019; 83 (2): 27–36. DOI:10.17116/neiro20198302127.; Dandois V., Rommel D., Renard L. et al. Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J. Neuroradiol. 2010; 37 (2): 89–97. DOI:10.1016/J.NEURAD.2009.04.005.; Schinkelshoek M., Lopci E., Clerici E. et al. Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors. Tumori. 2018; 104 (6): 480. DOI:10.1700/1778.19268.; Goldbrunner R., Ruge M., Kocher M., Lucas C.W., Galldiks N., Grau S. The treatment of gliomas in adulthood. Dtsch. Arztebl. Int. 2018; 115 (20-21): 356–364. DOI:10.3238/arztebl.2018.0356.; Borbély K., Nyáry I., Tóth M., Ericson K., Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J. Neurol. Sci. 2006; 246 (1-2): 85–94. DOI:10.1016/j.jns.2006.02.015.; Xu W., Gao L., Shao A., Zheng J., Zhang J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget. 2017; 8 (53): 91030–91039. DOI:10.18632/oncotarget.19024.; Muoio B., Giovanella L., Treglia G. Recent Developments of 18F-FET PET in Neurooncology. Curr. Med. Chem. 2018; 25 (26): 3061–3073. DOI:10.2174/0929867325666171123202644.; Jansen N.L., Suchorska B., Wenter V. et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J. Nucl. Med. 2014; 55 (2): 198–203. DOI:10.2967/JNUMED.113.122333.; Jansen N.L., Suchorska B., Wenter V. et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J. Nucl. Med. 2015; 56 (1): 9–15. DOI:10.2967/jnumed.114.144675.; Jansen N.L., Graute V., Armbruster L. et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (6): 1021–1029. DOI:10.1007/s00259-012-2109-9.; Galldiks N., Langen K.J., Holy R. et al. Assessment of treatment response in patients with glioblastoma using O-(2-18Ffluoroethyl)-L-tyrosine PET in comparison to MRI. J. Nucl. Med. 2012; 53 (7): 1048–1057. DOI:10.2967/jnumed.111.098590.; Suchorska B., Jansen N.L., Linn J. et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology. 2015; 84 (7): 710–719. DOI:10.1212/WNL.0000000000001262.; Floeth F.W., Pauleit D., Sabel M. et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J. Nucl. Med. 2007; 48 (4): 519–527. DOI:10.2967/jnumed.106.037895.; Walter F., Cloughesy T., Walter M.A. et al. Impact of 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician’s perspective. J. Nucl. Med. 2012; 53 (3): 393–398. DOI:10.2967/jnumed.111.095711.; Fueger B.J., Czernin J., Cloughesy T. et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J. Nucl. Med. 2010; 51 (10): 1532–1538. DOI:10.2967/jnumed.110.078592.; Shen G., Ma H., Pang F., Ren P., Kuang A. Correlations of 18F-FDG and 18F-FLT uptake on PET with Ki-67 expression in patients with lung cancer: a meta-analysis. Acta Radiol. 2018; 59 (2): 188–195. DOI:10.1177/0284185117706609.; Chen W., Delaloye S., Silverman D.H.S. et al. Predicting treatment response of malignant gliomas to bevacizumaband irinotecan by imaging proliferation with [18F] fluoro-thymidine positron emission tomography: a pilot study. J. Clin. Oncol. 2007; 25 (30): 4714–4721. DOI:10.1200/JCO.2006.10.5825.; Bekaert L., Valable S., Lechapt-Zalcman E. et al. [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (8): 1383–1392. DOI:10.1007/s00259-017-3677-5.; Van Dongen G.A., Huisman M.C., Boellaard R. et al. 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? Q. J. Nucl. Med. Mol. Imaging. 2015; 59 (1): 18–38.; Kim H., Lee S.J., Davies-Venn C. et al. 64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: pharmacokinetic study in a rat model of chronic MI. Nucl. Med. Commun. 2016; 37 (2): 188–196. DOI:10.1097/MNM.0000000000000417.; Siitonen R., Peuhu E., Autio A. et al. 68Ga-DOTA-E[c(RGDfK)]2 PET imaging of SHARPIN-regulated integrin activity in mice. J. Nucl. Med. 2019; 60 (10): 1380–1387. DOI:10.2967/jnumed.118.222026.; Soldevilla-Gallardo I., Medina-Ornelas S.S., Davanzo J., Pedrero-Piedras R. 68Ga-DOTA-E-[c(RGDfK)]2 positron emission tomography-computed tomography in the evaluation of hepatic hemangioendothelioma epithelioid. Rare Tumors. 2019; 11: 2036361319831097. DOI:10.1177/2036361319831097; Leе H.-K., Moon D.-H., Ryu J.-S. et al. Radioisotope-labeled complexes of glucose derivatives and kits for the preparation thereof. Patent United States. 2003. Pub. No. 2003/0120046 A.; Cheng D., Rusckowski M., Wang Y., Liu Y., Liu G., Liu X., Hnatowich D. A brief evaluation of tumor imaging in mice with 99mTc-glucarate including a comparison with 18F-FDG. Curr. Radiopharm. 2011; 4 (1): 5–9. DOI:10.2174/1874471011104010005.; Chen X., Li L., Liu F., Liu B. Synthesis and biological evaluation of technetium-99m-labeled deoxyglucose derivatives as imaging agents for tumor. Bioorg. Med. Chem. Lett. 2006; 16 (21): 5503–5506. DOI:10.1016/j.bmcl.2006.08.050.; Chen Y., Huang Z.W., He L., Zheng S.L. et al. Synthesis and evaluation of a technetium-99m-labeled diethylentriaminepentaacetate-deoxyglucose complex 99mTc-DTPA-DG as a potential imaging modality for tumors. Fppl. Radiat. and Isot. 2006; 64 (3): 342–347. DOI:10.1016/j.apradiso.2005.08.004.; Seidensticker M., Ulrich G., Muehlberg F.L., Pethe A., Grosser O.S., Steffen I.G., Stiebler M., Goldschmidt J., Smalla K.H., Seidensticker R., Ricke J., Amthauer H., Mohnike K. Tumor cell uptake of 99mTc-labeled 1-thio-β-D-glucose and 5-thio-D-glucose in comparison with 2-deoxy-2-[18F]fluoro-D-glucose in vitro: kinetics, dependencies, blockage and cell compartment of accumulation. Mol. Imaging Biol. 2014; 16 (2): 189–198. DOI:10.1007/s11307-013-0690-3.; Dapueto R., Aguiar R.B., Moreno M., Machado C.M., Marques F.L., Gambini J.P., Chammas R., Cabral P., Porcal W. Technetium glucose complexes as potential cancer imaging agents. Bioorg. Med. Chem. Lett. 2015; 25 (19): 4254–4259. DOI:10.1016/j.bmcl.2015.07.098.; Chernov V.I., Triss S.V., Skuridin V.S., Lishmanov Yu.B. Thallium-199: a new radiopharmaceutical for myocardial perfusion imaging. The International Journal of Cardiovascular Imaging. 1996; 12 (2): 119–126. DOI:10.1007/bf01880743.; Chernov V.I., Sinilkin I.G., Zelchan R.V., Medvedeva A.A., Lyapunov A.Yu., Bragina O.D., Varlamova N.V., Skuridin V.S. Experimental Study of 99mTc-Aluminum Oxide Use for Sentinel Lymph Nodes Detection. AIP Conference Proceedings. 2016; 1760: 020012. DOI:10.1063/1.4960231; Zeltchan R., Medvedeva А., Sinilkin I., Bragina O., Chernov V., Stasyuk E., Rogov A., Il’ina E., Larionova L., Skuridin V., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conf. Series: Materials Science and Engineering. 2016; 135: 012054. DOI:10.1088/1757-899X/135/1/012054.; Zeltchan R., Chernov V., Medvedeva А., Sinilkin I., Stasyuk Е., Rogov А., Il’ina Е., Skuridin V., Bragina O. Study of a Glucose Derivative Labeled with Technetium-99m as Potential Radiopharmaceutical for Cancer Diagnosis. Congress of the European Association of Nuclear Medicine, Barcelona, Spain in October 15–19, 2016. Eur. J. Nucl. Med. Mol. Imaging. 2016; 43 (Suppl. 1): 466.; Bragina O., Witting E. von, Garousi J., Zelchan R., Sandström M.,Medvedeva A., Orlova A., Doroshenko A., Vorobyeva A., Lindbo S., Borin J., Tarabanovskaya N., Sorensen J., Hober S., Chernov V., Tolmachev V. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. Journal of Nuclear Medicine. 2020. DOI:10.2967/jnumed.120.248799. URL: http://jnm.snmjournals.org/content/early/2020/08/13/jnumed.120.248799.abstract.; Stasyuk E., Sкuridin V., Rogov A., Zelchan R., Sadkin V., Varlamova N., Nestеrov E. 99mTc-labeled monosaccharide kits: Development methods and quality control. Scientific Reports. 2020; 10 (1): 5121. DOI:10.1038/s41598-020-61707-7. URL: https://www.nature.com/articles/s41598-020-61707-7.pdf.; Shivamurthy V.K., Tahari A.K., Marcus C., Subramaniam R.M. Brain FDG PET and the diagnosis of dementia. Am. J. Roentgenol. 2015; 204 (1): 76–85. DOI:10.2214/AJR.13.12363.; Nestor P.J., Altomare D., Festari C., Drzezga A., Rivolta J., Walker Z., Bouwman F., Orini S., Law I., Agosta F., Arbi zu J., Boccardi M., Nobili F., Frisoni G.B. EANM-EAN task force for the prescription of fdg-pet for dementing neurodegenerative disorders. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (9): 1509–1525. DOI:10.1007/s00259-018-4035-y.; Wilson H., Pagano G., Politis M. Dementia spectrum disorders: lessons learnt from decades with PET research. Journal of Neural. Transmission. 2019; 126 (3): 233–251. DOI:10.1007/s00702-019-01975-4.; Zukotynski K., Kuo P.H., Mikulis D., Rosa-Neto P., Strafella A.P., Subramaniam R.M., Black S.E. PET/CT of Dementia. Am. J. Roentgenol. 2018; 211 (2): 246–259. DOI:10.2214/AJR.18.19822.; Masdeu J.C. Neuroimaging of diseases causing dementia. Neurol. Clin. 2020; 38 (1): 65–94. DOI:10.1016/j.ncl.2019.08.003.; Pagano G., Niccolini F., Politis M. Imaging in Parkinson’s disease. Clin. Med. (Lond.). 2016; 16 (4): 371–375. DOI:10.7861/clinmedicine.16-4-371.; Uzuegbunam B.C., Librizzi D., Hooshyar Yousefi B. PET Radiopharmaceuticals for Alzheimer’s disease and Parkinson’s disease diagnosis, the current and future landscape. Molecules. 2020; 25 (4): 977. DOI:10.3390/molecules25040977.; https://bulletin.tomsk.ru/jour/article/view/4590

  14. 14
  15. 15
    Academic Journal

    Πηγή: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 3 (2021); 549-557 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 3 (2021); 549-557 ; 2541-8017 ; 2223-9022

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1218/980; https://www.jnmp.ru/jour/article/view/1218/1071; Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16(Suppl 4):iv1–63. PMID: 25304271 https://doi.org/10.1093/neuonc/nou223; Walker AE, Robins M, Weinfeld FD. The National Survey of Stroke. Clinical findings. Stroke. 1981;12(2Pt2Suppl 1):I13–44. PMID: 7222164; Hansen A, Pedersen CB, Minet LR, Beier D, Jarden JO, Søgaard K. Hemispheric tumor location and the impact on health¬related quality of life , symptomatology , and functional performance outcomes in patients with glioma: an exploratory cross¬sectional study. Disabil Rehabil. 2019;43(10):1443–1449. PMID: 31553622 https://doi.org/10.1080/09638288.2019.1668486; Huberfeld G, Vecht CJ. Seizures and gliomas ¬ Towards a single therapeutic approach. Nat Rev Neurol. 2016;12(4):204–216. PMID: 26965673 https://doi.org/10.1038/nrneurol.2016.26; Луцук Р.А.,Олюшин В.Е., Ростовцев Д.М., Кальменс В.Я., Маслова Л.Н., Кияшко С.С., и др. Ближайшие результаты повторных операций при продолженном росте злокачественных глиом. Российский нейрохирургический журнал им. А.Л. Поленова. 2017;9(1):43–48.; Blecic S, Rynkowski M, De Witte O, Lefranc F. Glutamate and malignant gliomas, from epilepsia to biological aggressiveness: Therapeutic implications. Bull Cancer. 2013;100(9):829–835. PMID: 23883552 https://doi.org/10.1684/bdc.2013.1781; Campbell SL, Buckingham SC, Sontheimer H. Human glioma cells induce hyperexcitability in cortical networks. Epilepsia. 2012;53(8):1360–1370. PMID: 22709330 https://doi.org/10.1111/j.1528-1167.2012.03557.x; Pallud J, Capelle L, Huberfeld G. Tumoral epileptogenicity: How does it happen? Epilepsia. 2013;54(Suppl9):30–34. PMID: 24328869 https://doi.org/10.1111/epi.12440; Chang EF, Potts MB, Keles GE, Lamborn KR, Chang SM, Barbaro NM, et al. Seizure characteristics and control following resection in 332 patients with low¬grade gliomas. J Neurosurg. 2008;108(2):227–235. PMID: 18240916 https://doi.org/10.3171/JNS/2008/108/2/0227; Stockhammer F, Misch M, Helms H-J, Lengler U, Prall F, von Deimling A, et al. IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure. 2012;21(3):194–197. PMID: 22217666 https://doi.org/10.1016/j.seizure.2011.12.007; You G, Sha Z-Y, Yan W, Zhang W, Wang Y-Z, Li S-W, et al. Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low grade gliomas: A clinicopathological study.Neuro Oncol. 2012;14(2):230–241. PMID: 22187341 https://doi.org/10.1093/neuonc/nor205; Pallud J, Audureau E, Blonski M, Sanai N, Bauchet L, Fontaine D, et al. Epileptic seizures in diffuse low¬grade gliomas in adults. Brain. 2014;137(Pt2):449–462. PMID: 24374407 https://doi.org/10.1093/brain/awt345; Liubinas SV, D’Abaco GM, Moffat BM, Gonzales M, Feleppa F, Nowell CJ, et al. IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low¬grade gliomas. Epilepsia. 2014;55(9):1438–1443. PMID: 24903073 https://doi.org/10.1111/epi.12662; Wang Y, Qian T, You G, Peng X, Chen C, You Y, et al. Localizing seizuresusceptible brain regions associated with low grade gliomas using voxel-based lesion symptom mapping. Neuro Oncol. 2015;17(2):282–288. PMID: 25031032 https://doi.org/10.1093/neuonc/nou130; Cayuela N, Simó M, Majós C, Rifà-Ros X, Gállego Pérez-Larraya J, Ripollés P, et al. Seizure-susceptible brain regions in glioblastoma: identification of patients at risk. Eur J Neurol. 2018;25(2):387–394. PMID: 29115706 https://doi.org/10.1111/ene.13518; Liang S, Zhang J, Zhang S, Fu X. Epilepsy in adults with supratentorial glioblastoma: Incidence and influence factors and prophylaxis in 184 patients. PLoS One. 2016;11(7):e0158206. PMID: 27438472 https://doi.org/10.1371/journal.pone.0158206; Iuchi T, Hasegawa Y, Kawasaki K, Sakaida T. Epilepsy in patients with gliomas: Incidence and control of seizures. J Clin Neurosci. 2015;22(1):87–91. PMID: 25192590 https://doi.org/10.1016/j.jocn.2014.05.036; Hwang SL, Lieu AS, Kuo TH, Lin CL, Chang CZ, Huang TY, t al. Preoperative and postoperative seizures in patients with astrocytic tumours: Analysis of incidence and influencing factors. J Clin Neurosci. 2001;8(5):426–429. PMID: 11535010 https://doi.org/10.1054/jocn.2000.0825; Hwang SL, Lin CL, Lee KS, Lieu AS, Kuo TH, Chang CZ, et al. Factors influencing seizures in adult patients with supratentorial astrocytic tumors. Acta Neurochir (Wien). 2004;146(6):589–594. PMID: 15168227 https://doi.org/10.1007/s00701-004-0266-8; Мухачева М.В., Бейн Б.Н., Шишкина Е.С. Клинические особенности эпилептического синдрома у больных с опухолями головного мозга. Медицинский альманах. 2016;(5):154–157.; Мурзаканова Д.А., Джабаилдаева Г.С. Риск развтия эпилепсии у пациетов с новообразованями головного мозга. Известия Российской Военно-медицинской академии. 2019;(2, Прил. 1):21–23.; Casazza M, Gilioli I. Non¬convulsive status epilepticus in brain tumors. Neurol Sci. 2011;32(Suppl2):237–239. PMID: 21987289 https://doi.org/10.1007/s10072-011-0804-0; Giovannini G, Pasini F, Orlandi N, Mirandola L, Meletti S. Tumorassociated status epilepticus in patients with glioma: Clinical characteristics and outcomes. Epilepsy Behav. 2019;101(Pt B):106370. PMID: 31300386 https://doi.org/10.1016/j.yebeh.2019.06.014; Berendsen S, Varkila M, Kroonen J, Seute T, Snijders TJ, Kauw F, et al. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol. 2016;18(5):700–706. PMID: 26420896 https://doi.org/10.1093/neuonc/nov238; Di Bonaventura C, Albini M, D’Elia A, Fattouch J, Fanella M, Morano A, et al. Epileptic seizures heralding a relapse in high grade gliomas. Seizure. 2017;51:157–162. PMID: 28873363 https://doi.org/10.1016/j.seizure.2017.08.009; Crocetti E, Trama A, Stiller C, Caldarella A, Soffietti R, Jaal J, et al. Epidemiology of glial and non¬glial brain tumours in Europe. Eur J Cancer. 2012;48(10):1532–1542. PMID: 22227039 https://doi.org/10.1016/j.ejca.2011.12.013; Mukherjee S, Wood J, Liaquat I, Stapleton SR, Martin AJ. Craniotomy for recurrent glioblastoma: Is it justified? A comparative cohort study with outcomes over 10 years. Clin Neurol Neurosurg. 2020;188:105568. https://doi.org/10.1016/j.clineuro.2019.105568; Oushy S, Sillau SH, Ney DE, Damek DM, Youssef AS, Lillehe KO, et al. New¬onset seizure during and after brain tumor excision: A risk assessment analysis. J Neurosurg. 2018;128(6):1713–1718. PMID: 28753117 https://doi.org/10.3171/2017.2.JNS162315; Glauser T, Ben¬Menachem E, Bourgeois B, Cnaan A, Chadwick D, Guerreiro C, et al. ILAE treatment guidelines: Evidence-based analysis of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia. 2006;47(7):1094–1120. PMID: 16886973 https://doi.org/10.1111/j.1528-1167.2006.00585.x; Народова Е.А., Шнайдер Н.А., Прокопенко С.В., Народова В.В., Народжов А.А., Дмитренко Д.В. Эпидемиология фармакорезистентной эпилепсии у взрослых. Бюллетень сибирской медицины. 2018;17(3):207–216. https://doi.org/10.20538/1682-0363-2018-3-207-216; Соколова Е.Ю., Савин И.А., Кадашева А.Б., Гаврюшин А.В., Пицхелаури Д.И., Козлов А.В., и др. Тактика ведения пациентов с впервые возникшими эпилептическими приступами в раннем периоде после удаления опухолей больших полушарий: два наблюдения и обзор литературы. Вопросы нейрохирургии им. Н.Н. Бурденко. 2017;81(5):96–103. https://doi.org/10.17116/neiro201781596-103; Bech KT, Seyedi JF, Schulz M, Poulsen FR, Pedersen CB. The risk of developing seizures before and after primary brain surgery of low- and; high-grade gliomas. Clin Neurol Neurosurg. 2018;169:185–191. PMID: 29709882 https://doi.org/10.1016/j.clineuro.2018.04.024; Chaichana KL, Parker SL, Olivi A, Quiñones-Hinojosa A. Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas: Clinical article. J Neurosurg. 2009;111(2):282–292. PMID: 19344222 https://doi.org/10.3171/2009.2.JNS081132; Yang P, Liang T, Zhang C, Cai J, Zhang W, Chen B, et al. Clinicopathological factors predictive of postoperative seizures in patients with gliomas. Seizure. 2016;35:93–99. PMID: 26808114 https://doi.org/10.1016/j.seizure.2015.12.013; Wang YC, Lee CC, Takami H, Shen S, Chen KT, Wei KC, et al. Awakecraniotomies for epileptic gliomas: intraoperative and postoperative seizure control and prognostic factors. J Neurooncol. 2019;142(3):577–586. PMID: 30805752 https://doi.org/10.1007/s11060-019-03131-0; Dewan MC, White-Dzuro GA, Brinson PR, Thompson RC, Chambless LB. Perioperative seizure in patients with glioma is associated with longer hospitalization, higher readmission, and decreased overall survival. J Neurosurg. 2016;125(4):1033–1041. PMID: 26894454 https://doi.org/10.3171/2015.10.JNS151956; Yordanova YN, Moritz¬Gasser S, Duffau H. Awake surgery for WHO grade II gliomas within “noneloquent” areas in the left dominant hemisphere: Toward a “supratotal” resection – clinical article. J Neurosurg. 2011;115(2):232–239. PMID: 21548750 https://doi.org/10.3171/2011.3.JNS101333; Roberts M, Northmore T, Shires J, Taylor P, Hayhurst C. Diffuse low grade glioma after the 2016 WHO update, seizure characteristics, imaging correlates and outcomes. Clin Neurol Neurosurg. 2018;175:9–15. PMID: 30292978 https://doi.org/10.1016/j.clineuro.2018.10.001; Smart D. Radiation Toxicity in the Central Nervous System: Mechanisms and Strategies for Injury Reduction.Semin Radiat Oncol. 2017;27(4):332–339. PMID: 28865516 https://doi.org/10.1016/j.semradonc.2017.04.006; Шершевер А.С., Бенцион Д.Л., Лаврова С.А., Лазарев А.Ю., Журавлева М.А., Махнев В.В., и др. Опыт применения антиконвульсанта Прегабалина у больных с глиомами головного мозга и парциальными эпилептическими припадками после оперативного лечения во время проведения лучевой терапии. Эпилепсия и пароксизмальные состояния. 2011;3(1):14–20.; Dhawan S, Patil CG, Chen C, Venteicher AS. Early versus delayed postoperative radiotherapy for treatment of low¬grade gliomas. Cochrane Database Syst Rev. 2020;1(1):CD009229. PMID: 31958162 https://doi.org/10.1002/14651858.CD009229.pub3; Knudsen-Baas KM, Engeland A, Gilhus NE, Storstein AM, Owe JF. Does the choice of antiepileptic drug affect survival in glioblastoma patients? J Neurooncol. 2016;129(3):461–469. PMID: 27377653 https://doi.org/10.1007/s11060-016-2191-0; Rudà R, Trevisan E, Soffietti R. Epilepsy and brain tumors. Curr Opin Oncol. 2010;22(6):611–620. PMID: 20706121 https://doi.org/10.1097/CCO.0b013e32833de99d; Wick W, Menn O, Meisner C, Steinbach J, Hermisson M, Tatagiba M, et al. Pharmacotherapy of epileptic seizures in glioma patients: Who, when, why and how long? Onkologie. 2005;28(8–9):391–396. PMID: 16160401 https://doi.org/10.1159/000086375; Карлов В.А., Гехт А.Б., Гузева В.И., Липатова Л.В., Базилевич С.Н., Мкртчан В.Р., и др. Алгоритмы моно¬ и политерапии в клинической эпилептологии. Часть 1. Общие принципы выбора фармакотерапии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(6):109–114.; Zachenhofer I, Donat M, Oberndorfer S, Roessler K. Perioperative levetiracetam for prevention of seizures in supratentorial brain tumor surgery. J Neurooncol. 2011;101(1):101–106. PMID: 20526797 https://doi.org/10.1007/s11060-010-0235-4; Шалькевич Л.В., Кудлач А.И., Назарова О.П. Влияние гормонов гипоталамо¬гипофизарно¬надпочечниковой системы на процессы эпилептогенеза. Русский журнал детской неврологии. 2017;12(1):47–55.; Ismail FS, Moinfar Z, Prochnow N, Dambach H, Hinkerohe D, Haase CG, et al. Dexamethasone and levetiracetam reduce hetero¬cellular gap-junctional coupling between F98 glioma cells and glial cells in vitro. J Neurooncol. 2017;131(3):469–476. PMID: 27848138 https://doi.org/10.1007/s11060-016-2324-5; Chonan M, Saito R, Kanamori M, Osawa S¬I, Watanabe M, Suzuki H, et al. Experience of low dose perampanel to add¬on in glioma patients with levetiracetam¬uncontrollable epilepsy. Neurol Med Chir (Tokyo). 2020;60(1):37–44. PMID: 31748440 https://doi.org/10.2176/nmc.oa.2018-0245; Ryu JY, Min KL, Chang MJ. Effect of anti¬epileptic drugs on the survival of patients with glioblastoma multiforme: A retrospective, singlecenter study. PLoS One. 2019;14(12):1–12. PMID: e0225599 31790459 https://doi.org/ 10.1371/journal.pone.0225599 eCollection 2019.; Kerkhof M, Dielemans JC, van Breemen MS, Zwinkels H, Walchenbach R, Taphoorn MJ, et al. Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol. 2013;15(7):961–967. PMID: 23680820 https://doi.org/10.1093/neuonc/not057; Quon RJ, Mazanec MT, Schmidt SS, Andrew AS, Roth RM, MacKenzie TA, et al. Antiepileptic drug effects on subjective and objective cognition. Epilepsy Behav. 2020;104(Pt A):106906. PMID: 32006792 https://doi.org/10.1016/j.yebeh.2020.106906; Witt JA, Helmstaedter C. How can we overcome neuropsychological adverse effects of antiepileptic drugs? Expert Opin Pharmacother. 2017;18(6):551–554. PMID: 28303728 https://doi.org/10.1080/14656566.2017.1309025; Крылов В.В., Гусев Е.И., Гехт А.Б., Трифонов И.С., Лебедева А.В., Каймовский И.Л. История развития хирургического лечения эпилепсии в Российской Федерации. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(9¬2):6–12.; Wieser HG, Blume WT, Fish D, Goldensohn E, Hufnagel A, King D, et al. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 2001;42(2)282–286. PMID: 11240604; Yao PS, Zheng S¬F, Wang F, Kang D¬Z, Lin Y¬X. Surgery guided with intraoperative electrocorticography in patients with low¬grade glioma and refractory seizures. J Neurosurg. 2018;128(3):840–845. PMID: 28387627 https://doi.org/10.3171/2016.11.JNS161296; Eriksson SH, Nordborg C, Rydenhag B, Malmgren K. Parenchymal lesions in pharmacoresistant temporal lobe epilepsy: Dual and multiple pathology. Acta Neurol Scand. 2005;112(3):151–156. PMID: 16097956 https://doi.org/10.1111/j.1600-0404.2005.00467.x; Крылов В.В., Гехт А.Б., Трифонов И.С., Лебедев А.В., Каймовский И.Л., Синкин М.В. и др. Исходы хирургического лечения пациентов с фармакорезистентными формами эпилепсии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(9):13–18.; Akgun MY, Can Cetintas S, Kemerdere R, Naz Yeni S, Tanriverdi T. Are low¬grade gliomas of mesial temporal area alone? Surg Neurol Int. 2019;10:170. PMID: 31583167 https://doi.org/10.25259/SNI_332_2019; Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF. Extent of surgical resection predicts seizure freedom in low¬grade temporal lobe brain tumors. Neurosurgery. 2012;70(4):921–928. PMID: 21997540 https://doi.org/10.1227/NEU.0b013e31823c3a30; Koekkoek JA, Dirven L, Taphoorn MJ. The withdrawal of antiepileptic drugs in patients with low¬grade and anaplastic glioma. Expert Rev Neurother. 2017;17(2):193–202. PMID: 27484737 https://doi.org/10.1080/14737175.2016.1219250; https://www.jnmp.ru/jour/article/view/1218

  16. 16
    Academic Journal

    Συγγραφείς: GALEARSCHI, Vasilii

    Πηγή: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 71 No. 3 (2021): Medical Sciences; 10-18 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 71 Nr. 3 (2021): Ştiinţe medicale; 10-18 ; Вестник Академии Наук Молдовы. Медицина; Том 71 № 3 (2021): Медицина; 10-18 ; 1857-0011 ; 10.52692/1857-0011.2021.3-71

    Περιγραφή αρχείου: application/pdf

  17. 17
  18. 18
  19. 19
  20. 20