Εμφανίζονται 1 - 20 Αποτελέσματα από 62 για την αναζήτηση '"ОПТОВОЛОКОННЫЙ"', χρόνος αναζήτησης: 0,78δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: The reported study was funded by the Russian Foundation for Basic Research and the Perm Territory, Project Number 20-45-596032, Исследование выполнено при финансовой поддержке РФФИ и Пермского края в рамках научного проекта №20-45-596032

    Πηγή: Mining Science and Technology (Russia); Vol 8, No 1 (2023); 13-21 ; Горные науки и технологии; Vol 8, No 1 (2023); 13-21 ; 2500-0632

    Περιγραφή αρχείου: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/467/338; https://mst.misis.ru/jour/article/view/467/339; Mateeva A., Mestayer J., Cox B. et al. Advances in distributed acoustic sensing (DAS) for VSP. In: SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists; 2012. https://doi.org/10.1190/segam2012-0739.1; Parker T., Shatalin S., Farhadiroushan M. Distributed Acoustic Sensing – a new tool for seismic applications. First Break. 2014;32(2):61–69. https://doi.org/10.3997/1365-2397.2013034; Wu X., Willis M. E., Palacios W. et al. Compressionaland shear-wave studies of distributed acoustic sensing acquired vertical seismic profile data. The Leading Edge. 2017;36(12):987–993. https://doi.org/org/10.1190/tle36120987.1; Hartog A., Kotov O. I., Liokumovich L. B. The optics of distributed vibration sensing. In: Second EAGE Workshop on Permanent Reservoir Monitoring 2013 – Current and Future Trends. Netherlands: EAGE Publications BV; 2013. https://doi.org/10.3997/2214-4609.20131301; Shatalin S.V., Treschikov V.N., Rogers A. J. Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Applied Optics. 1998;37(24):5600–5604. https://doi.org/10.1364/AO.37.005600; Dean T., Papp B., Hartog A. Wavenumber response of data recorded using distributed fibre-optic systems. In: 3rd EAGE Workshop on Borehole Geophysics. Netherlands: EAGE Publications BV; 2015. https://doi.org/10.3997/2214-4609.201412215; Dean T., Cuny T., Hartog A. H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing: Gauge length effect on incident P-waves. Geophysical Prospecting. 2017;65(1):184–193. https://doi.org/10.1111/1365-2478.12419; Bona A., Dean T., Correa J. et al. Amplitude and phase response of DAS receivers. In: 79th EAGE Conference and Exhibition 2017. Netherlands: EAGE Publications BV; 2017. https://doi.org/10.3997/2214-4609.201701200; Stork A. L., Baird A. F., Horne S.A. et al. Application of machine learning to microseismic event detection in distributed acoustic sensing data. Geophysics. 2020;85(5):KS149–KS160. https://doi.org/10.1190/geo2019-0774.1; Näsholm S. P., Iranpour K., Wuestefeld A. et al. Array signal processing on distributed acoustic sensing data: Directivity effects in slowness space. Journal of Geophysical Research: Solid Earth. 2022;127(2). https://doi.org/10.1029/2021JB023587; Willis M. E., Barfoot D., Ellmauthaler A., Wu X. et al. Quantitative quality of distributed acoustic sensing vertical seismic profile data. The Leading Edge. 2016;35(7):605–609. https://doi.org/10.1190/tle35070605.1; Судакова М. С., Белов М. В., Понимаскин А. О. и др. Особенности обработки данных вертикального сейсмического профилирования морских малоглубинных скважин с волоконно-оптическими распределенными системами. Геофизика. 2021;(6):110–118.; Riedel M., Cosma C., Enescu N. et al. Underground Vertical Seismic Profiling with conventional and fiber-optic systems for exploration in the Kylylahti polymetallic mine, eastern Finland. Minerals (Basel). 2018;8(11):538. https://doi.org/10.3390/min8110538; Bellefleur G., Schetselaar E., Wade D. et al. Vertical seismic profiling using distributed acoustic sensing with scatter-enhanced fibre-optic cable at the Cu–Au New Afton porphyry deposit, British Columbia, Canada. Geophysical Prospecting. 2020;68(1):313–333. https://doi.org/10.1111/1365-2478.12828; Yaroslavtsev A. G., Fatkin K. B. Mine seismic surveys for the control of safety pillars in potash mines. In: Engineering and Mining Geophysics 2020. European Association of Geoscientists & Engineers; 2020. https://doi.org/10.3997/2214-4609.202051043; Санфиров И. А., Ярославцев А. Г., Чугаев А. В. и др. Контроль формирования ледопородного ограждения шахтного ствола комплексом наземных и скважинных сейсморазведочных методов. Физико-технические проблемы разработки полезных ископаемых. 2020;(3):34-46. https://doi.org/10.15372/FTPRPI20200304; Chugaev A.V., Sanfirov I.A., Lisin V.P. et al. The integrated borehole seismic surveys at the verkhnekamskoye potassium salt deposit. In: Lecture Notes in Networks and Systems. Vol. 342. Cham: Springer International Publishing; 2022. Pp. 255–269. https://doi.org/10.1007/978-3-030-89477-1_25; Correa J., Egorov A., Tertyshnikov K. et al. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets – A CO2CRC Otway Project data example. The Leading Edge. 2017;36(12):962–1044. https://doi.org/10.1190/tle36120994a1.1; Kuvshinov B. N. Interaction of helically wound fibre-optic cables with plane seismic waves. Geophysical Prospecting. 2016;64(3):671–688. https://doi.org/10.1111/1365-2478.12303; den Boer J. J., Mateeva A., Pearce J. G. et al. Detecting broadside acoustic signals with a fiber optical distributed acoustic sensing (DAS) assembly. Standard Patent WO2013/090544/A1, 2013. URL: https:// patentimages.storage.googleapis.com/6a/52/dc/6513f050b2f66c/AU2012352253C1.pdf; Tertyshnikov K., Bergery G., Freifeld B., Pevzner R. Seasonal effects on DAS using buried helically wound cables. In: EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific. European Association of Geoscientists & Engineers; 2020. https://doi.org/10.3997/2214-4609.202070007; Stork A. L., Chalari A., Durucan S. et al. Fibre-optic monitoring for high-temperature Carbon Capture, Utilization and Storage (CCUS) projects at geothermal energy sites. First Break. 2020;38(10):61–67. https://doi.org/10.3997/1365-2397.fb2020075; Baird A. Modelling the response of helically wound DAS cables to microseismic arrivals. In: First EAGE Workshop on Fibre Optic Sensing. European Association of Geoscientists & Engineers; 2020. https://doi.org/10.3997/2214-4609.202030019; Egorov A., Charara M., Alfataierge E., Bakulin A. Realistic modeling of surface seismic and VSP using DAS with straight and shaped fibers of variable gauge length. In: First International Meeting for Applied Geoscience & Energy Expanded Abstracts. Tulsa, OK, USA: Society of Exploration Geophysicists; 2021. Pp. 184–193. https://doi.org/10.1190/segam2021-3576626.1; https://mst.misis.ru/jour/article/view/467

  5. 5
  6. 6
    Academic Journal

    Πηγή: Sensor Electronics and Microsystem Technologies; Vol. 18 No. 2 (2021); 20-32
    Сенсорная электроника и микросистемные технологии; Том 18 № 2 (2021); 20-32
    Сенсорна електроніка і мікросистемні технології; Том 18 № 2 (2021); 20-32

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://semst.onu.edu.ua/article/view/235205

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
    Academic Journal

    Πηγή: Физика волновых процессов и радиотехнические системы; Vol 22, No 4 (2019); 106-113 ; Physics of Wave Processes and Radio Systems; Vol 22, No 4 (2019); 106-113 ; 1810-3189

    Περιγραφή αρχείου: application/pdf

  16. 16
  17. 17
    Academic Journal

    Πηγή: Biomedical Photonics; Том 6, № 4 (2017); 13-19 ; 2413-9432 ; 10.24931/2413-9432-2017-6-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/200/172; Khan L., Soliman H., Sahgal A., Perry J., Xu W., Tsao M.N. External beam radiation dose escalation for high grade glioma // Cochrane Database Syst Rev. – 2016. – T. 19, № 8. – CD011475.; Blumenthal D.T., Dvir A., Lossos A., Tzuk-Shina T., Lior T., Limon D., Yust-Katz S., Lokiec A., Ram Z., Ross J.S., Ali S.M., Yair R., Soussan- Gutman L., Bokstein F. Clinical utility and treatment outcome of comprehensive genomic profiling in high grade glioma patients // J Neurooncol. – 2016. – T. 130, № 1. – C. 211-219.; Wang G., Fu X.L., Wang J.J., Guan R., Tang X.J. Novel strategies to discover effective drug targets in metabolic and immune therapy for glioblastoma // Curr Cancer Drug Targets. – 2016. – T. 17, № 1. – C. 17-39.; Luciano R., Saracino R., Battafarano G., Perrotta A., Manco M., Muraca M., Del Fattore A., Rossi M. New perspectives in glioblastoma: Nanoparticles-based approaches // Curr Cancer Drug Targets. – 2017. – T. 17, № 3. – C. 203-220.; Morrone F.B., Gehring M.P., Nicoletti N.F. Calcium Channels and Associated Receptors in Malignant Brain Tumor Therapy // Mol Pharmacol. – 2016. – T. 90, № 3. – C. 403-409.; Ashby L.S., Smith K.A., Stea B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review // World J Surg Oncol. – 2016. – T. 14, № 1. – C. 225.; Bregy A., Shah A.H., Diaz M.V., Pierce H.E., Ames P.L., Diaz D., Komotar R.J. The role of Gliadel wafers in the treatment of high-grade gliomas // Expert Rev Anticancer Ther. – 2013. – T. 13, № 12. – C. 1453-1461.; Jain A., Betancur M., Patel G.D., Valmikinathan C.M., Mukhatyar V.J., Vakharia A., Pai S.B., Brahma B., MacDonald T.J., Bellamkonda R.V. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibers // Nat Mater. – 2014. – T. 13, № 3. – C. 308-316.; Au S.H., Storey B.D., Moore J.C., Tang Q., Chen Y.L., Javaid S., Sarioglu A.F., Sullivan R., Madden M.W., O'Keefe R., Haber D.A., Maheswaran S., Langenau D.M., Stott S.L., Toner M. Clusters of circulating tumor cells traverse capillary-sized vessels // Proc Natl Acad Sci U S A. – 2016. – T. 113, № 18. – C. 4947-4952.; Bellail A.C., Hunter S.B., Brat D.J., Tan C., Van Meir E.G. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion // Int. J. Biochem. Cell Biol. – 2004. – T. 36, № 6. – C. 1046-1069.; Claes A., Idema A.J., Wesseling P. Diffuse glioma growth: a guerilla war // Acta Neuropathol. – 2007. – T. 114, № 5. – C. 443-458.; Sutter M., Eggspuehler A., Grob D., Jeszenszky D., Benini A., Porchet F., Mueller A., Dvorak J. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors // Eur Spine J. – 2007. – T. 16, № 2. – C. 197-208.; Chekhonin V.P., Baklaushev V.P., Yusubalieva G.M., Pavlov K.A., Ukhova O.V., Gurina O.I. Modeling and Immunohistochemical Analysis of C6 Glioma In Vivo // Bulletin of Experimental Biology and Medicine – 2007. – T. 143, № 4. – C. 501-509.; Potapov A.A., Nazarov V.V., Goryaynov S.A., Okhlopkov V.A., Shishkina L.V., Shurkhay V.A., Loschenov V.B., Saveleva T.A., Kuzmin S.G., Chumakova A.P. A case of brain abscess mimicking cystic brain tumor and showing intraoperative 5-aminolevulinic acid fluorescence: case report // J. Chirurgia – 2014. – T. 27, № 4. – C. 257-260.; Savelieva T.A., Kalyagina N.A., Kholodtsova M.N., Loschenov V.B., Goryainov S.A., Potapov A.A. Numerical modelling and in vivo analysis of fluorescent and laser light backscattered from glial brain tumors // Proc. SPIE 8230 - 2012. - 82300L.

  18. 18
  19. 19
  20. 20