Showing 1 - 20 results of 60 for search '"ОНКОГЕМАТОЛОГИЧЕСКИЕ ЗАБОЛЕВАНИЯ"', query time: 0.80s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: ВЕСТНИК ОБРАЗОВАНИЯ И РАЗВИТИЯ НАУКИ РОССИЙСКОЙ АКАДЕМИИ ЕСТЕСТВЕННЫХ НАУК. :72-76

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Source: Journal Infectology; Том 14, № 4 (2022); 26-37 ; Журнал инфектологии; Том 14, № 4 (2022); 26-37 ; 2072-6732 ; 10.22625/2072-6732-2022-14-4

    File Description: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1377/989; Болевич, C.Б. Комплексный механизм развития СOVID-19 / С.Б. Болевич, С.С. Болевич // Сеченовский вестник. – 2020. – № 11 (2). – С. 50–61. – doi:10.47093/2218-7332.2020.11.2.50-61.; Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861-880. doi:10.1016/j.cell.2021.01.007; Mohn K.G., Br edholt G., Zhou F. et al. Durable T-cellular and humoral responses in SARS-CoV-2 hospitalized and community patients. PloS ONE, 2022;17(2):e0261979. doi:10.1371/journal.pone.0261979; Malkova A.; Kudryavtsev I., Starshinova A. et al. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens. 2021;10:1408. doi:10.3390/pathogens10111408; Wu J., Tang L., Ma Y. et al. Immunological Profiling of COVID-19 Patients with Pulmonary Sequelae. mBio. 2021;12(5):e0159921. doi:10.1128/mBio.01599-21; Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome. Nat. Med. 2021; 27: 601–615. doi:10.1038/s41591-021-01283-z; Liu C., Martins A.J., Lau W.W.et al. Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell Volume. 2021; 184(7):1836-1857.e22 doi:10.1016/j.cell.2021.02.018; Wong R.S., Wu A., To K.F. et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ 2003;326(7403):1358–1362. doi:10.1136/bmj.326.7403.1358; Li T., Qiu Z, Zhang L. et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis. 2004;189(4):648–51. doi:10.1086/381535; Zheng H.Y., Zhang M., Yang C.X,. et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi:10.1038/s41423-020-0401-3; Diao B., Wang C., Tan Y. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020;11:827 doi:10.3389/fimmu.2020.00827; Chen J., Lau Y.F., Lamirande E.W. et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARSCoV) infection in senescent BALB/c mice: CD4+T cells are important in control of SARS-CoV infection. J Virol. 2010;84(3):1289–1301. doi:10.1128/JVI.01281-09.; Zheng M., Gao Y., Wang G. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & Molecular Immunology. 2020;17:533–535. doi:10.1038/s41423-020-0402-2; Braun J., Loyal L., Frentsch M. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270-274. doi:10.1038/s41586-020-2598-9; Rydyznski Moderbacher C., Ramirez S.I., Dan J.M., et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020;183(4):996-1012.e19. doi:10.1016/j.cell.2020.09.038; Schulien I, Kemming J, Oberhardt V, et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8 + T cells. Nat Med. 2021;27(1):78-85. doi:10.1038/s41591-020-01143-2; Liu Y., Zhang C., Huang F. et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Sci. Rev. 2020;7:1003–1011. doi:10.1093/nsr/nwaa037; Shin H.-S., Kim Y., Kim G. et al. Immune responses to middle east respiratory syndrome coronavirus during the acute and convalescent phases of human infection. Clin Infect Dis. 2019; 68: 984–992. doi:10.1093/cid/ciy595; Bernardes J.P., Mishra N., Tran F. et al. Longitudinal Multiomics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity. 2020;53(6):1296-1314.e9. doi:10.1016/j.immuni.2020.11.017.; Mathew D., Giles J.R., Baxter A.E. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511. doi:10.1126/SCIENCE.ABC8511; Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3.; Vuitton D.A., Vuitton L., Seillès E., Galanaud P. A plea for the pathogenic role of immune complexes in severe Covid-19. Clin Immunol. 2020;217:108493. doi:10.1016/j.clim.2020.108493.; Delanghe J.R., De Buyzere M.L, Speeckaert M.M. C3 and ACE1 polymorphisms are more important confounders in the spread and outcome of COVID-19 in comparison with ABO polymorphism. Eur J Prev Cardiol. 2020;27(12):1331–1332. doi:10.1177/2047487320931305.; Fang S., Wang H., Lu L.et al. Decreased complement C3 levels are associated with poor prognosis in patients with COVID-19: a retrospective cohort study. Int Immunopharmacol 2020; 89(Pt A):107070. doi:10.1016/j.intimp.2020.107070; Rapkiewicz A.V., Mai X., Carsons S.E. et al. Megakaryocytes and plateletfibrin thrombi characterize multi-organ thrombosis at autopsy in COVID 19: a case series. E Clinical Medicine 2020;24:100434. doi:10.1016/j.eclinm.2020.100434.; Battina H., Alentado V., Srour E. et al. Interaction of the inflammatory response and megakaryocytes in COVID-19 infection. Exp Hematol 2021; 104: .32-39. doi:10.1016/j.exphem.2021.09.005; Ragab D., Salah Eldin H., Taeimah M. et al. The COVID-19 cytokine storm: What we know so far. Front Immunol. 2020;11:1446. doi:10.3389/fimmu.2020.01446; Behrens K., Alexander W.S. Cytokine control of megakaryopoiesis. Growth Factors. 2018;36:89–103. doi:10.1080/08977194.2018.1498487; Baig A.M. Chronic COVID syndrome: need for an appropriate medical terminology for long-COVID and COVID long-haulers. J Med Virol. 2021;93(5):2555-2556. doi:10.1002/jmv.26624; Sudre C.H., Murray B., Varsavsky T. et al. Attributes and predictors of long COVID. Nature medicine. 2021; 27(4): 626–631. doi:10.1038/s41591-021-01292-y; Chertow D., Stein S., Ramelli S. et al. SARS-CoV-2 infection and persistence throughout the human body and brain, 20 December 2021, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-1139035/v1; Su Y., Yuan D., Chen D.G. et al. Multiple Early Factors Anticipate Post-Acute COVID-19. Cell. 2022;185(5):881-895.e20. doi:10.1016/j.cell.2022.01.014; 33 Orologas-Stavrou N., Politou M., Rousakis P. et al. Peripheral blood immune profiling of convalescent plasma donors reveals alterations in specific immune subpopulations even at 2 months post sars-cov-2 infection. Viruses. 2021; 13: 26. doi.org/10.3390/v13010026; Knochelmann H.M., Dwyer C.J., Bailey, S.R. et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol. 2018;15(5):458-469. doi:10.1038/s41423-018-0004-4; Gong F., Dai Y., Zheng T. et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Investig. 2020; 130: 6588–6599. doi:10.1172/JCI141054; Kurata I., Matsumoto I., Sumida T. T follicular helper cell subsets: A potential key player in autoimmunity. Immunol. Med. 2021; 44: 1–9. doi:10.1080/25785826.2020.1776079; Shuwa H.A., Shaw T.N., Knight S.B. et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med. 2021;2(6): 720–735.e4 doi.org/10.1016/j.medj.2021.03.013; Chen Q., Yu B,. Yang Y., et al. Immunological and inflammatory profiles during acute and convalescent phases of severe/critically ill COVID-19 patients. Int Immunopharmacol. 2021;97:107685. doi:10.1016/j.intimp.2021.107685; Le Bert N., Clapham H., Tan A. et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med. 2021;218(5).e20202617 doi:10.1084/jem.20202617; Zhao B., Zhong M., Yang Q. et al. Alterations in Phenotypes and Responses of T Cells Within 6 Months of Recovery from COVID-19: A Cohort Study. Virol Sin. 2021;36(5):859-868. doi:10.1007/s12250-021-00348-0; Sekine T., Perez-Potti A, Rivera-Ballesteros O. et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19 Cell. 2020;183(1):158-168.e14. doi:10.1016/j.cell.2020.08.017; Rodríguez Y., Novelli L., Rojas M. et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.102506; Ehrenfeld M., Tincani A., Andreoli L., et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597. doi:10.1016/j.autrev.2020.102597; Druyan A., Lidar M., Brodavka M. et al. The risk for severe COVID 19 in patients with autoimmune and/or inflammatory diseases: first wave lessons. Dermatol Ther. 2021;34(1):e14627. doi:10.1111/dth.14627; Поддубная, И.В. Особенности ведения онкогематологических пациентов в условиях пандемии COVID-19 / И.В. Поддубная [и др.] // Современная Онкология. – 2020. – № 22 (3). – С. 45–58. – doi:10.26442/18151434.2020.3.200152; The Lancet Oncology. COVID-19 and cancer: 1 year on. Lancet Oncol. 2021; 22(4):411. doi:10.1016/S1470-2045(21)00148; Dulеry R., Lamure S., Delord M. et al. Prolonged in-hospital stay and higher mortality after Covid-19 among patients with nonHodgkin lymphoma treated with B-cell depleting immunotherapy. Am J Hematol. 2021;96:934–44. doi:10.1002/ajh.26209; Goronzy J.J., Weyand C.M. Successful and maladaptive T cell aging. Immunity. 2017;46(3):364–78. doi:10.1016/j.immuni.2017.03.010; Scully E.P., Haverfield J., Ursin R.L. et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20:442–447. doi:10.1038/s41577-020-0348-8; Peckham, H., de Gruijter N., Raine C. et al. Sex-bias in COVID-19: a meta-analysis and review of sex differences in disease and immunity, 20 April 2020, PREPRINT (Version 2) available at Research Square. doi:10.21203/rs.3.rs-23651/v2; Abdullah M., Chai P-S., Chong M-Y. et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol. 2012;272(2):214–219. doi:10.1016/j.cellimm.2011.10.009; Grifoni A., Weiskopf D., Ramirez S.I. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181(7):1489-1501. e15. doi:10.1016/j.cell.2020.05.015; Mato A., Roeker L., Lamanna N. et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134–1143. doi:10.1182/blood.2020006965; Lee C., Shah M., Hoyos D. et al. Prolonged SARS-CoV-2 Infection in Patients with Lymphoid Malignancies. Cancer Discov. 2022;12(1):62–73. doi:10.1158/2159-8290.CD-21-1033; Tamariz-Amador L.E., Battaglia A., Maia C. et al. Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. Blood Cancer J. 2021;11(12):202. doi:10.1038/s41408-021-00594-1; Chung D., Shah G., Devlin S. et al. Disease- and TherapySpecific Impact on Humoral Immune Responses to COVID-19 Vaccination in Hematologic Malignancies. Blood Cancer Discov. 2021;2 (6): 568–576. doi:10.1158/2643-3230.BCD-21-0139; Maneikis K., Šablauskas K., Ringelevičiūtė U., et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: a national prospective cohort study. Lancet Haematol. 2021;8(8):e583-e592.; Addeo A., Shah P.K., Bordry N. et al. Immunogenicity of SARSCoV-2 messenger RNA vaccines in patients with cancer. Cancer Cell. 2021;39(8):1091–1098.e2. doi:10.1016/j.ccell.2021.06.009; Tvito A., Ronson A., Ghosheh R. et al. Anti-CD20 monoclonal antibodies inhibit seropositive response to Covid-19 vaccination in non-Hodgkin lymphoma patients within 6 months after treatment. Exp. Hematol. 2022;107:20-23. doi:10.1016/j.exphem.2021.12.396.; Jotschke S., Schulze S., Jaekel N. et al. Longitudinal Humoral and Cellular Immune Responses Following SARS-CoV-2 Vaccination in Patients with Myeloid and Lymphoid Neoplasms Compared to a Reference Cohort: Results of a Prospective Trial of the East German Study Group for Hematology and Oncology (OSHO). Cancers (Basel). 2022;14(6):1544. doi:10.3390/cancers14061544; https://journal.niidi.ru/jofin/article/view/1377

  8. 8
  9. 9
    Academic Journal

    Source: Journal Infectology; Том 12, № 5 (2020); 85-92 ; Журнал инфектологии; Том 12, № 5 (2020); 85-92 ; 2072-6732 ; 10.22625/2072-6732-2020-12-5

    File Description: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1148/853; Злокачественные новообразования в России в 2018 году (заболеваемость и смертность) / под ред. А.Д. Капри на [и др.] – М.: МНИОМ им. А.П.Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. – 250 с.; Жигулева, Л.Ю. Анализ показателей выживаемости больных гемобластозами в Санкт-Петербурге на популяционном уровне / Л.Ю. Жигулева, К.М. Абдулкадыров // Вестник Санкт-Петербургского университета. Медицина. – 2016. – Т.11, № 3. – С. 111–121; Ruhnke M, Arnold R, Gastmeier P. Infection control issues in patients with haematological malignancies in the era of multidrug-resistant bacteria. The Lancet. 2014 Dec;15(13):E606-19.; Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016 Jun 30;127(26):3331-40.; ВОЗ: Глобальный доклад по гепатиту, 2017 г. WHO/ HIV/2017.06 https://www.who.int/hepatitis/publications/global-hepatitis-report2017; Stern L, Withers B, Avdic S, et al. Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Front Microbiol. 2019 May;10:1186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546901/pdf/fmicb-10-01186.pdf (дата обращения 20.10.2020); Styczynski J. Who Is the Patient at Risk of CMV Recurrence: A Review of the Current Scientific Evidence with a Focus on Hematopoietic Cell Transplantation. Infect Dis Ther. 2018 Mar;7(1):1-16.; Giménez E, Torres I, Albert E, et al. Cytomegalovirus (CMV) infection and risk of mortality in allogeneic hematopoietic stem cell transplantation (Allo-HSCT): A systematic review, meta-analysis, and meta-regression analysis. Am J Transplant. 2019 Sep;19(9):2479-94.; Blyth E, Withers B, Clancy L, Gottlieb D. CMV-specific immune reconstitution following allogeneic stem cell transplantation. Virulence. 2016 Nov 16;7(8):967-80.; Васильева, В.А. Геморрагический цистит как осложнение после трансплантации аллогенных гемопоэтических стволовых клеток / В.А. Васильева [и др.] // Cellular Therapy and Transplantation. – 2017. – Т. 6, № 3. – С. 89–91.; Дмитрова, А.А. Влияние режимов профилактики реакции «трансплантат против хозяина» на восстановление ЦМВ-специфичного Т-клеточного иммунитета у пациентов после трансплантации аллогенных гемопоэтических стволовых клеток / А.А. Дмитрова [и др.] // Материалы докладов V Конгресса гематологов России. Гематология и трансфузиология. – 2020. – Т. 65, № 1. – Приложение № 1 – С.139.; Рудакова, Т.А. Тяжелая гипофункция трансплантата после аллогенной трансплантации гемопоэтических стволовых клеток у взрослых пациентов: частота, факторы риска, исходы / Т.А. Рудакова [и др.] // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. – 2019. – Т.12, №3. – С. 309–318.; Ward KN, Hill JA, Hubacek P, et al; 2017 European Conference on Infections in Leukaemia (ECIL). Guidelines from the 2017 European Conference on Infections in Leukaemia for management of HHV-6 infection in patients with hematologic malignancies and after hematopoietic stem cell transplantation. Haematologica. 2019 Nov;104(11):2155-63.; Morris MI, Kotton CN, Wolfe C (Eds.). Emerging Transplant Infections: Clinical Challenges and Implications. 1st ed. Springer Nature Switzerland AG 2020. Haidar G. HHV-6, HHV-7, and HHV-8: Forgotten Viruses in Transplantation. https://link.springer.com/referenceworkentry/10.1007/978-3-030-01751-4_28-1 (дата обращения: 20.10.2020); Alves B, Torregrossa VR, Braz-Silva PH, et al. The Presence of CMV and HSV-1 Reactivation in Saliva May Play a Role in the Oral Mucositis Severity. Biology of Blood and Marrow Transplantation 2017 March 23(3):S266.; Ramos CA, Saliba RM, de Pádua L, et al. Impact of hepatitis C virus seropositivity on survival after allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Haematologica. 2009 Feb;94(2):249-57.; Peffault de Latour R, Ribaud P, Robin M, et al. Allogeneic hematopoietic cell transplant in HCV-infected patients. J Hepatol. 2008 Jun;48(6):1008-17.; Arcaini L, Vallisa D, Rattotti S, et al. Antiviral treatment in patients with indolent B-cell lymphomas associated with HCV infection: a study of the Fondazione Italiana Linfomi. Ann Oncol. 2014 Jul;25(7):1404-10.; Kyvernitakis A, Mahale P, Popat UR, Jiang Y. Hepatitis C virus infection in patients undergoing hematopoietic cell transplantation in the era of direct-acting antiviral agents. Biol Blood Marrow Transplant. 2016 Apr; 22(4): 717-22.; Cunningham HE, Shea TC, Grgic T, Lachiewicz AM. Successful treatment of hepatitis C virus infection with directacting antivirals during hematopoietic cell transplant. Transpl Infect Dis 2019 Jun 26;21(3):e13091.; https://journal.niidi.ru/jofin/article/view/1148

  10. 10
    Academic Journal

    Source: Bulletin of Scientific Research; No. 4 (2017) ; Вестник научных исследований; № 4 (2017) ; Вісник наукових досліджень; № 4 (2017) ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2017.4

    File Description: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    File Description: application/pdf

    Relation: Піддубна О. О. Клінічні особливості ураження нервової системи при хронічному мієлолейкозі / О. О. Піддубна // Вісник проблем біології та медицини. – 2019. – Вип. 2, т. 2 (151). – С. 147–150.; https://repository.pdmu.edu.ua/handle/123456789/12450

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20