Εμφανίζονται 1 - 20 Αποτελέσματα από 1.390 για την αναζήτηση '"ОКИСЛИТЕЛЬНЫЙ СТРЕСС"', χρόνος αναζήτησης: 0,64δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  4. 4
    Academic Journal

    Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 11 (2025): Eurasian Journal of Medical and Natural Sciences; 215-226 ; Евразийский журнал медицинских и естественных наук; Том 5 № 11 (2025): Евразийский журнал медицинских и естественных наук; 215-226 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 11 (2025): Евразийский журнал медицинских и естественных наук; 215-226 ; 2181-287X

    Περιγραφή αρχείου: application/pdf

  5. 5
    Academic Journal

    Πηγή: Urology Herald; Том 13, № 4 (2025); 89-96 ; Вестник урологии; Том 13, № 4 (2025); 89-96 ; 2308-6424 ; 10.21886/2308-6424-2017-72-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.urovest.ru/jour/article/view/1111/668; Литвинова Н.А., Лесников А.И., Толочко Т.А., Шмелев А.А. Эндогенные и экзогенные факторы, влияющие на мужскую фертильность. Фундаментальная и клиническая медицина. 2021;6(2):124-135.; Rotimi D.E., Singh S.K. Implications of lifestyle factors on male reproductive health. JBRA Assist Reprod. 2024;28(2):320-330. DOI:10.5935/1518-0557.20240007; Mardomi F.D., Deljavan-Nikouei F.H., Babayev M.Sh. Main trends of the genetic factor of male infertility. Austrian Journal of Technical and Natural Sciences. 2020;9-10:6-10. DOI:10.29013/AJT-20-9.10-6-10; Wang K., Gao Y., Wang C., Liang M., Liao Y., Hu K. Role of Oxidative Stress in Varicocele. Front Genet. 2022;13:850114. DOI:10.3389/fgene.2022.850114; Kalmatov R.K., Mirzokulov S.S., Mirzakulov D.S., Matazov B.A., Eshbaev A.A., Makambaev A.B. Influence of urogenital infections on the development of male infertility in the Jalal-Abad Region of the Kyrgyz republic. Bulletin of Osh State University. 2023;(2):41-49. (In Russian). DOI:10.52754/16948610_2023_2_5; Wagner A.O., Turk A., Kunej T. Towards a Multi-Omics of Male Infertility. World J Mens Health. 2023;41(2):272-288. DOI:10.5534/wjmh.220186; Biggs S.N., Kennedy J., Lewis S.L., Hearps S., O'Bryan M.K., McLachlan R., von Saldern S., Chambers G., Halliday J. Lifestyle and environmental risk factors for unexplained male infertility: study protocol for Australian Male Infertility Exposure (AMIE), a case-control study. Reprod Health. 2023;20(1):32. DOI:10.1186/s12978-023-01578-z; Chereshnev V.A., Pichugova S.V., Beikin Y.B., Chereshneva M.V., Iukhta A.I., Stroev Y.I., Churilov L.P. Pathogenesis of Autoimmune Male Infertility: Juxtacrine, Paracrine, and Endocrine Dysregulation. Pathophysiology. 2021;28(4):471-488. DOI:10.3390/pathophysiology28040030; Alekseeva D.B., Alexina A.A. Morphology of spermatozoa and their qualitative assessment. Mezhdunarodny`j studencheskij nauchny`j vestnik. 2021;(2):166. (In Russian). eLIBRARY ID: 45692025; EDN: NEVVBO; Solovova O.A., Chernykh V.B. Genetic causes of nonsyndromic forms of azoospermia and severe oligozoospermia in infertility men. Andrologiya i genital’naya khirurgiya = Andrology and Genital Surgery. 2019;20(2):16-28. (In Russian). eLIBRARY ID: 37658853; EDN: EZXKYT; Sataeva T.P., Koval'chuk A.V., Kutja S.A. The sperm life cycle. Physiology and pathology. Krymskij zhurnal jeksperimental'noj i klinicheskoj mediciny. 2018;8(1):113-122. (In Russian). eLIBRARY ID: 35310851; EDN: XUEHXF; Ivanova O.S., Ismailov T.K., Turlybekova G.K. Vliyanie vozrastnogo faktora muzhchin na pokazateli spermogrammy. Tendentsii razvitiya nauki i obrazovaniya. 2023;(104-11):98-101. (In Russian). DOI:10.18411/trnio-12-2023-614; Olefir Yu.V., Vinogradov I.V., Rodionov M.A., Zhyvulko A.R., Popov D.M., Monakov D.M. The Sixth Edition of the WHO laboratory manual for the examination and processing of human semen: is everything new a well-forgotten old? Urology Herald. 2023;11(1):171-176. (In Russian). DOI:10.21886/2308-6424-2023-11-1-171-176; Xia T.J., Xie F.Y., Fan Q.C., Yin S., Ma J.Y. Analysis of factors affecting testicular spermatogenesis capacity by using the tissue transcriptome data from GTEx. Reprod Toxicol. 2023;117:108359. DOI:10.1016/j.reprotox.2023.108359; Bhattacharya K., Sengupta P., Dutta S. Role of melatonin in male reproduction. Asian Pacific Journal of Reproduction. 2019;8(5):211-219. DOI:10.4103/2305-0500.268142; Rivero M.J., Kulkarni N., Thirumavalavan N., Ramasamy R. Evaluation and management of male genital tract infections in the setting of male infertility: an updated review. Curr Opin Urol. 2023;33(3):180-186. DOI:10.1097/MOU.0000000000001081; Xu Y., Chen W., Wu X., Zhao K., Liu C., Zhang H. The Role of Cells and Cytokines in Male Infertility Induced by Orchitis. World J Mens Health. 2024;42(4):681-693. DOI:10.5534/wjmh.230270; Rowley J., Vander Hoorn S., Korenromp E., Low N., Unemo M., Abu-Raddad L.J., Chico R.M., Smolak A., Newman L., Gottlieb S., Thwin S.S., Broutet N., Taylor M.M. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548-562P. DOI:10.2471/BLT.18.228486; Khalafalla K., El Ansari W., Sengupta P., Majzoub A., Elbardisi H., Canguven O., El-Ansari K., Arafa M. Are sexually transmitted infections associated with male infertility? A systematic review and in-depth evaluation of the evidence and mechanisms of action of 11 pathogens. Arab J Urol. 2023;21(4):216-232. DOI:10.1080/2090598X.2023.2218566; Goulart A.C.X., Farnezi H.C.M., França J.P.B.M., Santos A.D., Ramos M.G., Penna M.L.F. HIV, HPV and Chlamydia trachomatis: impacts on male fertility. JBRA Assist Reprod. 2020;24(4):492-497. DOI:10.5935/1518-0557.20200020; Farsimadan M., Motamedifar M. Bacterial infection of the male reproductive system causing infertility. J Reprod Immunol. 2020;142:103183. DOI:10.1016/j.jri.2020.103183; Dutta S., Sengupta P. SARS-CoV-2 and Male Infertility: Possible Multifaceted Pathology. Reprod Sci. 2021;28(1):23-26. DOI:10.1007/s43032-020-00261-z; Sengupta P., Roychoudhury S., Nath M., Dutta S. Oxidative Stress and Idiopathic Male Infertility. Adv Exp Med Biol. 2022;1358:181-204. DOI:10.1007/978-3-030-89340-8_9; Das S., Doss C.G.P, Fletcher J., Kannangai R., Abraham P., Ramanathan G. The impact of human papilloma virus on human reproductive health and the effect on male infertility: An updated review. J Med Virol. 2023;95(4):e28697. DOI:10.1002/jmv.28697; Garolla A., Graziani A., Grande G., Ortolani C., Ferlin A. HPV-relateddiseases in male patients: an underestimated conundrum. J Endocrinol Invest. 2024;47(2):261-274. DOI:10.1007/s40618-023-02192-3; Sucato A., Buttà M., Bosco L., Di Gregorio L., Perino A., Capra G. Human Papillomavirus and Male Infertility: What Do We Know? Int J Mol Sci. 2023;24(24):17562. DOI:10.3390/ijms242417562; Wu H., Wang F., Tang D., Han D. Mumps Orchitis: Clinical Aspects and Mechanisms. Front Immunol. 2021;12:582946. DOI:10.3389/fimmu.2021.582946; Guo X., Xu J., Zhao Y., Wang J., Fu T., Richard M.L., Sokol H., Wang M., Li Y., Liu Y., Wang H., Wang C., Wang X., He H., Wang Y., Ma B., Peng S. Melatonin alleviates heat stress-induced spermatogenesis dysfunction in male dairy goats by regulating arachidonic acid metabolism mediated by remodeling the gut microbiota. Microbiome. 2024;12(1):233. DOI:10.1186/s40168-024-01942-6; Zhang M., Wen T., Wang D. The association between COVID-19 and infertility: Mendelian randomization analysis. Medicine (Baltimore). 2024;103(10):e37346. DOI:10.1097/MD.0000000000037346; Chen L., Huang X., Yi Z., Deng Q., Jiang N., Feng C., Zhou Q., Sun B., Chen W., Guo R. Ultrasound Imaging Findings of Acute Testicular Infection in Patients With Coronavirus Disease 2019: A Single-Center-Based Study in Wuhan, China. J Ultrasound Med. 2021;40(9):1787-1794. DOI:10.1002/jum.15558; Araújo A.L.M., Almeida V.L.L., Costa T.M.L., Mendonça A.C.G., Penna M.L.F., Santos A.D., Ramos M.G. Evaluation of the effects of COVID-19 on semen parameters and male infertility. JBRA Assist Reprod. 2024;28(1):90-95. DOI:10.5935/1518-0557.20230067; Koç E., Keseroğlu B.B. Does COVID-19 Worsen the Semen Parameters? Early Results of a Tertiary Healthcare Center. Urol Int. 2021;105(9-10):743-748. DOI:10.1159/000517276; Li H., Xiao X., Zhang J., Zafar M.I., Wu C., Long Y., Lu W., Pan F., Meng T., Zhao K., Zhou L., Shen S., Liu L., Liu Q., Xiong C. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine. 2020;28:100604. DOI:10.1016/j.eclinm.2020.100604; Wang Z., Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells. 2020;9(4):920. DOI:10.3390/cells9040920; Kul'chenko N.G. The main types of antioxidant therapy of pathospermia. Vestnik medicinskogo instituta "REAVIZ": reabilitacija, vrach i zdorov'e. 2018;1(31):41-48. (In Russian). eLIBRARY ID: 32823966; EDN: YWLXMB; Chen J., Chen J., Fang Y., Shen Q., Zhao K., Liu C., Zhang H. Microbiology and immune mechanisms associated with male infertility. Front Immunol. 2023;14:1139450. DOI:10.3389/fimmu.2023.1139450; Melnyk O., Kovalenko I., Vorobets M., Onufrovych O., Borzhievsky A., Fafula R. Infectious factors detectin in azoospermia on infertile men. German International Journal of Modern Science. 2021;14:29-31. DOI:10.24412/2701-8369-2021-14-29-31; Mazzilli R., Petrucci S., Zamponi V., Golisano B., Pecora G., Mancini C., Salerno G., Alesi L., De Santis I., Libi F., Rossi C., Borro M., Raffa S., Visco V., Defeudis G., Piane M., Faggiano A. Seminological, Hormonal and Ultrasonographic Features of Male Factor Infertility Due to Genetic Causes: Results from a Large Monocentric Retrospective Study. J Clin Med. 2024;13(15):4399. DOI:10.3390/jcm13154399; Kuroda S., Usui K., Sanjo H., Takeshima T., Kawahara T., Uemura H., Yumura Y. Genetic disorders and male infertility. Reprod Med Biol. 2020;19(4):314-322. DOI:10.1002/rmb2.12336; Witherspoon L., Dergham A,. Flannigan R. Y-microdeletions: a review of the genetic basis for this common cause of male infertility. Transl Androl Urol. 2021;10(3):1383-1390. DOI:10.21037/tau-19-599; Joseph S., Mahale S.D. Male Infertility Knowledgebase: Decoding the genetic and disease landscape. Database (Oxford). 2021;baab049. DOI:10.1093/database/baab049; Panchenko I.A., Panchenko R.I., Naumov V.K. The effect of surgical treatment of varicocele on the pathospermia and the level of fragmentation of sperm DNA. Andrologija i genital'naja hirurgija. 2024;25(2):104-109. (In Russian). eLIBRARY ID: 68483123; EDN: FQGERE; Agrucz R.V., Yakovecz E.A. Evaluation of the effectiveness of surgical treatment of varicocele in men with infertility. Nauchnoe obozrenie. Medicinskie nauki. 2020;2:35-39. (In Russian). DOI:10.17513/srms.1102; Persad E., O'Loughlin C.A., Kaur S., Wagner G., Matyas N., Hassler-Di Fratta M.R., Nussbaumer-Streit B. Surgical or radiological treatment for varicoceles in subfertile men. Cochrane Database Syst Rev. 2021;4(4):CD000479. DOI:10.1002/14651858.CD000479.pub6; Wang L.H., Zheng L., Jiang H., Jiang T. Research advances in inflammation and oxidative stress in varicocele-induced male infertility: a narrative review. Asian J Androl. 2025;27(2):177-184. DOI:10.4103/aja202488; Su J.S., Farber N.J., Vij S.C. Pathophysiology and treatment options of varicocele: An overview. Andrologia. 2021;53(1):e13576. DOI:10.1111/and.13576; Lisovskaya T.V., Dubrovina O.S., Treshchilov I.M., Senturina L.B., Sevostyanova O.Y., Mayasina E.N., Buev Y.E., Salimov D.F. Thyroid disorders and pathospermia in the ART clinic patients. Gynecol Endocrinol. 2021;37(sup1):4-7. DOI:10.1080/09513590.2021.2006439; Huang R., Chen J., Guo B., Jiang C., Sun W. Diabetes-induced male infertility: potential mechanisms and treatment options. Mol Med. 2024;30(1):11. DOI:10.1186/s10020-023-00771-x; Łakoma K., Kukharuk O., Śliż D. The Influence of Metabolic Factors and Diet on Fertility. Nutrients. 2023;15(5):1180. DOI:10.3390/nu15051180; Lyons H.E., Gyawali P., Mathews N., Castleton P., Mutuku S.M., McPherson N.O. The influence of lifestyle and biological factors on semen variability. J Assist Reprod Genet. 2024;41(4):1097-1109. DOI:10.1007/s10815-024-03030-y; Efremov E.A., Kasatonova E.V. Current and promising methods of treatment of idiopathic male infertility. Andrologiya i genital`naya xirurgiya. 2022;23(3):48-53. (In Russian). eLIBRARY ID: 49391348; EDN: AXMIRE; Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. Medicina (Kaunas). 2023;59(10):1769. DOI:10.3390/medicina59101769; Rashki Ghaleno L., Alizadeh A., Drevet J.R., Shahverdi A., Valojerdi M.R. Oxidation of Sperm DNA and Male Infertility. Antioxidants (Basel). 2021;10(1):97. DOI:10.3390/antiox10010097; Dimitriadis F., Borgmann H., Struck J.P., Salem J., Kuru T.H. Antioxidant Supplementation on Male Fertility-A Systematic Review. Antioxidants (Basel). 2023;12(4):83. DOI:10.3390/antiox12040836; Abouelgreed T.A., Amer M.A., Mamdouh H., El-Sherbiny A.F., Aboelwafa H., Fahmy S.F., Omar O.A., Abdelshakour M., Elesawy M., Sonbol M., Maawad A.N., Elsayed O.K. The influence of oral antioxidants on men with infertility: a systemic review. Arch Ital Urol Androl. 2024;96(2):12323. DOI:10.4081/aiua.2024.12323; Kallinikas G., Tsoporis J.N., Haronis G., Zarkadas A., Bozios D., Konstantinopoulos V., Kozyrakis D., Mitiliniou D., Rodinos E., Filios A., Filios P., Vlassopoulos G. The role of oral antioxidants in the improvement of sperm parameters in infertile men. World J Urol. 2024;42(1):71. DOI:10.1007/s00345-023-04766-5; Soleimani Mehranjani M., Azizi M., Sadeghzadeh F. The effect of melatonin on testis histological changes and spermatogenesis indexes in mice following treatment with dexamethasone. Drug Chem Toxicol. 2022;45(3):1140-1149. DOI:10.1080/01480545.2020.1809672; Frungieri M.B., Calandra R.S., Rossi S.P. Local Actions of Melatonin in Somatic Cells of the Testis. Int J Mol Sci. 2017;18(6):1170. DOI:10.3390/ijms18061170; Wang Y., Zhao T.T., Zhao H.Y., Wang H. Melatonin protects methotrexateinduced testicular injury in rats. Eur Rev Med Pharmacol Sci. 2018;22(21):7517-7525. DOI:10.26355/eurrev_201811_16293; Yang M., Guan S., Tao J., Zhu K., Lv D., Wang J, Li G., Gao Y., Wu H., Liu J, Cao L., Fu Y., Ji P., Lian Z., Zhang L., Liu G. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells†. Biol Reprod. 2021;104(6):1322-1336. DOI:10.1093/biolre/ioab046; Lu X.L., Liu J.J., Li J.T., Yang Q.A., Zhang J.M. Melatonin therapy adds extra benefit to varicecelectomy in terms of sperm parameters, hormonal profile and total antioxidant capacity: A placebo-controlled, doubleblind trial. Andrologia. 2018;50(6):e13033. DOI:10.1111/and.13033; Zhao F., Whiting S., Lambourne S., Aitken R.J., Sun Y.P. Melatonin alleviates heat stress-induced oxidative stress and apoptosis in human spermatozoa. Free Radic Biol Med. 2021;164:410-416. DOI:10.1016/j.freeradbiomed.2021.01.014; https://www.urovest.ru/jour/article/view/1111

  6. 6
    Academic Journal

    Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 Part 2 (2025): Eurasian Journal of Medical and Natural Sciences; 223-231 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 223-231 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 223-231 ; 2181-287X

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 1 (2025); 17-26 ; Фармакокинетика и Фармакодинамика; № 1 (2025); 17-26 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/446/393; Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012 May 25;149(5):1060-72. doi:10.1016/j.cell.2012.03.042.; Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021 Feb;22(2):75-95. doi:10.1038/s41580-020-00314-w.; Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023 Jan;20(1):7-23. doi:10.1038/s41569-022-00735-4.; Reichert CO, de Freitas FA, Sampaio-Silva J, et al. Ferroptosis Mechanisms Involved in Neurodegenerative Diseases. Int J Mol Sci. 2020 Nov 20;21(22):8765. doi:10.3390/ijms21228765.; Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021 Apr;22(4):266-282. doi:10.1038/s41580-020-00324-8.; Zhang Y, Xin L, Xiang M, et al. The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 2022 Jan;145:112423. doi:10.1016/j.biopha.2021.112423.; Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022 Jul 7;185(14):2401-2421. doi:10.1016/j.cell.2022.06.003.; Nemeth E, Ganz T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int J Mol Sci. 2021 Jun 17;22(12):6493. doi:10.3390/ijms22126493.; Li L, Wang K, Jia R, et al. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol. 2022 Oct;56:102435. doi:10.1016/j.redox.2022.102435.; Liao P, Wang W, Wang W, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022 Apr 11;40(4):365-378.e6. doi:10.1016/j.ccell.2022.02.003.; Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022 Jun 16;82(12):2215-2227. doi:10.1016/j.molcel.2022.03.022.; Rochette L, Dogon G, Rigal E, et al. Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int J Mol Sci. 2022 Dec 27;24(1):449. doi:10.3390/ijms24010449.; Minami JK, Morrow D, Bayley NA, et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell. 2023 Jun 12;41(6):1048-1060.e9. doi:10.1016/j.ccell.2023.05.001.; Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023 Jul;19(7):1982-1996. doi:10.1080/15548627.2023.2165323.; Liu Y, Wan Y, Jiang Y, et al. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 2023 May;1878(3):188890. doi:10.1016/j.bbcan.2023.188890.; Li D, Wang Y, Dong C, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene. 2023 Jan;42(2):83-98. doi:10.1038/s41388-022-02537-x.; Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022 Nov;289(22):7038-7050. doi:10.1111/febs.16059; Chen X, Yu C, Kang R, et al. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021 Apr;28(4):1135-1148. doi:10.1038/s41418-020-00728-1.; Tian Y, Tian Y, Yuan Z, et al. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci. 2022 Mar 25;23(7):3612. doi:10.3390/ijms23073612.; Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis. 2021 Apr 1;12(2):529-551. doi:10.14336/AD.2020.0912.; Costa I, Barbosa DJ, Benfeito S, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther. 2023 Apr;244:108373. doi:10.1016/j.pharmthera.2023.108373.; Qiu B, Zandkarimi F, Bezjian CT, et al. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 2024 Feb 29;187(5):1177-1190.e18. doi:10.1016/j.cell.2024.01.030.; Anandhan A, Dodson M, Shakya A, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci Adv. 2023 Feb 3;9(5):eade9585. doi:10.1126/sciadv.ade9585.; Chen GH, Song CC, Pantopoulos K, et al. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 2022 Feb 20;180:95-107. doi:10.1016/j.freerad-biomed.2022.01.012.; Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021 Oct;277:121110. doi:10.1016/j.biomaterials.2021.121110.; Yan D, Wu Z, Qi X. Ferroptosis-related metabolic mechanism and nanoparticulate anticancer drug delivery systems based on ferroptosis. Saudi Pharm J. 2023 Apr;31(4):554-568. doi:10.1016/j.jsps.2023.02.008.; Gromova OA, Torshin II, Chuchalin AG. [Ferritin as a biomarker of aging: geroprotective peptides of standardized human placental hydrolysate. A review]. Ter Arkh. 2024 Sep 14;96(8):826-835. Russian. doi:10.26442/00403660.2024.08.202811.; Torshin IY, Gromova OA, Tikhonova OV, Chuchalin AG. [Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning]. Ter Arkh. 2023 Dec 28;95(12):1133-1140. Russian. doi:10.26442/00403660.2023.12.202494.; Tian R, Abarientos A, Hong J, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021 Jul;24(7):1020-1034. doi:10.1038/s41593-021-00862-0.; https://www.pharmacokinetica.ru/jour/article/view/446

  8. 8
    Academic Journal

    Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 5 (2025); 759-775 ; Акушерство, Гинекология и Репродукция; Vol 19, No 5 (2025); 759-775 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2520/1398; Тимофеева Е.В., Высоцкий Ю.А., Бородина Г.Н., Лопатина С.В. Закономерности структурно-клеточного строения яичников в онтогенезе. Acta Biomedica Scientifica. 2016;1(1):56–8. https://doi.org/10.12737/21486.; Сыркашева А.Г., Долгушина Н.В., Яроцкая Е.Л. Влияние антропогенных химических веществ на репродукцию. Акушерство и гинекология. 2018;(3):16–21. https://doi.org/10.18565/aig.2018.3.16-21.; Жирнов И.А., Назмиева К.А., Хабибуллина А.И. и др. Влияние факторов окружающей среды на репродуктивное здоровье женщины. Акушерство, Гинекология и Репродукция. 2024;18(6):858–73. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.564.; Адамян Л.В., Макиян З.Н., Глыбина Т.М. и др. Предикторы синдрома поликистозных яичников у юных пациенток (обзор литературы). Проблемы репродукции. 2014;(5):52–6.; Зотов С.В., Лихачева В.В., Мотырева П.Ю. и др. Факторы риска снижения овариального резерва женщин: актуальное состояние проблем. Acta Biomedica Scientifica. 2024;9(3):69–78. https://doi.org/10.29413/ABS.2024-9.3.6.; Андреева Е.Н., Шереметьева Е.В., Адамян Л.В. Этиологические и патогенетические факторы дисфункции яичников у женщин репродуктивного периода. Проблемы репродукции. 2020;26(6):34–43. https://doi.org/10.17116/repro20202606134.; Ткаченко Л.В., Гриценко И.А., Тихаева К.Ю. и др. Оценка факторов риска и прогнозирование преждевременной недостаточности яичников. Акушерство, Гинекология и Репродукция. 2022;16(1):73–80. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.273.; Григорян О.Р., Жемайте Н.С., Волеводз Н.Н. и др. Отдаленные последствия синдрома поликистозных яичников. Терапевтический архив. 2017;89(10):75–9. https://doi.org/10.17116/terarkh2017891075-79.; Евтеева А.А., Шеремета М.С., Пигарова Е.А. Эндокринные дисрапторы в патогенезе таких социально значимых заболеваний, как сахарный диабет, злокачественные новообразования, сердечно-сосудистые заболевания, патология репродуктивной системы. Ожирение и метаболизм. 2021;18(3):327–35. https://doi.org/10.14341/omet12757.; Ho S.-M., Cheong A., Adgent M.A. et al. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol. 2017;68:85–104. https://doi.org/10.1016/j.reprotox.2016.07.011.; Rattan S., Zhou C., Chiang C. et al. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233(3):R109–R129. https://doi.org/10.1530/JOE-17-0023.; Schug T.T., Janesick A., Blumberg B., Heindel J.J. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3–5):204–15. https://doi.org/10.1016/j.jsbmb.2011.08.007.; Patel S., Zhou C., Rattan S., Flaws J.A. Effects of endocrine-disrupting chemicals on the ovary. Biol Reprod. 2015;93(1):20. https://doi.org/10.1095/biolreprod.115.130336.; Streifer M., Thompson L.M., Mendez S.A., Gore A.C. Neuroendocrine and developmental impacts of early life exposure to EDCs. J Endocr Soc. 2024;9(1):bvae195. https://doi.org/10.1210/jendso/bvae195.; Thambirajah A.A., Wade M.G., Verreault J. et al. Disruption by stealth – interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. Environ Res. 2022;203:111906. https://doi.org/10.1016/j.envres.2021.111906.; Kordowitzki P., Krajnik K., Skowronska A., Skowronski M.T. Pleiotropic effects of IGF1 on the oocyte. Cells. 2022;11(10):1610. https://doi.org/10.3390/cells11101610.; Evangelinakis N., Geladari E.V., Geladari C.V. et al. The influence of environmental factors on premature ovarian insufficiency and ovarian aging. Maturitas. 2024;179:107871. https://doi.org/10.1016/j.maturitas.2023.107871.; Autrup H., Barile F.A., Berry S.C. et al. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? J Toxicol Environ Health A. 2020;83(13–14):485–94. https://doi.org/10.1016/j.cbi.2020.109099.; Kim K. The role of endocrine disruption chemical-regulated aryl hydrocarbon receptor activity in the pathogenesis of pancreatic diseases and cancer. Int J Mol Sci. 2024;25(7):3818. https://doi.org/10.3390/ijms25073818.; Vidal O.S., Deepika D., Schuhmacher M., Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol. 2021;51(7):634–52. https://doi.org/10.1080/10408444.2021.2009438.; Guarnotta V., Amodei R., Frasca F. et al. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int J Mol Sci. 2022;23(10):5710. https://doi.org/10.3390/ijms23105710.; Pal S., Sahu A., Verma R., Haldar C. BPS-induced ovarian dysfunction: Protective actions of melatonin via modulation of SIRT-1/Nrf2/NFĸB and IR/PI3K/pAkt/GLUT-4 expressions in adult golden hamster. J Pineal Res. 2023;75(1):e12869. https://doi.org/10.1111/jpi.12869.; Zhang X., Zhang Y., Feng X. et al.The role of estrogen receptors (ERs)-Notch pathway in thyroid toxicity induced by Di-2-ethylhexyl phthalate (DEHP) exposure: population data and in vitro studies. Ecotoxicol Environ Saf. 2024;269:115727. https://doi.org/10.1016/j.ecoenv.2023.115727.; Hugues J.N., Durnerin I.C. Impact of androgens on fertility – physiological, clinical and therapeutic aspects. Reprod Biomed Online. 2005;11(5):570–80. https://doi.org/10.1016/s1472-6483(10)61165-0.; Lutz L.B., Jamnongjit M., Yang W.H. et al. Selective modulation of genomic and nongenomic androgen responses by androgen receptor ligands. Mol Endocrinol. 2003;17(6):1106–16. https://doi.org/10.1210/me.2003-0032.; Engel A., Buhrke T., Imber F. et al. Agonistic and antagonistic effects of phthalates and their urinary metabolites on the steroid hormone receptors ERα, ERβ, and AR. Toxicol Lett. 2017;277:54–63. https://doi.org/10.1016/j.toxlet.2017.05.028.; Rehan M., Ahmad E., Sheikh I.A. et al. Androgen and progesterone receptors are targets for bisphenol A (BPA), 4-methyl-2,4-bis-(P-hydroxyphenyl)Pent-1-Ene – a potent metabolite of BPA, and 4-tert-octylphenol: a computational insight. PLoS One. 2015;10(9):e0138438. https://doi.org/10.1371/journal.pone.0138438.; Zhang M., Wang W., Zhang D. et al. Prothioconazole exposure disrupts oocyte maturation and fertilization by inducing mitochondrial dysfunction and apoptosis in mice. Free Radic Biol Med. 2024;213:274–84. https://doi.org/10.1016/j.freeradbiomed.2024.01.027.; Safe S., Jin U.H., Park H. et al. Aryl hydrocarbon receptor (AHR) ligands as selective AHR modulators (SAhRMs). Int J Mol Sci. 2020;21(18):6654. https://doi.org/10.3390/ijms21186654.; Mackowiak B., Hodge J., Stern S., Wang H. The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab Dispos. 2018;46(9):1361–71. https://doi.org/10.1124/dmd.118.081042.; Barroso A., Mahler J.V., Fonseca-Castro P.H., Quintana F.J. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol. 2021;18(2):259–68. https://doi.org/10.1038/s41423-020-00585-5.; Tarnow P., Tralau T., Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol. 2019;15(3):219–29. https://doi.org/10.1080/17425255.2019.1569627.; Safe S., Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol. 2003;16(7):807–16. https://doi.org/10.1021/tx034036r.; Hall J.M., Korach K.S. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. Adv Pharmacol. 2021;92:191–235. https://doi.org/10.1016/bs.apha.2021.04.001.; Zhang D., Trudeau V.L. Integration of membrane and nuclear estrogen receptor signaling. Comp Biochem Physiol A Mol Integr Physiol. 2006;144(3):306–15. https://doi.org/10.1016/j.cbpa.2006.01.025.; Gusmao D.O., Vieira H.R., Mansano N.S. et al. Pattern of gonadotropin secretion along the estrous cycle of C57BL/6 female mice. Physiol Rep. 2022;10(17):e15460. https://doi.org/10.14814/phy2.15460.; Yang R., Lu Y., Yin N., Faiola F. Transcriptomic integration analyses uncover cCommon bisphenol A effects across species and tissues primarily mediated by disruption of JUN/FOS, EGFR, ER, PPARG, and P53 pathways. Environ Sci Technol. 2023;57(48):19156–68. https://doi.org/10.1021/acs.est.3c02016.; Stevenson T.J., Hahn T.P, MacDougall-Shackleton S.A., Ball G.F. Gonadotropin-releasing hormone plasticity: a comparative perspective. Front Neuroendocrinol. 2012;33(3):287–300. https://doi.org/10.1016/j.yfrne.2012.09.001.; Gheorghiu M.L. Actualities in mutations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) receptors. Acta Endocrinol (Buchar). 2019;5(1):139–42. https://doi.org/10.4183/aeb.2019.139.; Menon K.M., Menon B. Structure, function and regulation of gonadotropin receptors - a perspective. Mol Cell Endocrinol. 2012;356(1–2):88–97. https://doi.org/10.1016/j.mce.2012.01.021.; Rogers R.E., Fowler K.A., Pask A.J., Mattiske D.M. Prenatal exposure to diethylstilbestrol has multigenerational effects on folliculogenesis. Sci Rep. 2024;14(1):30819. https://doi.org/10.1038/s41598-024-81093-8.; Park M.A., Choi K.C. Effects of 4-nonylphenol and bisphenol A on stimulation of cell growth via disruption of the transforming growth factor-β signaling pathway in ovarian cancer models. Chem Res Toxicol. 2014;27(1):119–28. https://doi.org/10.1021/tx400365z.; Bhai M.K.P., Binesh A., Shanmugam S.A., Venkatachalam K. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos. J Biochem Mol Toxicol. 2024;38(1):e23589. https://doi.org/10.1002/jbt.23589.; Hannon P.R., Akin J.W., Curry T.E. Exposure to a phthalate mixture disrupts ovulatory progesterone receptor signaling in human granulosa cells in vitro†. Biol Reprod. 2023;109(4):552–65. https://doi.org/10.1093/biolre/ioad091.; D'Arcy M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92. https://doi.org/10.1002/cbin.11137.; Gogola J., Hoffmann M., Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate IGF1 secretion by adult ovarian granulosa cell tumor spheroids and thereby increase proliferation of non-cancer ovarian granulosa cells. Toxicol In Vitro. 2020;65:104769. https://doi.org/10.1016/j.tiv.2020.104769.; Kourmaeva E., Sabry R., Favetta L.A. Bisphenols A and F, but not S, induce apoptosis in bovine granulosa cells via the intrinsic mitochondrial pathway. Front Endocrinol (Lausanne). 2022;13:1028438. https://doi.org/10.3389/fendo.2022.1028438.; Wu C., Du X., Liu H. et al. Advances in polychlorinated biphenyls-induced female reproductive toxicity. Sci Total Environ. 2024;918:170543. https://doi.org/10.1016/j.scitotenv.2024.170543.; Sun J., Gan L., Lv S. et al. Exposure to Di-(2-Ethylhexyl) phthalate drives ovarian dysfunction by inducing granulosa cell pyroptosis via the SLC39A5/NF-κB/NLRP3 axis. Ecotoxicol Environ Saf. 2023;252:114625. https://doi.org/10.1016/j.ecoenv.2023.114625.; Xu X., Pan Y., Zhan L. et al. The Wnt/β-catenin pathway is involved in 2,5-hexanedione-induced ovarian granulosa cell cycle arrest. Ecotoxicol Environ Saf. 2023;268:115720. https://doi.org/10.1016/j.ecoenv.2023.115720.; Land K.L., Miller F.G., Fugate A.C., Hannon P.R. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev. 2022;89(12):608–31. https://doi.org/10.1002/mrd.23652.; Yu Y.S., Sui H.S., Han Z.B. et al. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14(4):341–6. https://doi.org/10.1038/sj.cr.7290234.; Zhang H., Nagaoka K., Usuda K. et al. Estrogenic compounds impair primordial follicle formation by inhibiting the expression of proapoptotic Hrk in neonatal rat ovary. Biol Reprod. 2016;95(4):78. https://doi.org/10.1095/biolreprod.116.141309.; Zhang R., Wang X.X., Xie J.F. et al. Cypermethrin induces Sertoli cell apoptosis through endoplasmic reticulum-mitochondrial coupling involving IP3R1-GRP75-VDAC1. Reprod Toxicol. 2024;124:108552. https://doi.org/10.1016/j.reprotox.2024.108552.; Zhu M.R., Wang H.R., Han F.X. et al. Polyethylene microplastics cause apoptosis via the MiR-132/CAPN axis and inflammation in carp ovarian. Aquat Toxicol. 2023;265:106780. https://doi.org/10.1016/j.aquatox.2023.106780.; Chen Y., Hong T., Wang S. et al. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev. 2017;46(10):2844–72. https://doi.org/10.1039/c6cs00599c.; Dura M., Teissandier A., Armand M. et al. DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet. 2022;54(4):469–80. https://doi.org/10.1038/s41588-022-01040-z.; Paksa A., Rajagopal J. The epigenetic basis of cellular plasticity. Curr Opin Cell Biol. 2017;49:116–22. https://doi.org/10.1016/j.ceb.2018.01.003.; Ashapkin V., Suvorov A., Pilsner J.R. et al. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update. 2023;29(1):24–44. https://doi.org/10.1093/humupd/dmac033.; Zhu Z., Cao F., Li X. Epigenetic programming and fetal metabolic programming. Front Endocrinol (Lausanne). 2019;10:764. https://doi.org/10.3389/fendo.2019.00764.; Tao Y.R., Zhang Y.T., Han X.Y. et al. Intrauterine exposure to 2,3',4,4',5-pentachlorobiphenyl alters spermatogenesis and testicular DNA methylation levels in F1 male mice. Ecotoxicol Environ Saf. 2021;224:112652. https://doi.org/10.1016/j.ecoenv.2021.112652.; Chen S., Zhang Z., Peng H. et al. Histone H3K36me3 mediates the genomic instability of Benzo[a]pyrene in human bronchial epithelial cells. Environ Pollut. 2024;346:123564. https://doi.org/10.1016/j.envpol.2024.123564.; Wang H., Liu B., Chen H. et al. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ. 2023;45(1):21. https://doi.org/10.1186/s41021-023-00278-1.; Yauk C.L., Polyzos A., Rowan-Carroll A. et al. Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. Environ Mol Mutagen. 2008;49(1):26–35. https://doi.org/10.1002/em.20359.; Wan T., Au D.W., Mo J. et al. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. Environ Epigenet. 2022;8(1):dvac013. https://doi.org/10.1093/eep/dvac013.; Thangavelu S.K., Mohan M., Ramachandran I., Jagadeesan A. Lactational polychlorinated biphenyls exposure induces epigenetic alterations in the Leydig cells of progeny rats. Andrologia. 2021;53(9):e14160. https://doi.org/10.1111/and.14160.; Zhang L., Chen W.Q., Han X.Y. et al. Benzo(a)pyrene exposure during pregnancy leads to germ cell apoptosis in male mice offspring via affecting histone modifications and oxidative stress levels. Sci Total Environ. 2024;952:175877. https://doi.org/10.1016/j.scitotenv.2024.175877.; Broday L., Peng W., Kuo M.H. et al. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000;60(2):238–41.; Wei Y.D., Tepperman K., Huang M.Y. et al. Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem. 2004;279(6):4110–9. https://doi.org/10.1074/jbc.M310800200.; Li F., Yang R., Lu L. et al. Comparative steroidogenic effects of hexafluoropropylene oxide trimer acid (HFPO-TA) and perfluorooctanoic acid (PFOA): regulation of histone modifications. Environ Pollut. 2024;350:124030. https://doi.org/10.1016/j.envpol.2024.124030.; Yan H., Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65(4):625–39. https://doi.org/10.1042/EBC20200032.; Nouri N., Shareghi-Oskoue O., Aghebati-Maleki L. et al. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal. 2022;20(1):198. https://doi.org/10.1186/s12964-022-00992-3.; Furlong H.C., Stämpfli M.R., Gannon A.M., Foster W.G. Identification of microRNAs as potential markers of ovarian toxicity. J Appl Toxicol. 2018;38(5):744–52. https://doi.org/10.1002/jat.3583.; Sai L., Qu B., Zhang J. et al. Analysis of long non-coding RNA involved in atrazine-induced testicular degeneration of Xenopus laevis. Environ Toxicol. 2019;34(4):505–12. https://doi.org/10.1002/tox.22704.; Sun Y., Zong C., Liu J. et al. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol. 2021;421:115536. https://doi.org/10.1016/j.taap.2021.115536.; Lv Z., Hu J., Huang M. et al. Molecular mechanisms of cadmium-induced cytotoxicity in human ovarian granulosa cells identified using integrated omics. Ecotoxicol Environ Saf. 2024;272:116026. https://doi.org/10.1016/j.ecoenv.2024.116026.; Fu H., Yang J., Xin B. et al. Accentuated Hippo pathway and elevated miR-132 and miR-195a lead to changes of uteri and ovaries in offspring mice following prenatal exposure to vinclozolin. Reprod Toxicol. 2023;116:108335. https://doi.org/10.1016/j.reprotox.2023.108335.; Mori M.P., Penjweini R., Knutson J.R. et al. Mitochondria and oxygen homeostasis. FEBS J. 2022;289(22):6959–68. https://doi.org/10.1111/febs.16115.; Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. https://doi.org/10.3390/molecules24081583.; Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3. https://doi.org/10.1016/j.redox.2015.01.002.; Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88. https://doi.org/10.1038/cdd.2014.150.; Zhong R., He H., Jin M. et al. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. Sci Total Environ. 2022;807(Pt 1):150753. https://doi.org/10.1016/j.scitotenv.2021.150753.; Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13–33. https://doi.org/10.1038/s41580-023-00645-4.; An R., Wang X., Yang L. et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449:152665. https://doi.org/10.1016/j.tox.2020.152665.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Zhang Y., Zhao W., Xu H. et al. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome. J Physiol. 2019;597(15):3927–50. https://doi.org/10.1113/JP277879.; Wang R., Song B., Wu J. et al. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018;13:8487–506. https://doi.org/10.2147/IJN.S170723.; Wang S., Luo C., Guo J. et al. Enhancing therapeutic response and overcoming resistance to checkpoint inhibitors in ovarian cancer through cell cycle regulation. Int J Mol Sci. 2024;25(18):10018. https://doi.org/10.3390/ijms251810018.; Wang Z., Zhang W., Huang D. et al. Cuproptosis is involved in decabromodiphenyl ether-induced ovarian dysfunction and the protective effect of melatonin. Environ Pollut. 2024;352:124100. https://doi.org/10.1016/j.envpol.2024.124100.; Rajaura S., Bhardwaj N., Singh A. et al. Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol. 2024;130:108724. https://doi.org/10.1016/j.reprotox.2024.108724.; Virant-Klun I., Imamovic-Kumalic S., Pinter B. From oxidative stress to male infertility: review of the associations of endocrine-disrupting chemicals (bisphenols, phthalates, and parabens) with human semen quality. Antioxidants (Basel). 2022;11(8):1617. https://doi.org/10.3390/antiox11081617.; Bjørklund G., Mkhitaryan M., Sahakyan E. et al. Linking environmental chemicals to neuroinflammation and autism spectrum disorder: mechanisms and implications for prevention. Mol Neurobiol. 2024;61(9):6328–340. https://doi.org/10.1007/s12035-024-03941-y.; Zhang Y., Meng F., Zhao T. et al. Melatonin improves mouse oocyte quality from 2-ethylhexyl diphenyl phosphate-induced toxicity by enhancing mitochondrial function. Ecotoxicol Environ Saf. 2024;280:116559. https://doi.org/10.1016/j.ecoenv.2024.116559.; Guo L., Zhao Y., Huan Y. Pterostilbene alleviates chlorpyrifos-induced damage during porcine oocyte maturation. Front Cell Dev Biol. 2021;9:803181. https://doi.org/10.3389/fcell.2021.803181.; Li Q., Zhu Q., Tian F. et al. In utero di-(2-ethylhexyl) phthalate-induced testicular dysgenesis syndrome in male newborn rats is rescued by taxifolin through reducing oxidative stress. Toxicol Appl Pharmacol. 2022;456:116262. https://doi.org/10.1016/j.taap.2022.116262.; Li Y., Xiong B,. Miao Y., Gao Q. Silibinin supplementation ameliorates the toxic effects of butyl benzyl phthalate on porcine oocytes by eliminating oxidative stress and autophagy. Environ Pollut. 2023;329:121734. https://doi.org/10.1016/j.envpol.2023.121734.; Sun P., Zhang Y., Sun L. et al. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC Womens Health. 2023;23(1):15. https://doi.org/10.1186/s12905-022-02154-6.; Li X., Yang J., Shi E. et al. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc-/GPX4 pathway and iron metabolism in testicular Leydig cells. Environ Pollut. 2024;344:123332. https://doi.org/10.1016/j.envpol.2024.123332.; Wang J.Y., Zhang F.L., Li X.X. et al. Cyanidin-3-O-glucoside mitigates the ovarian defect induced by zearalenone via p53-GADD45a signaling during primordial follicle assembly. J Agric Food Chem. 2023;71(44):16715-16726. https://doi.org/10.1021/acs.jafc.3c03315.; Zhang T., He H., Wei Y. et al. Vitamin C supplementation rescued meiotic arrest of spermatocytes in Balb/c mice exposed to BDE-209. Ecotoxicol Environ Saf. 2022;242:113846. https://doi.org/10.1016/j.ecoenv.2022.113846.; Martin L., Zhang Y., First O. et al. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. Environ Int. 2022;170:107576. https://doi.org/10.1016/j.envint.2022.107576.; Yang T.C., Jovanovic N., Chong F. et al. Interventions to reduce exposure to synthetic phenols and phthalates from dietary intake and personal care products: a scoping review. Curr Environ Health Rep. 2023;10(2):184-214. https://doi.org/10.1007/s40572-023-00394-8.; De Falco M., Favetta L.A., Meccariello R. et al. Editorial: endocrine disrupting chemicals in reproductive health, fertility, and early development. Front Endocrinol (Lausanne). 2024;15:1478655. https://doi.org/10.3389/fendo.2024.1478655.; Mohajer N., Culty M. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Impact of human-relevant doses of endocrine-disrupting chemical and drug mixtures on testis development and function. Reproduction. 2025;169(1):e240155. https://doi.org/10.1530/REP-24-0155.; Pan J., Liu P., Yu X. et al. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne). 2024;14:1324993. https://doi.org/10.3389/fendo.2023.1324993.; https://www.gynecology.su/jour/article/view/2520

  9. 9
    Academic Journal

    Πηγή: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 4 No. 6 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 206-212 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 4 № 6 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 206-212 ; 2181-3469

    Περιγραφή αρχείου: application/pdf

  10. 10
    Academic Journal

    Συνεισφορές: The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education (agreement No. 075-03-2022-107, project No. 0714-2020-0006), Работа выполнена в рамках государственного задания Министерства науки и высшего образования (соглашение № 075-03-2022-107, проект № 0714-2020-0006)

    Πηγή: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 4 (2024); 562-569 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 4 (2024); 562-569 ; 2541-8017 ; 2223-9022

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1997/1499; https://www.jnmp.ru/jour/article/view/1997/1659; Геморрагический инсульт. Клинические рекомендации. МЗ РФ, 2022. URL: https://cr.minzdrav.gov.ru/schema/523_2 [Дата обращения 20 декабря 2023 г.]; Крылов В.В., Дашьян В.Г., Шетова И.М., Кордонский А.Ю., Гринь А. А., Парфенов В.Е. и др. Нейрохирургическая помощь больным с сосудистыми заболеваниями головного мозга в Российской Федерации. Нейрохирургия. 2017;(4):11–20.; Крылов В.В., Дашьян В.Г. (ред.) Хирургия аневризм головного мозга при массивном субарахноидальном кровоизлиянии. Москва: АБВПресс; 2021.; Campbell BCV, Khatri P. Stroke. The Lancet. 2020;396(10244):129–142. PMID: 32653056 https://doi.org/10.1016/S0140-6736(20)31179-X; Hua W, Chen X, Wang J, Zang W, Jiang C, Ren H, et al. Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. Brain Hemorrhages. 2020;1(2):99–104. https://doi.org/10.1016/j.hest.2020.02.002; Сhen Y, Chen S, Chang J, Wei J, Feng M, Wang R. Perihematomal edema after intracerebral hemorrhage: an update on pathogenesis, risk factors, and therapeutic advances. Frontiers Immunol. 2021;12:740632. https://doi.org/10.3389/fimmu.2021.740632; Jiang C, Guo H, Zhang Z, Wang Y, Liu S, Lai J, et al. Molecular, pathological, clinical, and therapeutic aspects of perihematomal edema in different stages of intracerebral hemorrhage. Oxid Med Cell Longev. 2022:3948921. PMID: 36164392 https://doi.org/10.1155/2022/3948921; Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review. J Am Heart Assoc. 2021;10(15):e021845. PMID: 34325514 https://doi.org/10.1161/JAHA.121.021845; Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105(1):23–56. PMID: 15626454 https://doi.org/10.1016/j.pharmthera.2004.10.002; Sehba FA, Bederson JB. Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt 1):99–103. PMID: 21116923 https://doi.org/10.1007/978-3-7091-0353-1_18; Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов в сыворотке крови по тесту с тиобарбитуровой кислотой. Вопросы медицинской химии. 1987;33(1):118–122. PMID: 2437702; Голиков П.П., Николаева Н.Ю. Метод определения нитрита/нитрата (NOx) в сыворотке крови. Биомедицинская химия. 2004;50(1):79–85. PMID: 15108630; Leclerc JL, Garcia JM, Diller MA, Carpenter A-M, Kamat PK, Hoh BL, et al. A comparison of pathophysiology in humans and rodent models of subarachnoid hemorrhage. Front Mol Neurosci. 2018:11:71. PMID: 29623028 https://doi.org/10.3389/fnmol.2018.00071; Hayman EG, Patel AP, James RF, Simard JM. Heparin and heparinderivatives in post-subarachnoid hemorrhage brain injury: a multimodal therapy for a multimodal disease. Molecules. 2017;22(5):724. PMID: 28468328 https://doi.org/10.3390/molecules22050724; Loftspring MC. Iron and early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2010;30(11):1791–1792. PMID: 20736954 https://doi.org/10.1038/jcbfm.2010.139; Cavalli I, Stella C, Stoll T, Mascia L, Salvagno M, Coppalini G, et al. Serum LDH levels may predict poor neurological outcome after aneurysmal subarachnoid hemorrhage. BMC Neurol. 2023;23(1):228. PMID: 37312033 https://doi.org/10.1186/s12883-023-03282-8; Zheng S, Wang H, Chen G, Shangguan H, Yu L, Lin Z, et al. Higher serum levels of lactate dehydrogenase before microsurgery predict poor outcome of aneurysmal subarachnoid hemorrhage. Front Neurol. 2021:12:720574. PMID: 34456854 https://doi.org/10.3389/fneur.2021.720574; Zan X, Deng H, Zhang Y, Wang P, Chong W, Hai Y, et al. Lactate dehydrogenase predicting mortality in patients with aneurysmal subarachnoid hemorrhage. Ann Clin Transl Neurol. 2022;9(10):1565– 1573. PMID: 35984334 https://doi.org/10.1002/acn3.51650; https://www.jnmp.ru/jour/article/view/1997

  11. 11
    Academic Journal

    Συνεισφορές: This research was performed under the state assignment of Moscow State University, project numbers 119121690043-3, 1243020800089-2, 121042600047-9., Работа выполнена в рамках госзадания МГУ на госбюджетной основе (научные проекты №/№ 119121690043-3, 1243020800089-2,121042600047-9).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 4 (2024); 269-279 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 4 (2024); 269-279 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1434/699; Huang W.J., Chen W.W., Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017;13(6):3163–3166.; Hauser S.L., Cree B.A.C. Treatment of multiple sclerosis: A review. Am. J. Med. 2020;133(12):1380-1390.e2.; Macaron G., Larochelle C., Arbour N., Galmard M., Girard J.M., Prat A., Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front. Neurol. 2023;14:1197212.; Ostolaza A., Corroza J., Ayuso T. Multiple sclerosis and aging: comorbidity and treatment challenges. Mult. Scler. Relat. Disord. 2021;50:102815.; Zhang Y., Atkinson J., Burd C.E., Graves J., Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023;29(14):1701–1708.; Zeydan B., Kantarci O.H. Impact of age on multiple sclerosis disease activity and progression. Curr. Neurol. Neurosci. Rep. 2020;20(7):24.; Fetisova E., Vorobjeva N., Muntyan M. Multiple sclerosis. Some features of pathology and prospects for therapy. Part 1. Adv. Gerontol. 2024;14(2):35–48.; Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.; De Bondt M., Hellings N., Opdenakker G., Struyf S. Neutrophils: underestimated players in the pathogenesis of multiple sclerosis (MS). Int. J. Mol. Sci. 2020;21(12):4558.; Dhaiban S., Al-Ani M., Elemam N.M., AlAawad M.H., Al-Rawi Z., Maghazachi A.A. Role of peripheral immune cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Science. 2021;3(1):12.; Grebenciucova E., Pruitt A. Infections in patients receiving multiple sclerosis disease-modifying therapies. Curr. Neurol. Neurosci. Rep. 2017;17(11):88.; Fetisova E., Chernyak B., Korshunova G., Muntyan M., Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017;24(19):2086–2114.; Fetisova E.K., Muntyan M.S., Lyamzaev K.G., Chernyak B.V. Therapeutic effect of the mitochondriatargeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell. Longev. 2019;2019:2082561.; Fock E.M., Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 2021;13(2):144.; Jiang Q., Yin J., Chen J., Ma X., Wu M., Liu G., Yao K., Tan B., Yin Y. Mitochondria-targeted antioxidants: a step towards disease treatment. Oxid. Med. Cell. Longev. 2020;2020:8837893.; Liberman E.A., Topaly V.P., Tsofina L.M., Jasaitis A.A., Skulachev V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222(5198):1076–1078.; Korshunova G.A., Shishkina A.V., Skulachev M.V. Design, synthesis, and some aspects of the biological activity of mitochondria-targeted antioxidants. Biochemistry (Mosc.). 2017;82(7):760–777.; Fields M., Marcuzzi A., Gonelli A., Celeghini C., Maximova N., Rimondi E. Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: perspectives and limitations. Int. J. Mol. Sci. 2023;24(4):3739.; Skulachev V.P., Antonenko Y.N., Cherepanov D.A., et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim. Biophys. Acta BBA-Bioenergetics. 2010;1797(6–7):878–89.; Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008;73(12):1273–1287.; Murphy M.P., Smith R.A.J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007;47(1):629–656.; Открытое исследование I фазы по изучению фармакокинетики, безопасности и переносимости препарата Пластомитин® при однократном приеме возрастающих доз у здоровых добровольцев. (Ответственный исследователь Щукин И.А.) [Электронный ресурс]. Государственный реестр лекарственных средств. 2016. Дата обновления: 15.12.2024. URL: https://grlsbase.ru/clinicaltrails/clintrail/3570 (дата обращения: 15.12.2024).; Fassas A., Anagnostopoulos A., Kazis A., Kapinas K., Sakellari I., Kimiskidis V., Tsompanakou A. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transpl. 1997;20(8):631–638.; Iacobaeus E., Kadri N., Lefsihane K., Boberg E., Gavin C., Törnqvist Andrén A., Lilja A., Brundin L., Blanc K.L. Short and long term clinical and immunologic follow up after bone marrow mesenchymal stromal cell therapy in progressive multiple sclerosis – a phase I study. J. Clin. Med. 2019;8(12):2102.; Федулов А.С., Борисов А.В., Зафранская М.М., Кривенко С.И., Марченко Л.Н., Качан Т.В., Московских Ю.В., Нижегородова Д.Б. Сравнительная оценка эффективности однократного и курсового применения аутологичной трансплантации мезенхимальных стволовых клеток в терапии рассеянного склероза. РМЖ. Медицинское обозрение. 2019;3(4-2):54–58.; Bisaga G.N., Topuzova M.P., Malko V.A., Motorin D.V., Alekseeva Yu.A., Badaev R.S., Krinitsina T.V., Alekseeva T.M. High-dose chemotherapy with autologous hematopoietic stem cell transplantation in multiple sclerosis: intermediate results of 3 years research. Russ. Neurol. J. 2022;27(6):22–31.; Pluchino S., Quattrini A., Brambilla E., Gritti A., Salani G., Dina G., Galli R., Del Carro U., Amadio S., Bergami A., Furlan R., Comi G., Vescovi A.L., Martino G. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422(6933):688–694.; Genchi A., Brambilla E., Sangalli F., et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study. Nat. Med. 2023;29(1):75–85.; Uccelli A., Laroni A., Ali R., et al. Safety, tolerability, and activity of mesenchymal stem cells versus placebo in multiple sclerosis (MESEMS): a phase 2, randomised, double-blind crossover trial. Lancet Neurol. 2021;20(11):917–929.; Сороковикова Т.В., Морозов А.М., Крюкова А.Н., Наумова С.А., Беляк М.А. Перспективы лечения прогрессирующих форм рассеяного склероза трасплантацией стволовых клеток (обзор литературы). Вестник медицинского института «Реавиз». Реабилитация, врач и здоровье. 2023;13(4):154–161.; Cecerska-Heryć E., Pękała M., Serwin N., Gliźniewicz M., Grygorcewicz B., Michalczyk A., Heryć R., Budkowska M., Dołęgowska B. The use of stem cells as a potential treatment method for selected neurodegenerative diseases: review. Cell Mol. Neurobiol. 2023;43(6):2643–2673.; Xie C., Liu Y.Q., Guan Y.T., Zhang G.X. Induced stem cells as a novel multiple sclerosis therapy. Curr. Stem Cell Res. Ther. 2016;11(4):313–320.; Yun W., Choi K.A., Hwang I., et al. OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen. Med. 2022;7(1):4.; Wang Y., Chang K., Liu C., Na W., Jiang Z., Xiong J. Clemastine promotes oligodendrocyte precursor cell differentiation and myelination after acute radiation injury. J. Radiat. Res. Radiat. Proces. 2023;39(5):48–55.; Caverzasi E., Papinutto N., Cordano C., Kirkish G., Gundel T.J., Zhu A., Akula A.V., Boscardin W.J., Neeb H., Henry R.G., Chan J.R., Green A.J. MWF of the corpus callosum is a robust measure of remyelination: Results from the ReBUILD trial. Proc. Nat. Acad. Sci. U.S.A. 2023;120(20):e2217635120.; Hansen C.S., Hasseldam H., Bacher I.H., Thamsborg S.M., Johansen F.F., Kringel H. Trichuris suis secrete products that reduce disease severity in a multiple sclerosis model. Acta Parasitol. 2017;62(1):22–28.; Fleming J., Hernandez G., Hartman L., Maksimovic J., Nace S., Lawler B., Risa T., Cook T., Agni R., Reichelderfer M., Luzzio C., Rolak L., Field A., Fabry Z. Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: results of the HINT 2 clinical trial. Mult. Scler. J. 2019;25(1):81–91.; Yordanova I.A., Ebner F., Schulz A.R., Steinfelder S., Rosche B., Bolze A., Paul F., Mei H.E., Hartmann S. The worm-specific immune response in multiple sclerosis patients receiving controlled Trichuris suis ova immunotherapy. Life (Basel). 2021;11(2):101.; Libbey J.E., Cusick M.F., Fujinami R.S. Role of pathogens in multiple sclerosis. Int. Rev. Immunol. 2014;33(4):266–283.; Tanasescu R., Tench C.R., Constantinescu C.S., Telford G., Singh S., Frakich N., Onion D., Auer D.P., Gran B., Evangelou N., Falah Y., Ranshaw C., Cantacessi C., Jenkins T.P., Pritchard D.I. Hookworm treatment for relapsing multiple sclerosis: a randomized double-blinded placebo-controlled trial. JAMA Neurol. 2020;77(9):1089–1098.; Jenkins T.P., Pritchard D.I., Tanasescu R., Telford G., Papaiakovou M., Scotti R., Cortés A., Constantinescu C.S., Cantacessi C. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol. 2021;19(1):74.; Wegener Parfrey L., Jirků M., Šíma R., Jalovecka M., Sak B., Grigore K., Jirků Pomajbíková K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS One. 2017;12(8):e0182205.; Calvani N.E.D., De Marco Verissimo C., Jewhurst H.L., Cwiklinski K., Flaus A., Dalton J.P. Two distinct superoxidase dismutases (SOD) secreted by the helminth parasite Fasciola hepatica play roles in defence against metabolic and host immune cell-derived reactive oxygen species (ROS) during growth and development. Antioxidants. 2022;11(10):1968.; Otero L., Bonilla M., Protasio A.V., Fernández C., Gladyshev V.N., Salinas G. Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths. BMC Genomics. 2010;11:237.; Xiang C., Zhong G., Wang H. IL-9 plays a critical role in helminth-induced protection against COVID-19- related cytokine storms. mBio. 2024;15(7):e0122924.; Cao Z., Wang J., Liu X., Liu Y., Li F., Liu M., Chiu S., Jin X. Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way. mBio. 2024;15(6):e00905-24.; Solaro C., Ponzio M., Moran E., Tanganelli P., Pizio R., Ribizzi G., Venturi S., Mancardi G.L., Battaglia M.A. The changing face of multiple sclerosis: Prevalence and incidence in an aging population. Mult. Scler. 2015;21(10):1244–1250.; Marrie R.A., Cohen J., Stuve O., Trojano M., Sørensen P.S., Reingold S., Cutter G., Reider N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 2015;21(3):263–281.; Noseworthy J., Paty D., Wonnacott T., Feasby T., Ebers G. Multiple sclerosis after age 50. Neurology 1983;33(12):1537–1537.; Minden S.L., Frankel D., Hadden L.S., Srinath K.P., Perloff J.N. Disability in elderly people with multiple sclerosis: An analysis of baseline data from the Sonya Slifka Longitudinal Multiple Sclerosis Study. NeuroRehabilitation. 2004;19(1):55–67.; Zinganell A., Göbel G., Berek K., Hofer B., Asenbaum-Nan S., Barang M., Böck K., Bsteh C., Bsteh G., Eger S., Eggers C., Fertl E., Joldic D., Khalil M., Langenscheidt D. et al. Multiple sclerosis in the elderly: a retrospective cohort study. J. Neurol. 2024;271(2):674–687.; Weideman A.M., Tapia-Maltos M.A., Johnson K., Greenwood M., Bielekova B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol. 2017;8:577.; Bjornevik K., Cortese M., Healy, B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.; Matell H., Lycke J., Svenningsson A., Holmén C., Khademi M., Hillert J., Olsson T., Piehl F. Age-dependent effects on the treatment response of natalizumab in MS patients. Mult. Scler. 2015;21(1):48–56.; Gelibter S., Saraceno L., Pirro F., Susani E.L., Protti A. As time goes by: Treatment challenges in elderly people with multiple sclerosis. J. Neuroimmunol. 2024;391:578368.; Muñoz J.S., Santiago A.D., Escudero J.C., Merino J.A.G. Case report: Primary cytomegalovirus infection in a patient with late onset multiple sclerosis treated with dimethyl fumarate. Front. Neurol. 2024;15:1363876.; Oudrer N. Multiple sclerosis in elderly patients: When we can stopped treatment? Mult. Scler. Relat. Disord. 2023;80:105181.; Skulachev V.P., Anisimov V.N., Antonenko Y.N., et al. An attempt to prevent senescence: a mitochondrial approach. Biochim. Biophys. Acta (BBA)-Bioenergetics. 2009;1787(5):437–461.; Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017;117(15):10043–10120.; Lin M.M., Liu N., Qin Z.H., Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol. Sin. 2022;43(10):2439–2447.; Sanabria-Castro A., Alape-Girón A., FloresDíaz M., Echeverri-McCandless A., Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev. Neurosci. 2024;35(3):355–371.; Sutter P.A., McKenna M.G., Imitola J., Pijewski R.S., Crocker S.J. Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Curr. Opin. Pharmacol. 2022;63:102184.; Ghosh A., Chandran K., Kalivendi S.V., Joseph J., Antholine W.E., Hillard C.J., Kanthasamy A.,Kanthasamy A., Kalyanaraman B. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s Disease model. Free Radical Biol. Med. 2010;49:1674−1684.

  12. 12
    Academic Journal

    Συνεισφορές: The research was funded by the Russian Science Foundation, project number 24-24-00125., Исследование выполнено при финансовой поддержке Российского научного фонда в рамках научного проекта № 24-24-00125.

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 4 (2024); 306-314 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 4 (2024); 306-314 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1438/703; Gong L., Zhang Y., Liu C., Zhang M., Han S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomed. 2021;16:1083–102.; Tilsed C.M., Fisher S.A., Nowak A.K., Lake R.A., Lesterhuis W.J. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front. Oncol. 2022;12:960317.; Wyld L., Audisio R.A., Poston G.J. The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol. 2015;12(2):115–124.; Macdonald I.J., Dougherty T.J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines. 2001;05(02):105–129.; Mang T. S. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodyn. 2004;1(1):43–48.; Algorri J. F., Ochoa M., Roldán-Varona P., Rodríguez-Cobo L., López-Higuera J. M. Light technology for efficient and effective photodynamic therapy: a critical review. Cancers. 2021;13(14):3484.; Dong Y., Zhou G., Chen J., Shen L., Jianxin Z., Xu Q., Zhu Y. A new LED device used for photodynamic therapy in treatment of moderate to severe acne vulgaris. Photodiagnosis Photodyn. 2016;13:188–195.; Attili S. K., Lesar A., McNeill A., CamachoLopez M., Moseley H., Ibbotson S., et al. An open pilot study of ambulatory photodynamic therapy using a wearablelow-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br. J. Dermatol. 2009;161(1):170–173.; Hatakeyama T., Murayama Y., Komatsu S., Shiozaki A., Kuriu Y., Ikoma H., Nakanishi M., Ichikawa D., Fujiwara H., Okamoto K., Ochiai T., Kokuba Y., Inoue K., Nakajima M., Otsuji E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncol. Rep. 2013;29(3):911–916.; Schmidt M.H., Bajic D.M., Reichert K.W., Martin T.S., Meyer G.A., Whelan H.T. Light-emitting diodes as a light source for intraoperative photodynamic therapy. Neurosurgery. 1996;38(3):552–557.; Szeimies R.M., Matheson R.T., Davis S.A., Bhatia A.C., Frambach Y., Klövekorn W., Fesq H., Berking C., Reifenberger J., Thaçi D. Topical methyl aminolevulinate photodynamic therapy using red light-emitting diode light for multiple actinic keratoses: a randomized study. Dermatol. Surg. 2009;35(4):586–592.; Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015;115(4):1990–2042.; Moret F., Reddi E. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). J. Porphyr. Phthalocyanines. 2017;21(04–06):239–256.; Pieslinger A., Plaetzer K., Oberdanner C.B., Berlanda J., Mair H., Krammer B., Kiesslich T. Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: a possible low-cost supplement to conventional light sources for photodynamic treatment. Med. Laser Appl. 2006;21(4):277–283.; Chen D., Zheng H., Huang Z., Lin H., Ke Z., Xie S., Li B. Light-emitting diode-based illumination system for in vitro photodynamic therapy. Int. J. Photoenergy. 2012;2012(1): 920671.; Bajgar R., Pola M., Hosik J., Turjanica P., Cengery J., Kolarova H. New planar light source for the induction and monitoring of photodynamic processes in vitro. J. Biol. Phys. 2020;46(1):121–131.; Di Veroli G. Y., Fornari C., Goldlust I., Mills G., Koh S.B., Bramhall J.L., Richards F.M., Jodrell D.I. An automated fitting procedure and software for dose-response curves with multiphasic features. Sci. Rep. 2015;5(1):14701.; Kassis S., Grondin M., Averill-Bates D.A. Heat shock increases levels of reactive oxygen species, autophagy and apoptosis. BBA-Mol. Cell. Res. 2021;1868(3):118924.; Sobotta L., Skupin-Mrugalska P., Piskorz J., Mielcarek J. Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur. J. Med. Chem. 2019;175:72–106.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.; Nowis D., Makowski M., Stokłosa T., Legat M., Issat T., Gołab J. Direct tumor damage mechanisms of photodynamic therapy. Acta. Biochim. Pol. 2005;52(2):339–352.

  13. 13
    Academic Journal

    Πηγή: Food systems; Vol 8, No 1 (2025); 73-80 ; Пищевые системы; Vol 8, No 1 (2025); 73-80 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2025-8-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/708/376; Gullo, V. P., Hughes, D. E. (2005). Exploiting new approaches for natural product drug discovery in the biotechnology industry. Drug Discovery Today: Technologies, 2(3), 281–286. https://doi.org/10.1016/j.ddtec.2005.08.002; Allaith, S. A., Abdel-aziz, M. E., Thabit, Z. A., Altemimi, A. B., Abd El-Ghany, K., Giuffrè, A. M. et al. (2022). Screening and molecular identification of lactic acid bacteria producing β-glucan in boza and cider. Fermentation, 8(8), Article 350. https://doi.org/10.3390/fermentation8080350; Thraeib, J. Z., Altemimi, A. B., Jabbar Abd Al-Manhel, A., Abedelmaksoud, T. G., El-Maksoud, A. A. A., Madankar, C. S. et al. (2022). Production and characterization of a bioemulsifier derived from microorganisms with potential application in the food industry. Life, 12(6), Article 924. https://doi.org/10.3390/life12060924; Al Bratty, M., Makeen, H. A., Alhazmi, H. A., Syame, S. M., Abdalla, A. N., Homeida, H. E. et al. (2020). Phytochemical, cytotoxic, and antimicrobial evaluation of the fruits of miswak plant, Salvadora persica L. Journal of Chemistry, 2020(1), Article 4521951. https://doi.org/10.1155/2020/4521951; Bennour, N., Mighri, H., Eljani, H., Zammouri, T., Akrout, A. (2020). Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany, 129, 181–190. https://doi.org/10.1016/j.sajb.2019.05.005; Lawal, H. O., Etatuvie, S. O., Fawehinmi, A. B. (2012). Ethnomedicinal and pharmacological properties of Morinda lucida. Journal of Natural Products, 5, 93–99.; Survase, S. A., Annapure, U. S., Singhal, R. S. (2010). The effect of medium supplementation with second carbon source and amino acids for enhanced production of cyclosporin A. Current Trends in Biotechnology and Pharmacy, 4(3), 764–773.; Behbahani, B. A., Noshad, M., Falah, F. (2019). Study of chemical structure, antimicrobial, cytotoxic and mechanism of action of Syzygium aromaticum essential oil on foodborne pathogens. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 875–883. https://doi.org/10.5219/1226; Altemimi, A.B., Al-Haliem, S.M., Alkanan, Z.T., Mohammed, M.J., Hesarinejad, M.A., Najm, M.A. et al. (2023). Exploring the phenolic profile, antibacterial, and antioxidant properties of walnut leaves (Juglans regia L.). Food Science and Nutrition, 11(11), 6845–6853. https://doi.org/10.1002/fsn3.3554; Abedelmaksoud, T. G., Hesarinejad, M. A., Shokrollahi Yancheshmeh, B. (2022). The effect of cold plasma on the enzymatic activity and quality characteristics of mango pulp. Research and Innovation in Food Science and Technology, 10(4), 341–350. https://doi.org/10.22101/JRIFST.2021.247462.1183; Labiad, M. H., Harhar, H., Ghanimi, A., Tabyaoui, M. (2017). Phytochemical screening and antioxidant activity of Moroccan Thymus satureioïdes extracts. Journal of Materials and Environmental Sciences, 8(6), 2132–2139.; Bahuguna, A., Khan, I., Bajpai, V. K., Kang, S. C. (2017). MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology, 12(2), 115–118. https://doi.org/10.3329/bjp.v12i2.30892; Behbahani, B. A., Shahidi, F., Yazdi, F. T., Mortazavi, S. A., Mohebbi, M. (2017). Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. International Journal of Biological Macromolecules, 94, 515–526. https://doi.org/10.1016/j.ijbiomac.2016.10.055; Ghribi, F., Bejaoui, S., Zupa, R., Trabelsi, W., Marengo, M., Chetoui, I. et al. (2023). New insight into the toxic effects of lithium in the ragworm Perinereis cultrifera as revealed by lipidomic biomarkers, redox status, and histopathological features. Environmental Science and Pollution Research, 30(26), 68821–68835. https://doi.org/10.1007/s11356-023-27223-7; Plaza, B., Haarich, S. N. (2015). The Guggenheim Museum Bilbao: Between regional embeddedness and global networking. European Planning Studies, 23(8), 1456–1475. https://doi.org/10.1080/09654313.2013.817543; Ibnouf, E. O., Aldawsari, M. F., Ali Waggiallah, H. (2022). Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi Journal of Biological Sciences, 9(8), Article 103352. https://doi.org/10.1016/j.sjbs.2022.103352; Principe, P. P., Fisher, W. S. (2018). Spatial distribution of collections yielding marine natural products. Journal of Natural Products, 81(10), 2307–2320. https://doi.org/10.1021/acs.jnatprod.8b00288; Iqbal, K., Iqbal, J., Staerk, D., Kongstad, K. T. (2017). Characterization of antileishmanial compounds from Lawsonia inermis L. leaves using semi-high resolution antileishmanial profiling combined with HPLC-HRMS-SPE-NMR. Frontiers in Pharmacology, 8, Article 337. https://doi.org/10.3389/fphar.2017.00337; Mehmood, T., Arshad, H., Nawaz, S., Ullah, A., Hafeez, A., Anwar, F. et al. (2020). Pharmaceutical potential and phenolics profiling of leaves and bark of Calotropis procera in relation to extraction solvents. Pharmaceutical Chemistry Journal, 54(6), 631–641. https://doi.org/10.1007/s11094-020-02250-7; Ismaili, H., Milella, L., Fkih-Tetouani, S., Ilidrissi, A., Camporese, A., Sosa, S. et al. (2004). In vivo topical anti-inflammatory and in vitro antioxidant activities of two extracts of Thymus satureioides leaves. Journal of Ethnopharmacology, 91(1), 31–36. https://doi.org/10.1016/j.jep.2003.11.013; Gholamshahi, S., Salehi Sardoei, A. (2019). Phenolic compounds and antioxidant activity of plant milkweed (Calotropis Procera). Eco-phytochemical Journal of Medicinal Plants, 7(1), 77–86.; Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20), Article 4711. https://doi.org/10.3390/molecules25204711; Ibrahim, N. I., Tadj, N. B.M.I., Sarker, Md. M.R., Mohamed, I.N. (2020). The potential mechanisms of the neuroprotective actions of oil palm phenolics: Implications for neurodegenerative diseases. Molecules, 25(21), Article 5159. https://doi.org/10.3390/molecules25215159; Al-Rowaily, S. L., Abd-ElGawad, A. M., Assaeed, A. M., Elgamal, A. M., Gendy, A. E.-N. G. E., Mohamed, T. A. et al. (2020). Essential oil of Calotropis procera: Comparative chemical profiles, antimicrobial activity, and allelopathic potential on weeds. Molecules, 25(21), Article 5203. https://doi.org/10.3390/molecules25215203; Bouyahya, A., Et-Touys, A., Abrini, J., Talbaoui, A., Fellah, H., Bakri, Y. et al. (2017). Lavandula stoechas essential oil from Morocco as novel source of antileishmanial, antibacterial and antioxidant activities. Biocatalysis and Agricultural Biotechnology, 12, 179–184. https://doi.org/10.1016/j.bcab.2017.10.003; Dhouafli, Z., Ben Jannet, H., Mahjoub, B., Leri, M., Guillard, J., Saidani Tounsi, M. et al. (2019). 1, 2, 4-trihydroxynaphthalene‑2-O‑β-D‑glucopyranoside: A new powerful antioxidant and inhibitor of Aβ42 aggregation isolated from the leaves of Lawsonia inermis. Natural Product Research, 33(10), 1406–1414. https://doi.org/10.1080/14786419.2017.1419229; Chaibi, R., Drine, S. Ferchichi, A. (2017). Chemical study and biological activities of various extracts from Lawsonia inermis (Henna) seeds. Acta Medica Mediterranea, 33, 981–986.; Hasan, K. M., Yesmin, S., Akhter, S. F., Paul, S., Sarker, S., Islam, A. et al. (2016). Hepatoprotective potentiality of various fractions of ethanolic extracts of Lawsonia inermis (henna) leaves against chemical-induced hepatitis in rats. Biochemistry and Molecular Biology, 1(2), 17–22. https://doi.org/10.11648/j.bmb.20160102.12; Philip, J. P., Madhumitha, G., Mary, S. A. (2011). Free radical scavenging and reducing power of Lawsonia inermis L. seeds. Asian Pacific Journal of Tropical Medicine, 4(6), 457–461. https://doi.org/10.1016/s1995-7645(11)60125-9; Yang, C.-S., Chen, J.-J., Huang, H.-C., Huang, G.-J., Wang, S.-Y., Chao, L.-K. et al. (2017). New flavone and eudesmane derivatives from Lawsonia inermis and their inhibitory activity against NO production. Phytochemistry Letters, 21, 123–127. https://doi.org/10.1016/j.phytol.2017.06.012; Altemimi, A. B., Alhelfi, N., Ali, A. A., Pasqualone, A., Fidan, H., Abedelmaksoud, T. G. et al. (2022). Evaluation of baseline cleanliness of food contact surfaces in Basrah Governorate restaurants using ATP‑bioluminescence to assess the effectiveness of HACCP application in Iraq. Italian Journal of Food Science, 34(3), 66–90. https://doi.org/10.15586/ijfs.v34i3.2237; Gull, I., Sohail, M., Aslam, M., Athar, M. (2013). Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria. Annals of Clinical Microbiology and Antimicrobials, 12(1), Article 36. https://doi.org/10.1186/1476-0711-12-36; Habbal, O. A., Al-Jabri, A. A., El-Hag, A. H., Al-Mahrooqi, Z. H., Al-Hashmi, N. A. (2005). In-vitro antimicrobial activity of Lawsonia inermis Linn (henna). A pilot study on the Omani henna. Saudi Medical Journal, 26(1), 69–72.; Tariq Hussain, T. Arshad, M. Khan, S. Sattar, H, Qureshi, M. S. (2011). In vitro screening of methanol plant extracts for their antibacterial activity. Pakistan Journal of Botany, 43(1), 531–538.; Rathi, P. V., Ambhore, D., Jamode, P., Katkar, P., Kamble, P. (2017). Antimicrobial activity of Henna leaves against Staphylococcus aureus and Escherichia coli. World Journal of Pharmacy and Pharmaceutical Sciences, 6(10), 981–990.; Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M. et al. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9, Article 1639. https://doi.org/10.3389/fmicb.2018.01639; Ali, K. S., Al-Hood, F. A., Obad, K., Alshakka, M. (2016). Phytochemical screening and antibacterial activity of Yemeni Henna (Lawsonia inermis) against some bacterial pathogens. Journal of Pharmaceutical and Biological Sciences, 11(2), 24–27.; Boubaya, A., Marzougui, N., Yahia, L. B., Ferchichi, A. (2011). Chemical diversity analysis of Tunisian Lawsonia inermis L. populations. African Journal of Biotechnology, 10(25), 4980–4987.; Jain, V.C., Shah, D.P., Sonani, N.G., Dhakara, S., Patel, N. M. (2010). Pharmacognostic and preliminary phytochemical investigation of L leaf. Romanian Journal of Biology — Plant Biology, 55(2), 127–133.; Shastry, S., Kiran, U. P., Aswathanarayana, B. J. (2012). Effect of acute and chronic administration of the aqueous extract of Lawsonia inermis leaves on haloperidol induced catalepsy in albino mice. Research Journal of Pharmaceutical Biological and Chemical Sciences, 3(3), 1107–1116.; Sharma, R. K., Goel, A., Bhatia, A. K. (2016). Antityphoid activity and phytochemical screening of different extracts of L. inermis plant leaves. International Journal of Current Research, 8(08), 37539–37542.; Hussain, T., Bajpai, S., Saeed, M., Moin, A., Alafnan, A., Khan, M. et al. (2018). Potentiating effect of ethnomedicinal plants against proliferation on different cancer cell lines. Current Drug Metabolism, 19(7), 584–595. https://doi.org/10.2174/1389200219666180305144841; https://www.fsjour.com/jour/article/view/708

  14. 14
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке Российского научного фонда (проект № 23-25-00420).

    Πηγή: Acta Biomedica Scientifica; Том 10, № 1 (2025); 123-135 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5222/2968; Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol. 2022; 322(3): 567-580. doi:10.1152/ajpcell.00203.2021; Ohira T, Kawano F, Goto K, Kaji H, Ohira Y. Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev. 2022; 136: 104617. doi:10.1016/j.neubiorev.2022.104617; Shenkman BS. From slow to fast: Hypogravity-induced remodeling of muscle fiber myosin phenotype. Acta Naturae. 2016; 8(4): 47-59.; Sekunov AV, Protopopov VA, Skurygin VV, Shalagina MN, Bryndina IG. Muscle plasticity under functional unloading: Effects of an acid sphingomyelinase inhibitor clomipramine. J Evol Biochem Physiol. 2021; 57(4): 925-935. doi:10.1186/s13395-018-0177-7; Petrov AM, Shalagina MN, Protopopov VA, Sergeev VG, Ovechkin SV, Ovchinina NG, et al. Changes in membrane ceramide pools in rat soleus muscle in response to short-term disuse. Int J Mol Sci. 2019; 20(19): 4860. doi:10.3390/ijms20194860; He Z, Xu Q, Newland B, Foley R, Lara-Sáez I, Curtin JF, et al. Reactive oxygen species (ROS): Utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the doubleedged sword. JMater Chem B. 2021; 9(32): 6326-6346. doi:10.3390/ijms20194860; Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015; 5(1): 194-222. doi:10.3390/biom5010194; Kuzan A. Toxicity of advanced glycation end products (Review). Biomed Rep. 2021; 14(5): 46. doi:10.3892/br.2021.1422; Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle. 2018; 9(7): 1213-1234. doi:10.1002/jcsm.12350; Egawa T, Kido K, Yokokawa T, Fujibayashi M, Goto K, Hayashi T. Involvement of receptor for advanced glycation end products in microgravity-induced skeletal muscle atrophy in mice. Acta Astronaut. 2020; 176: 332-340. doi:10.1016/j.actaastro.2020.07.002; Sorci G, Riuzzi F, Arcuri C, Giambanco I, Donato R. Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding. Mol Cell Biol. 2004; 24(11): 4880-4894. doi:10.1128/MCB.24.11.4880- 4894.2004; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta biomedica scientifica. 2024; 9(2): 228-242. doi:10.29413/ABS.2024-9.2.23; Huang Y, He M, Zeng Q, Li L, Zhang Z, Ma J, et al. A multihole cryovial eliminates freezing artifacts when muscle tissues are directly immersed in liquid nitrogen. J Vis Exp JoVE. 2017; (122): 55616. doi:10.3791/55616; Chiappalupi S, Sorci G, Vukasinovic A, Salvadori L, Sagheddu R, Coletti D, et al. Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. J Cachexia Sarcopenia Muscle. 2020; 11(4): 929-946. doi:10.1002/jcsm.12561; Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes. 2010; 59(1): 249-255. doi:10.2337/db09-0801; Ekmark M, Rana ZA, Stewart G, Hardie DG, Gundersen K. De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. J Physiol. 2007; 584(2): 637-650. doi:10.1113/jphysiol.2007.141457; Legerlotz K, Smith HK. Role of MyoD in denervated, disused, and exercised muscle. Muscle Nerve. 2008; 38(3): 1087-1100. doi:10.1002/mus.21087; Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017; 72: 19-32. doi:10.1016/j.semcdb.2017.11.011; https://www.actabiomedica.ru/jour/article/view/5222

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20