Showing 1 - 20 results of 26 for search '"НООТРОПНАЯ АКТИВНОСТЬ"', query time: 1.23s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was conducted under the government contract of the Ministry of Science and Higher Education of the Russian Federation (Project FGFG-2022-0005)., Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема FGFG-2022-0005).

    Source: Pharmacokinetics and Pharmacodynamics; № 4 (2024); 55-62 ; Фармакокинетика и Фармакодинамика; № 4 (2024); 55-62 ; 2686-8830 ; 2587-7836

    File Description: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/439/391; Gudasheva TA, Boyko SS, Akparov VKh, et al. Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolylglycine in rat brain. FEBS Lett. 1996 Aug 5;391(1-2):149-52. doi:10.1016/0014-5793(96)00722-3.; Seredenin SB, Gudasheva TA, Boiko SS, et al. Endogenous dipeptide cycloprolylglycine shows selective anxiolytic activity in animals with manifest fear reaction. Bull Exp Biol Med. 2002 Apr;133(4):360-2. doi:10.1023/a:1016293904149.; Garibova TL, Gudasheva TA, Seredenin SB. A New Component in the Mechanism of Regulation of Endogenous Depressive-Like States. Dokl Biochem Biophys. 2019 Sep;488(1):324-326. doi:10.1134/S1607672919050107.; Колясникова К.Н., Гудашева Т.А., Назарова Г.А. и др. Сходство цикло-пролилглицина с пирацетамом по антигипоксическому и нейро-протекторному эффектам. Экспериментальная и клиническая фармакология. 2012;75(9):3-6.; Gudasheva TA, Grigoriev VV, Koliasnikova KN, et al. Neuropeptide cycloprolylglycine is an endogenous positive modulator of AMPA receptors. Dokl Biochem Biophys. 2016 Nov;471(1):387-389. doi:10.1134/S160767291606003X.; Gudasheva TA, Koliasnikova KN, Antipova TA, Seredenin SB. Neuropeptide cycloprolylglycine increases the levels of brain-derived neurotrophic factor in neuronal cells. Dokl Biochem Biophys. 2016;469(1):273-6. doi:10.1134/S1607672916040104.; Akparov VKh, Timofeev VB, Koliasnikova KN. The neuropeptide cycloprolylglycine can form a complex with AMPA receptors. Mendeleev Communications. 2022;32(4):436-438. doi:10.1016/j.mencom.2022.07.003.; Гудашева Т.А., Колясникова К.Н., Аляева А.Г. и др. Нейропротекторный эффект нейропептида циклопролилглицина зависит от активации AMPA- и TRK-рецепторов. Доклады российской академии наук. Науки о жизни. 2022;507(1):483-487.; Gudasheva TA, Povarnina PYu, Koliasnikova KN, et al. The anxiolytic effect of the neuropeptide cycloprolylglycine is mediated by AMPA and TrkB receptors. Dokl Biochem Biophys. 2020;493(1):190-192. doi:10.1134/S1607672920040067. (In Russ.). doi:10.31857/S2686738920040113.; Колясникова К.Н., Григоркевич О.С., Аляева А.Г., Гудашева Т.А. Изучение вовлеченности TrkB-рецепторов в антигипоксическое действие нейропептида цикло-пролилглицина. Вопросы биологической, медицинской и фармацевтической химии. 2022;25(1):39-42.; Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci. 2019 Sep 15;233:116695. doi:10.1016/j.lfs.2019.116695.; Воронцова О.Н., Аляева А.Г., Колясникова К.Ю., и др. Нейропептид цикло-L-пролилглицин противодействует скополамин-индуцированному нарушению долговременной памяти у крыс в тесте «Распознавание нового объекта». Фармакокинетика и Фармакодинамика. 2023;(3):50-55.; Колясникова К.Н., Голубятникова А.К., Ребеко А.Г., и др. Синтез цикло-L-пролилглицина и изучение его антипаркинсонической активности. Фармакокинетика и Фармакодинамика. 2019;(3):19-26.; Auld DS, Mennicken F, Day JC, Quirion R. Neurotrophins differentially enhance acetylcholine release, acetylcholine content and choline acetyltransferase activity in basal forebrain neurons. J Neurochem. 2001 Apr;77(1):253-62. doi:10.1046/j.1471-4159.2001.t01-1-00234.x.; Kim SK, Kwon DA, Kim YS, et al. Standardized Extract (HemoHIM) Protects against Scopolamine-Induced Amnesia in a Murine Model. Evid Based Complement Alternat Med. 2021 Mar 17;2021:8884243. doi:10.1155/2021/8884243.; Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988 Nov 1;31(1):47-59. doi:10.1016/0166-4328(88)90157-x.; Ennaceur A. Chapter 1 - Object Novelty Recognition Memor. Handbook of Behavioral Neuroscience. 2018:27;1-22. doi:10.1016/b978-0-12-812012-5.00001-x.; Vogel-Ciernia A, Wood MA. Examining object location and object recognition memory in mice. Curr Protoc Neurosci. 2014 Oct 8;69:8.31.1-17. doi:10.1002/0471142301.ns0831s69.; Ozawa T, Yamada K, Ichitani Y. d-Cycloserine reverses scopolamineinduced object and place memory deficits in a spontaneous recognition paradigm in rats. Pharmacol Biochem Behav. 2019 Dec;187:172798. doi:10.1016/j.pbb.2019.172798.; Knüsel B, Hefti F. K-252b is a selective and nontoxic inhibitor of nerve growth factor action on cultured brain neurons. J Neurochem. 1991 Sep;57(3): 955-62. doi:10.1111/j.1471-4159.1991.tb08243.x.; Knüsel B, Hefti F. K-252 compounds: modulators of neurotrophin signal transduction. J Neurochem. 1992 Dec;59(6):1987-96. doi:10.1111/j.1471-4159.1992.tb10085.x.; Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012 May;13(2):93-110. doi:10.1007/s10339-011-0430-z.; https://www.pharmacokinetica.ru/jour/article/view/439

  2. 2
  3. 3
    Academic Journal

    Source: Pharmacokinetics and Pharmacodynamics; № 3 (2023); 50-55 ; Фармакокинетика и Фармакодинамика; № 3 (2023); 50-55 ; 2686-8830 ; 2587-7836

    File Description: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/381/344; Гудашева Т.А., Островская Р.У., Максимова Ф.В. и др. Топологические аналоги пирацетама на основе пролина и их ноотропная активность. Химико-фармацевтический журнал. 1989;23(3):276–281.; Gudasheva TA, Boyko SS, Akparov VKh, et al. Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolylglycine in rat brain. FEBS Letters. 1996;391:149–152. DOI:10.1016/0014-5793(96)00722-3.; Kang D, Waldvogel HJ, Wang A, et al. The autocrine regulation of insulin-like growth factor-1 in human brain of Alzheimer's disease. Psychoneuroendocrinology. 2021;127:105191. DOI:10.1016/j.psyneuen.2021.105191.; Островская Р.У., Мирзоев Т.Х., Романова Г.А. и др. Пролин содержащий дипептид ГВС-111 сохраняет ноотропную активность при пероральном введении. Бюллетень экспериментальной биологии и медицины. 2001;132(10):404–408. DOI:10.1023/a:1013663126973.; Гудашева Т.А., Константинопольский М.А., Островская Р.У., Середенин С.Б. Анксиолитическая активность эндогенного ноотропа цикло-пролилглицина в тесте приподнятого крестообразного лабиринта стереоселективна. Бюллетень экспериментальной биологии и медицины. 2001;131(5):547–550. DOI:10.1023/a:1017928116025.; Povarnina PY, Kolyasnikova KN, Nikolaev SV, et al. Neuropeptide cycloprolylglycine exhibits neuroprotective activity after systemic administration to rats with modeled incomplete global ischemia and in in vitro modeled glutamate eurotoxicity. Bull Exp Biol Med. 2016 Mar;160(5):653–655. DOI:10.1007/s10517-016-3241-5.; Колясникова К.Н., Гудашева Т.А., Назарова Г.А. и др. Сходство цикло-пролилглицина с пирацетамом по антигипоксическому и нейропротекторному эффектам. Экспериментальная и клиническая фармакология. 2012;75(9):3–6.; Sambeth A, Riedel WJ, Smits LT, Blokland A. Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol. 2007;572(2–3):151–159. DOI:10.1016/j.ejphar.2007.06.018.; Zhang R, Lao K, Lu B, et al. (m)RVD-hemopressin (α) and (m)VD-hemopressin (m) improve the memory-impairing effect of scopolamine in novel object and object location recognition tasks in mice. Peptides. 2021;136:170442. DOI:10.1016/j.peptides.2020.170442.; Ennaceur A. One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res. 2010;215(2):244–254. DOI:10.1016/j.bbr.2009.12.036.; Волкова А.А., Поварнина П.Ю., Никифоров Д.М. и др. Сравнительное изучение мнемотропной активности димерных дипептидных миметиков отдельных петель NGF и BDNF в тесте распознавания нового объекта у крыс. Химико-фармацевтический журнал. 2022;56(4): 3–6. DOI:10.30906/0023-1134-2022-56-4-3-6.; Ozawa T, Yamada K, Ichitani Y. d-Cycloserine reverses scopolamineinduced object and place memory deficits in a spontaneous recognition paradigm in rats. Pharmacol Biochem Behav. 2019 Dec;187:172798. DOI:10.1016/j.pbb.2019.172798.; Dix SL, Aggleton JP. Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav Brain Res. 1999 Mar;99(2):191–200. DOI:10.1016/s0166-4328(98)00079-5.; Malikowska-Racia N, Podkowa A, Sałat K. Phencyclidine and scopolamine for modeling amnesia in rodents: direct comparison with the use of barnes maze test and contextual fear conditioning test in mice. Neurotox Res. 2018;34(3):431–441. DOI:10.1007/s12640-018-9901-7.; Tanimizu T, Kono K, Kida S. Brain networks activated to form object recognition memory. Brain Res Bull. 2018;141:27–34. DOI:10.1016/j.brainresbull.2017.05.017.; Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363. DOI:10.3389/fncel.2019.00363.; Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology. 2014;76 Pt C:677–683. DOI:10.1016/j.neuropharm.2013.04.024.; Гудашева Т.А., Колясникова К.Н., Антипова Т.А., Середенин С.Б. Нейропептид циклопролилглицин увеличивает содержание мозгового нейротрофического фактора в нейрональных клетках. Доклады Академии наук. 2016;4:469(1):492–495. DOI:10.7868/S0869565216220254. .; Гудашева Т.А., Колясникова К.Н., Аляева А.Г. и др. Нейропротекторный эффект нейропептида циклопролилглицина зависит от активации AMPA- и TRK-рецепторов. Доклады российской академии наук. Науки о жизни. 2022;507:483–487. DOI:10.31857/S2686738922060099.; Гудашева Т.А., Поварнина П.Ю., Колясникова К.Н. и др. Анксиолитический эффект нейропептида циклопролилглицина опосредован АМРА- и TrkB-рецепторами. Доклады российской академии наук. Науки о жизни. 2020;493(1):364–366. DOI:10.31857/S2686738920040113.; Колясникова К.Н. Григоркевич О.С., Аляева А.Г., Гудашева Т.А. Изучение вовлеченности TrkB-рецепторов в антигипоксическое действие нейропептида цикло-пролилглицина. Вопросы биологической, медицинской и фармацевтической химии. 2022:25(1); 39–42. DOI:10.29296/25877313-2022-01-06; https://www.pharmacokinetica.ru/jour/article/view/381

  4. 4
    Academic Journal

    Source: Drug development & registration; Том 11, № 1 (2022); 40-49 ; Разработка и регистрация лекарственных средств; Том 11, № 1 (2022); 40-49 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1160/944; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1160/1034; Машковский М. Д. Лекарственные средства. 15-е изд. М.: ООО «Издательство Новая Волна»; 2005. 169 c.; Вартанян Р. С. Синтез основных лекарственных средств. М.: Медицинское информационное агенство; 2004. 233 с.; Орлов В. Д., Липсон В. В., Иванов В. В. Медицинская химия. Харьков: Фолио; 2005. 193 с.; Воронков А. В., Поздняков Д. И., Мирошниченко К. А., Потапова А. А., Кодониди И. П., Аненко Д. С. Производные пиримидина – перспективные корректоры метаболических и функциональных нарушений головного мозга в условиях хронической травматической энцефалопатии. Вестник смоленской государственной медицинской академии. 2019;18(3):18–24.; Кодониди И. П., Аненко Д. С., Терехов А. Ю., Сидорская С. Ю., Григорянц Э. Г. Синтез 2,6-диалкильных производных пиримидин-4(1h)-она, обладающих противовоспалительным действием. Фармация. 2021;70(1):11–17. DOI:10.29296/25419218-2021-01-02.; Kim K., Kim D., Lee H., Lee T. H., Kim K-Y., Kim H. New Pyrimidinone-Fused 1,4-Naphthoquinone Derivatives Inhibit the Growth of Drug Resistant Oral Bacteria. Biomedicines. 2020;8(6)160. DOI:10.3390/biomedicines8060160.; Kelada M., Walsh J. M. D., Devine R. W., McArdle P., Stephens J. C. Synthesis of pyrazolopyrimidinones using a "one-pot" approach under microwave irradiation. Beilstein Journal of Organic Chemistry. 2018;14:1222–1228. DOI:10.3762/bjoc.14.104.; MacDonald J. A., Sutherland C., Carlson D. A., Bhaidani S., Al-Ghabkari A., Sward K., Haystead T. A. J., Walsh M. P. A Small Molecule Pyrazolo[3,4-d]Pyrimidinone Inhibitor of Zipper-Interacting Protein Kinase Suppresses Calcium Sensitization of Vascular Smooth Muscle. Molecular Pharmacology. 2016;89(1):105–117. DOI:10.1124/mol.115.100529.; Elsharif A. M. Synthesis of New Pyrimidinone Derivatives and Their Respective Biological Structure Assessment. Orient Journal of Chemistry. 2019;35(2):658–667. DOI:10.13005/ojc/350221.; Bederson J. B., Pitts L. H., Tsuji M., Nishimura M. C., Davis R. L., Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17:472–476.; Cohen P. A., Zakharevich I., Gerona R. Presence of Piracetam in Cognitive Enhancement Dietary Supplements. JAMA Internal Medicine. 2019;180(3):458–459. DOI:10.1001/jamainternmed.2019.5507.; Keil U., Scherping I., Hauptmann S., Schuessel K., Eckert A., Müller W. E. Piracetam improves mitochondrial dysfunction following oxidative stress. British Journal of Pharmacology. 2005;147(2):199–208. DOI:10.1038/sj.bjp.0706459.; Миронов А. Н., ред. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К; 2012. 944 с.; Fleming S. M, Ekhator O. R., Ghisays V. Assessment of Sensorimotor Function in Mouse Models of Parkinson’s Disease. Journal of Visualized Experiments. 2013;76:50303. DOI:10.3791/50303.; Плотникова Е. Ю., Грачева Т. Ю., Синьков М. А., Сухих А. С. Анализ ошибок при проведении сравнительных исследований клинической и экономической эффективности на примере дженериков урсодезоксихолевой кислоты. РМЖ. 2019;27(5):3–7.; Hayashi M., Bachman S., Hashimoto S., Eichman C. C., Stoltz B. M. Ni-Catalysed Enantioselective C-Acylation of α-substituted Lactams. Journal of the American Chemical Society. 2016;138(29):8997–9000. DOI:10.1021/jacs.6b02120.; Moradian M., Amini A., Naeimi H. Zncl2@MWCNTs nanocomposite as an efficient and reusable catalyst for direct regioselective ortho C-acylation of phenolic compounds under solvent-free and microwave conditions. Green Chemistry Letters and Reviews. 2017;10(4):228–234. DOI:10.1080/17518253.2017.1349194.; Lee J., Hong M., Jung Y., Cho E., Rhee H. Synthesis of 1,3,5-trisubstituted-1,2,4-triazoles by microwave-assisted N-acylation of amide derivatives and the consecutive reaction with hydrazine hydrochlorides. Tetrahedron. 2012;68(8):2045–2051.; Li W., Zheng Y., Qu E., Bai J. β-Keto Amides: A Jack-of-All-Trades Building Block in Organic Chemistry. European Journal of Organic Chemistry. 2021;37:5151–5192. DOI:10.1002/ejoc.202100692.; Оспанов М. А., Турмуханова М. Ж., Мурзагулова К. Б., Абилов Ж. А. Стереохимические особенности непредельных аминодиэфиров – полупродуктов в синтезе рихлокаина. Вестник КазНУ. Серия химическая. 2014;3(75):361–368. DOI:10.15328/chemb_2014_361-68.; Терней А. Л. Современная органическая химия. Пер. с англ. В 2 томах. 2 том. М.: Мир; 1981. C. 559–561.; Пакальнис В. В., Зерова И. В., Якимович С. И. Взаимодействие ароил- и гетероароилтрифторацетонов с ацилгидразинами: регионаправленность и таутомерия продуктов конденсации. ЖОХ. 2007;77:1665–1676.; Мещерякова С. А. Синтез, свойства, структура и биологическая активность новых S и N-производных пиримидина. Дис. . докт. фарм. наук. Уфа; 2015. 205 с. Доступно по: https://www.dissercat.com/content/sintez-svoistva-struktura-i-biologicheskaya-aktivnost-novykh-s-i-n-proizvodnykh-pirimidina. Ссылка активна на 29.12.2021.; https://www.pharmjournal.ru/jour/article/view/1160

  5. 5
    Academic Journal

    Contributors: The study was carried out within the framework of the institutional research project N АААА-А19-119031290052-1 (Vascular plants of Eurasia: systematic, flora, plant resources) of the Komarov Botanical Institute of the Russian Academy of Sciences., Работа выполнена по плановой теме Ботанического института им. В. Л. Комарова РАН ААА-А19-119031290052-1 «Сосудистые растения Евразии: систематика, флора, растительные ресурсы».

    Source: Pharmacy & Pharmacology; Том 9, № 1 (2021); 17-31 ; Фармация и фармакология; Том 9, № 1 (2021); 17-31 ; 2413-2241 ; 2307-9266 ; 10.19163/2307-9266-2021-9-1

    File Description: application/pdf

    Relation: https://www.pharmpharm.ru/jour/article/view/793/686; https://www.pharmpharm.ru/jour/article/view/793/702; Istikoglou C.I., Mavreas V., Geroulanos G. History and therapeutic properties of Hypericum perforatum from antiquity until today // Psychiatriki. - 2010. - Vol. 21, No.4. - P. 332–338.; Klemow K.M., Bartlow A., Crawford J., Kocher N., Shah J., Ritsick M. Medical Attributes of St. John’s Wort (Hypericum perforatum). In: Benzie IFF, Wachtel-Galor S, editors // Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; - 2011. - Chapter 11.; Russo E., Scicchitano F., Whalley B.J., Mazzitello C., Ciriaco M., Esposito S., Patanè M., Upton R., Pugliese M., Chimirri S., Mammì M., Palleria C., De Sarro G. Hypericum perforatum: pharmacokinetic, mechanism of action, tolerability, and clinical drug-drug interactions // Phytother Res. - 2014. - Vol. 28, No.5. - P. 643–655. DOI:10.1002/ptr.5050.; Wölfle U., Seelinger G., Schempp C.M. Topical application of St. John’s wort (Hypericum perforatum) // Planta Med. - 2014. - Vol. 80, No.2–3. - P. 109–120. DOI:10.1055/s-0033-1351019.; Marrelli M., Statti G., Conforti F. Hypericum spp.: An update on the biological activities and metabolic profiles // Mini Rev. Med. Chem. - 2020. - Vol. 20, No.1. - P. 66–87. DOI:10.2174/1389557519666190926120211.; Nahrstedt A., Butterweck V. Lessons learned from herbal medicinal products: the example of St. John’s wort // J. Nat. Prod. - 2010. - Vol. 73, No.5. - P. 1015–1021. DOI:10.1021/np1000329.; Jakobs D., Hage-Hülsmann A., Prenner L., Kolb C., Weiser D., Häberlein H. Downregulation of β1-adrenergic receptors in rat C6 glioblastoma cells by hyperforin and hyperoside from St John’s wort // J. Pharm. Pharmacol. - 2013. - Vol. 65, No.6. - P. 907–915. DOI:10.1111/jphp.12050.; Tian J., Zhang F., Cheng J., Guo S., Liu P., Wang H. Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L. // Sci Rep. – 2014. – No.4. – P.5632. DOI:10.1038/srep05632.; Friedland K., Harteneck C. Hyperforin: To be or not to be an activator of TRPC(6) // Rev. Physiol. Biochem. Pharmacol. - 2015. - Vol. 169. - P. 1–24. DOI:10.1007/112_2015_25.; Oliveira A.I., Pinho C., Sarmento B., Dias A.C. Neuroprotective Activity of Hypericum perforatum and Its Major Components // Front Plant Sci. – 2016. – No.7. – P.1004. DOI:10.3389/fpls.2016.01004.; Schmidt M., Butterweck V. The mechanisms of action of St. John’s wort: an update // Wiener Medizinische Wochenschrift. - 2015. - Vol. 165, No.11–12. - P. 229–235. DOI:10.1007/s10354-015-0372-7.; Zhai X., Chen F., Chen C., Zhu C., Lu Y. LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model // J. Ethnopharmacol. - 2015. - Vol. 169. - P. 363–369. DOI:10.1016/j.jep.2015.04.053.; Pochwat B., Szewczyk B., Kotarska K., Rafało-Ulińska A., Siwiec M., Sowa J.E., Tokarski K., Siwek A., Bouron A., Friedland K., Nowak G. Hyperforin potentiates antidepressant-like activity of lanicemine in mice // Front. Mol. Neurosci. - 2018. - Vol. 11. – P.456. DOI:10.3389/fnmol.2018.00456.; Bukhari I.A., Dar A. Behavioral profile of Hypericum perforatum (St. John’s Wort) extract. A comparison with standard antidepressants in animal models of depression // Eur. Rev. Med. Pharmacol. Sci. - 2013. - Vol. 17, No.8. - P. 1082–1089. DOI:10.1111/bpa.12069.; Apaydin E.A., Maher A.R., Shanman R., Booth M.S., Miles J.N.V., Sorbero M.E., Hempel S. A systematic review of St. John’s wort for major depressive disorder // Syst. Rev. - 2016. - Vol. 5, No.1. – P.148. DOI:10.1186/s13643-016-0325-2.; Ng Q.X., Venkatanarayanan N., Ho C.Y.X. Clinical use of Hypericum perforatum (St John’s wort) in depression: a meta-analysis // J. Affect. Disord. 2017. Vol. 210. P. 211–221. DOI:10.1016/j.jad.2016.12.048.; Sarris J. St. John’s wort for the treatment of psychiatric disorders // Psychiatr. Clin. - 2013. - Vol. 36, No.1. - P. 65–72. DOI:10.1016/j.psc.2013.01.004.; Zirak N., Shafiee M., Soltani G., Mirzaei M., Sahebkar A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action // J. Cell. Physiol. - 2019. - Vol. 234, No.6). - P. 8496–8508. DOI:10.1002/jcp.27781.; Bitran S., Farabaugh A.H., Ameral V.E., LaRocca R.A., Clain A.J., Fava M., Mischoulon D. Do early changes in the HAM-D-17 anxiety/somatization factor items affect treatment outcome among depressed outpatients? Comparison of two controlled trials of St John’s Wort (Hypericum perforatum) versus an SSRI // Int. Clin. Psychopharmacol. - 2011. - Vol. 26, No.4. - P. 206–212. DOI:10.1097/YIC.0b013e328343ba08.; Kasper S., Caraci F., Forti B., Drago F., Aguglia E. Efficacy and tolerability of Hypericum extract for the treatment of mild to moderate depression // Eur. Neuropsychopharmacol. - 2010. - Vol. 20, No.11. - P. 747–765. DOI:10.1016/j.euroneuro.2010.07.005.; Gastpar M. Hypericum extract WS® 5570 for depression — An overview // Int. J. Psychiatry Clin. Pract. - 2013. - Vol. 17. - Suppl 1. - P. 1–7. DOI:10.3109/13651501.2013.813554.; Cipriani A., Purgato M., Furukawa T.A., Trespidi C., Imperadore G., Signoretti A., Churchill R., Watanabe N., Barbui C. Citalopram versus other antidepressive agents for depression // Cochrane Database Syst. Rev. - 2012. - Vol. 7. - CD006534. DOI:10.1002/14651858.CD006534.pub2.; Seifritz E., Hatzinger M., Holsboer-Trachsler E. Efficacy of Hypericum extract WS® 5570 compared with paroxetine in patients with a moderate major depressive episode — a subgroup analysis // Int. J. Psychiatry Clin Pract. - 2016. - Vol. 20, No.3. - P. 126–132. DOI:10.1080/13651501.2016.1179765.; Pierro F. di, Risso P., Settembre R. Role in depression of a multi-fractionated versus a conventional Hypericum perforatum extract // Panminerva Medica. - 2018. - Vol. 60, No.4. - P. 156–160. DOI:10.23736/S0031-0808.18.03518-8.; Grobler A.C., Matthews G., Molenberghs G. The impact of missing data on clinical trials: a re-analysis of a placebo controlled trial of Hypericum perforatum (St Johns wort) and sertraline in major depressive disorder // Psychopharmacology. - 2014. - Vol. 231, No.9. - P. 1987–1999. DOI:10.1007/s00213-013-3344-x.; Purgato M., Papola D., Gastaldon C., Trespidi C., Magni L.R., Rizzo C., Furukawa T.A., Watanabe N., Cipriani A., Barbui C. Paroxetine versus other antidepressive agents for depression // Cochrane Database Syst. Rev. - 2014. - Vol. 4. - CD006531. DOI:10.1002/14651858.CD006531.pub2.; Melzer J., Brignoli R., Keck M.E., Saller R. A Hypericum extract in the treatment of depressive symptoms in outpatients: an open study // Forschende Komplementärmedizin. - 2010. - Vol. 17, No.1. - P. 7–14. DOI:10.1159/000277628.; Maher A.R., Hempel S., Apaydin E., Shanman R.M., Booth M., Miles J.N.V., Sorbero M.E. St. John’s Wort for major depressive disorder: a systematic review // Rand Health Q. - 2016. - Vol. 5, No.4. – P.12.; Ferrara M., Mungai F., Starace F. St John’s wort (Hypericum perforatum)-induced psychosis: a case report // J. Med. Case Rep. - 2017. - Vol. 11, No.1. – P.137. DOI:10.1186/s13256-017-1302-7.; Jungke P., Ostrow G., Li J.-L., Norton S., Nieber K., Kelber O., Butterweck V. Profiling of hypothalamic and hippocampal gene expression in chronically stressed rats treated with St. John’s wort extract (STW 3-VI) and fluoxetine // Psychopharmacology. - 2011. - Vol. 213, No.4. - P. 757–772. DOI:10.1007/s00213-010-2032-3.; Herraiz T., Guillén H. Monoamine oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions // BioMed Res. Int. - 2018. – P.4810394. DOI:10.1155/2018/4810394.; Wang Y., Shi X., Qi Z. Hypericin prolongs action potential duration in hippocampal neurons by acting on K+ channels // Brit. J. Pharmacol. - 2010. - Vol. 159, No.7. - P. 1402–1407. DOI:10.1111/j.1476-5381.2009.00513.x.; Vance K.M., Ribnicky D.M., Hermann G.E., Rogers R.C. St. John’s Wort enhances the synaptic activity of the nucleus of the solitary tract // Nutrition. - 2014. - Vol. 30, No.7–8. - P. S37–S42. DOI:10.1016/j.nut.2014.02.008.; Sell T.S., Belkacemi T., Flockerzi V., Beck A. Protonophore properties of hyperforin are essential for its pharmacological activity // Sci. Rep. - 2014. - Vol. 4. – P. 7500. DOI:10.1038/srep07500.; Bonaterra G.A., Schwendler A., Hüther J., Schwarzbach H., Schwarz A., Kolb C., Abdel-Aziz H., Kinscherf R. Neurotrophic, cytoprotective, and anti-inflammatory effects of St. John’s wort extract on differentiated mouse hippocampal HT-22 neurons // Front. Pharmacol. - 2018. - Vol. 8. – P.955. DOI:10.3389/fphar.2017.00955.; Zou Y.-P., Lu Y.-H., Wei D.-Z. Protective effects of a flavonoid-rich extract of Hypericum perforatum L. against hydrogen peroxide-induced apoptosis in PC12 cells // Phytother. Res. - 2010. - Vol. 24, Suppl. 1. - P. S6–S10. DOI:10.1002/ptr.2852.; Keksel N., Bussmann H., Unger M., Drewe J., Boonen G., Häberlein H., Franken S. St John’s wort extract influences membrane fluidity and composition of phosphatidylcholine and phosphatidylethanolamine in rat C6 glioblastoma cells // Phytomedicine. - 2019. - Vol. 54. - P. 66–76. DOI:10.1016/j.phymed.2018.06.013.; Altun M.L., Yılmaz B.S., Orhan I.E., Citoglu G.S. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s wort) // Industr. Crops Prod. - 2013. - Vol. 43. - P. 87–92. DOI:10.1016/j.indcrop.2012.07.017.; Nazıroğlu M., Kutluhan S., Övey İ.S., Aykur M., Yurekli V.A. Modulation of oxidative stress, apoptosis, and calcium entry in leukocytes of patients with multiple sclerosis by Hypericum perforatum // Nutrit. Neurosci. - 2014. - Vol. 17, No.5. - P. 214–221. DOI:10.1179/1476830513Y.0000000083.; Nazıroğlu M., Çiğ B., Özgül C. Modulation of oxidative stress and Ca2+ mobilization through TRPM2 channels in rat dorsal root ganglion neuron by Hypericum perforatum // Neuroscience. - 2014. - Vol. 263. - P. 27–35. DOI:10.1016/j.neuroscience.2014.01.006.; Özdemir Ü.S., Nazıroğlu M., Şenol N., Ghazizadeh V. Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels // Mol. Neurobiol. - 2016. - Vol. 53, No.6. - P. 3540–3551. DOI:10.1007/s12035-015-9292-1.; Gómez del Río M.A., Sánchez-Reus M.I., Iglesias I., Pozo M.A., García-Arencibia M., Fernández-Ruiz J., García-García L., Delgado M., Benedí J. Neuroprotective properties of standardized extracts of Hypericum perforatum on rotenone model of Parkinson’s disease // CNS Neurolog. Disord.-Drug Targ. - 2013. - Vol. 12, No.5. - P. 665–679. DOI:10.2174/1871527311312050013.; Kiasalari Z., Baluchnejadmojarad T., Roghani M. Hypericum perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease // Cell. Mol. Neurobiol. - 2016. - Vol. 36, No.4. - P. 521–530. DOI:10.1007/s10571-015-0230-6.; Nosratabadi R., Rastin M., Sankian M., Haghmorad D., Tabasi N., Zamani S., Aghaee A., Salehipour Z., Mahmoudi M. St. John’s wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells // J. Immunotoxicol. - 2016. - Vol. 13, No.3. - P. 364–374. DOI:10.3109/1547691X.2015.1101512.; Selek Ş., Eşrefoğlu M., Meral I., Bulut H., Caglar H.G., Sonuc G., Yildiz C., Teloglu E.S., Dogan N., Yuce B., Tiftik E., Bayındır N. Effects of Oenothera biennis L. and Hypericum perforatum L. extracts on some central nervous system myelin proteins, brain histopathology and oxidative stress in mice with experimental autoimmune encephalomyelitis // Biotech. Histochem. - 2019. - Vol. 94, No.2. - P. 75–83. DOI:10.1080/10520295.2018.1482001.; Cinci L., Cesare Mannelli L. di, Maidecchi A., Mattoli L., Ghelardini C. Effects of Hypericum perforatum extract on oxaliplatin-induced neurotoxicity: in vitro evaluations // Zeitschr. Naturforsch., C: Biosci. - 2017. - Vol. 72, No.5–6. - P. 219–226. DOI:10.1515/znc-2016-0194.; Valvassori S.S., Borges C., Bavaresco D.V., Varela R.B., Resende W.R., Peterle B.R., Arent C.O., Budni J., Quevedo J. Hypericum perforatum chronic treatment affects cognitive parameters and brain neurotrophic factor levels // Brazil. J. Psychiatry. - 2018. - Vol. 40, No.4. - P. 367–375. DOI:10.1590/1516-4446-2017-2271.; Leuner K., Li W., Amaral M.D., Rudolph S., Calfa G., Schuwald A.N., Harteneck C., Inoue T., Pozzo-Miller L. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca2+-permeable TRPC6 channels // Hippocampus. - 2013. - Vol. 23, No.1. - P. 40–52. DOI:10.1002/hipo.22052.; Ampuero E., Rubio F.J., Falcon R., Sandoval M., Díaz-Véliz G., González R.E., Earle N., Dagnino-Subiabre A., Aboitiz F., Orrego F., Wyneken U. Chronic fluoxetine treatment induces structural plasticity and selective changes in glutamate receptor subunits in the rat cerebral cortex // Neurosci. - 2010. - Vol. 169, No.1. - P. 98–108.; Marchetti C., Tafi E., Middei S., Rubinacci M.A., Restivo L., Ammassari-Teule M., Marie H. Synaptic adaptations of CA1 pyramidal neurons induced by a highly effective combinational antidepressant therapy // Biol. Psychiatry. - 2010. - Vol. 67, No.2. - P. 146–154. DOI:10.1016/j.biopsych.2009.09.017.; Heiser J.H., Schuwald A.M., Sillani G., Ye L., Müller W.E., Leuner K. TRPC 6 channel-mediated neurite outgrowth in PC 12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI 3K, and CAMKIV signaling // J. Neurochem. - 2013. - Vol. 127, No.3. - P. 303–313.; Jin N., Qian W., Yin X., Zhang L., Iqbal K., Grundke-Iqbal I., Gong C.-X., Liu F. CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer’s disease // Nucl. Acids Res. - 2013. - Vol. 41, No.5. - P. 3240-3256. DOI:10.1093/nar/gks1227.; Teich A.F., Nicholls R.E., Puzzo D., Fiorito J., Purgatorio R., Fà M., Ottavio A. Synaptic therapy in Alzheimer’s disease: a CREB-centric approach // Neurotherapeutics. - 2015. - Vol. 12, No.1. - P. 29–41.; Bartolotti N., Bennett D.A., Lazarov O. Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells // Mol. Psychiatry. - 2016. - Vol. 21, No.9. - P. 1158–1166. DOI:10.1038/mp.2016.111.; Hofrichter J., Krohn M., Schumacher T., Lange C., Feistel B., Walbroel B., Heinze H.-J., Crockett S., Scharbel T.F., Pahnke J. Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice // Current Alzheimer Res. - 2013. - Vol. 10, No.10. - P. 1057–1069. DOI:10.2174/15672050113106660171.; Wang H., Shao B., Yu H., Xu F., Wang P., Yu K., Han Y., Song M., Li Y., Cao Z. Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells // Chem.-Biol. Interact. - 2019. - Vol. 299. - P. 15–26. DOI:10.1016/j.cbi.2018.11.016.; Gibon J., Deloulme J.-C., Chevallier T., Ladevèze E., Abrous D.N., Bouron A. The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner // Int. J. Neuropsychopharm. - 2013. - Vol. 16, No.1. - P. 189–198. DOI:10.1017/S146114571100188X.; Brenn A., Grube M., Jedlitschky G., Fischer A., Strohmeier B., Eiden M., Keller M., Groschup M.H., Vogelgesang S. St. John’s wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model // role of P-glycoprotein // Brain Pathol. - 2014. - Vol. 24, No.1. - P. 18–24. DOI:10.1111/bpa.12069.; Ott M., Huls M., Cornelius M.G., Fricker G. St. John’s Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier // Pharmaceut. Res. - 2010. - Vol. 27, No.5. - P. 811–822. DOI:10.1007/s11095-010-0074-1.; Cao Z., Wang F., Xiu C., Zhang J., Li Y. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in aluminum chloride-induced Alzheimer’s disease rats // Biomed. Pharmacotherapy. - 2017. - Vol. 91. - P. 931–937. DOI:10.1016/j.biopha.2017.05.022.; Uslusoy F., Nazıroğlu M., Övey İ.S., Sönmez T.T. Hypericum perforatum L. supplementation protects sciatic nerve injury-induced apoptotic, inflammatory and oxidative damage to muscle, blood and brain in rats // J. Pharm. Pharmacol. - 2019. - Vol. 71, No.1. - P. 83–92. DOI:10.1111/jphp.12741.; Lin Y., Zhang J.-C., Fu J., Chen F., Wang J., Wu Z.-L., Yuan S.-Y. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation // J. Cereb. Blood Flow Metabol. - 2013. - Vol. 33, No.2. - P. 253–262. DOI:10.1038/jcbfm.2012.164.; Chang Y., Wang S.J. Hypericin, the active component of St. John’s wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway //Eur. J. Pharmacol. - 2010. - Vol. 634, No.1–3. - P. 53–61. DOI:10.1016/j.ejphar.2010.02.035.; Ouyang Z., Zhai Z., Li H., Liu X., Qu X., Li X., Fan Q., Tang T., Qin A., Dai K. Hypericin suppresses osteoclast formation and wear particle-induced osteolysis via modulating ERK signalling pathway // Biochem. Pharmacol. - 2014. - Vol. 90, No.3. - P. 276–287. DOI:10.1016/j.bcp.2014.06.009.; Do M.H., Kim S.Y. Hypericin, a naphthodianthrone derivative, prevents methylglyoxal-induced human endothelial cell dysfunction // Biomol. Therap. - 2017. - Vol. 25, No.2. - P. 158–164. DOI:10.4062/biomolther.2016.034.; Jeong E.J., Hwang L., Lee M., Lee K.Y., Ahn M.-J., Sung S.-H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells // Food Chem. Toxicol. - 2014. - Vol. 64. - P. 397–402. DOI:10.1016/j.fct.2013.12.003.; Ishola I.O., Tota S., Adeyemi O.O., Agbaje E.O., Narender T., Shukla R. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: a behavioral and biochemical study // Pharmaceut. Biol. - 2013. - Vol. 51, No.7. - P. 825-835. DOI:10.3109/13880209.2013.767360.; Ben-Eliezer D., Yechiam E. Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis // Sci. Reports. - 2016. - Vol. 6. – P.35700. DOI:10.1038/srep35700.; Gong S., Miao Y.-L., Jiao G.-Z., Sun M.-J., Li H., Lin J., Luo M.-J., Tan J.-H. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice // PLoS One. - 2015. - Vol. 10, No.2. – P.e0117503. DOI:10.1371/journal.pone.0117503.; El-Bakly W.M., Hasanin A.H. Hypericum perforatum decreased hippocampus TNF-α and corticosterone levels with no effect on kynurenine/tryptophan ratio in bilateral ovariectomized rats // Korean J. Physiol. Pharmacol. - 2014. - Vol. 18, No.3. - P. 233–239. DOI:10.4196/kjpp.2014.18.3.233.; Kumar A., Garg R., Prakash A.K. Effect of St. John’s Wort (Hypericum perforatum) treatment on restraint stress-induced behavioral and biochemical alteration in mice // BMC Complement. Altern. Med. - 2010. - Vol. 10, No.1. – P.18. DOI:10.1186/1472-6882-10-18.; Prakash D.J., Arulkumar S., Sabesan M. Effect of nanohypericum (Hypericum perforatum gold nanoparticles) treatment on restraint stressinduced behavioral and biochemical alteration in male albino mice // Pharmacogn. Res. - 2010. - Vol. 2, No.6. - P. 330–334. DOI:10.4103/0974-8490.75450.; Hasanein P., Shahidi S. Effects of Hypericum perforatum extract on diabetes-induced learning and memory impairment in rats // Phytother. Res. - 2011. - Vol. 25, No.4. - P. 544–549. DOI:10.1002/ptr.3298.; Crupi R., Mazzon E., Marino A., La Spada G., Bramanti P., Battaglia F., Cuzzocrea S., Spina E. Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice // BMC Complement. Alternat. Med. - 2011. - Vol. 11, No.1. – P.7. DOI:10.1186/1472-6882-11-7.; Trofimiuk E., Holownia A., Braszko J.J. St. John’s wort may relieve negative effects of stress on spatial working memory by changing synaptic plasticity // Naunyn-Schmiedeberg’s Arch. Pharmacol. - 2011. - Vol. 383, No.4. - P. 415–422. DOI:10.1007/s00210-011-0604-3.; Concerto C., Boo H., Hu C., Sandilya P., Krish A., Chusid E., Coira D., Aguglia E., Battaglia F. Hypericum perforatum extract modulates cortical plasticity in humans // Psychopharmacology. - 2018. - Vol. 235, No.1. - P. 145-153. DOI:10.1007/s00213-017-4751-1.; Yechiam E., Ben-Eliezer D., Ashby N.J.S., Bar-Shaked M. The acute effect of Hypericum perforatum on short-term memory in healthy adults // Psychopharmacol. - 2019. - Vol. 236, No.2. - P. 613–623. DOI:10.1007/s00213-018-5088-0.; Niederhofer H. St John’s Wort treating patients with autistic disorder // Phytother. Res. - 2009. - Vol. 23, No.11. - P. 1521–1523. DOI:10.1002/ptr.2580.; Diniz T.C., Silva J.C., de Lima-Saraiva S.R.G., Ribeiro F.P.R. de A., Pacheco A.G.M., de Freitas R.M., Quintans-Júnior L.J., Quintans J. de S.S., Mendes R.L., Almeida J.R.G. da S. The role of flavonoids on oxidative stress in epilepsy // Oxidat. Med. Cell. Longev. - 2015. DOI:10.1155/2015/171756.; Zhang Z., Sun T., Niu J.-G., He Z.-Q., Liu Y., Wang F. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects // Neural Regenerat. Res. - 2015. - Vol. 10, No.7. – P.1125. DOI:10.4103/1673-5374.160109.; Rong S., Wan D., Fan Y., Liu S., Sun K., Huo J., Zhang P., Li X., Xie X., Wang F., Sun T. Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome // Front. Pharmacol. - 2019. - Vol. 10. – P. 856. DOI:10.3389/fphar.2019.00856.; Ivetic V., Trivic S., Pogancev M.K., Popovic M., Zlinská J. Effects of St John’s wort (Hypericum perforatum L.) extracts on epileptogenesis // Molecules. - 2011. - Vol. 16, No.9. - P. 8062–8075. DOI:10.3390/molecules16098062.; Etemad L., Heidari M.R., Heidari M., Moshiri M., Behravan E., Abbasifard M., Azimzadeh B.S. Investigation of Hypericum perforatum extract on convulsion induced by picrotoxin in mice // Pak. J. Pharmaceut. Sci. - 2011. - Vol. 24, No.2. - P. 233–236.; Ishola I.O., Chatterjee M., Tota S., Tadigopulla N., Adeyemi O.O., Palit G., Shukla R. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice // Pharmacol. Biochem. Behav. - 2012. - Vol. 103, No.2. - P. 322–331. DOI:10.1016/j.pbb.2012.08.017.; Çiçek S.S. Structure-dependent activity of natural GABA (A) receptor modulators // Molecules. - 2018. - Vol. 23, No.7. – P. 1512. DOI:10.3390/molecules23071512.; Husain G.M., Chatterjee S.S., Singh P.N., Kumar V. Beneficial effect of Hypericum perforatum on depression and anxiety in a type 2 diabetic rat model // Acta Polon. Pharmaceut. - 2011. - Vol. 68, No.6. - P. 913–918.; Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. // J. Ethnopharmacol. - 2010. - Vol. 131, No.3. - P. 511–521. DOI:10.1016/j.jep.2010.07.034.; Orhan I.E., Kartal M., Gülpinar A.R., Cos P., Matheeussen A., Maes L., Tasdemir D. Assessment of antimicrobial and antiprotozoal activity of the olive oil macerate samples of Hypericum perforatum and their LC-DAD-MS analyses // Food Chem. - 2013. - Vol. 138, No.2–3. - P. 870–875. DOI:10.1016/j.foodchem.2012.11.053.; Lyles J.T., Kim A., Nelson K., Bullard-Roberts A.L., Hajdari A., Mustafa B., Quave C.L. The chemical and antibacterial evaluation of St. John’s Wort oil macerates used in Kosovar traditional medicine // Front. Microbiol. - 2017. - Vol. 8. – P. 1639. DOI:10.3389/fmicb.2017.01639.; Süntar I., Oyardı O., Akkol E.K., Ozçelik B. Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation // Pharm. Biol. - 2016. - Vol. 54, No.6. - P. 1065–1070. DOI:10.3109/13880209.2015.1102948.; Khadem Nezhad S., Taghavi Zenouz A., Aghazadeh M., Samadi Kafil H. Strong antimicrobial activity of Hypericum perforatum L. against oral isolates of Lactobacillus spp. // Cell. Mol. Biol. (Noisy-le-grand, France). - 2017. - Vol. 63, No.11. - P. 58–62. DOI:10.14715/cmb/2017.63.11.11.; López-Chicón P., Paz-Cristobal M.P., Rezusta A., Aspiroz C., Royo-Cañas M., Andres-Ciriano E., Gilaberte Y., Agut M., Nonell S. On the mechanism of Candida spp. photoinactivation by hypericin // Photochem. Photobiol. Sci. - 2012. - Vol. 11, No.6. - P. 1099–1107. DOI:10.1039/c2pp25105a.; Yow C.M., Tang H.M., Chu E.S., Huang Z. Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens // Photochem. Photobiol. - 2012. - Vol. 88, No.3. - P. 626–632. DOI:10.1111/j.1751-1097.2012.01085.x.; Mortensen T., Shen S., Shen F., Walsh M.K., Sims R.C., Miller C.D. Investigating the effectiveness of St John’s wort herb as an antimicrobial agent against mycobacteria // Phytother. Res. - 2012. - Vol. 26, No.9). - P. 1327–1333. DOI:10.1002/ptr.3716.; Chen H., Muhammad I., Zhang Y., Ren Y., Zhang R., Huang X., Diao L., Liu H., Li X., Sun X., Abbas G., Li G. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. // Front. Pharmacol. - 2019. - Vol. 10. – P.1272. DOI:10.3389/fphar.2019.01272.; Huang N., Singh N., Yoon K., Loiacono C.M., Kohut M.L., Birt D.F. The immuno-regulatory impact of orally-administered Hypericum perforatum extract on Balb/C mice inoculated with H1n1 influenza A virus // PLoS One. - 2013. - Vol. 8, No.9. – P. e76491. DOI:10.1371/journal.pone.0076491.; Pu X., Liang J., Shang R., Zhou L., Wang X., Li Y. Therapeutic efficacy of Hypericum perforatum L. extract for mice infected with an influenza A virus // Can. J. Physiol. Pharmacol. - 2012. - Vol. 90, No.2. - P. 123–130. DOI:10.1139/y11-111.; Pang R., Tao J., Zhang S., Zhu J., Yue X., Zhao L., Ye P., Zhu Y. In vitro anti-hepatitis B virus effect of Hypericum perforatum L. // J. Huazhong Univ. Sci. Technolog. Med. Sci. - 2010. – Vol.30, No.1. - P. 98–102. DOI:10.1007/s11596-010-0118-0.; Brito L.C., Berenger A.L.R., Figueiredo M.R. An overview of anticancer activity of Garcinia and Hypericum // Food Chem. Toxicol. - 2017. - Vol. 109, Pt 2. - P. 847–862. DOI: 0.1016/j.fct.2017.03.053.; Menichini G., Alfano C., Marrelli M., Toniolo C., Provenzano E., Statti G.A., Nicoletti M., Menichini F., Conforti F. Hypericum perforatum L. subsp. perforatum induces inhibition of free radicals and enhanced phototoxicity in human melanoma cells under ultraviolet light // Cell Prolif. - 2013. - Vol. 46, No.2. - P. 193–202. DOI:10.1111/cpr.12020.; Šemeláková M., Mikeš J., Jendželovský R., Fedoročko P. The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells // J. Photochem. Photobiol. B. - 2012. - Vol. 117. P. 115–125. DOI:10.1016/j.jphotobiol.2012.09.003.; Kleemann B., Loos B., Scriba T.J., Lang D., Davids L.M. St John’s Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death // PLoS One. - 2014. - Vol. 9, No.7. – P.e103762. DOI:10.1371/journal.pone.0103762.; Yi J., Yang X., Zheng L., Yang G., Sun L., Bao Y., Wu Y., Huang Y., Yu C., Yang S.N., Li Y. Photoactivation of hypericin decreases the viability of RINm5F insulinoma cells through reduction in JNK/ERK phosphorylation and elevation of caspase-9/caspase-3 cleavage and Bax-to-Bcl-2 ratio // Biosci. Rep. - 2015. - Vol. 35, No.3. - pii: e00195. DOI:10.1042/BSR20150028.; Sharma K.V., Davids L.M. Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment // Cell Biol. Int. - 2012. - Vol. 36, No.12. - P. 1261–1266. DOI:10.1042/CBI20120108.; Ritz R., Scheidle C., Noell S., Roser F., Schenk M., Dietz K., Strauss W.S. In vitro comparison of hypericin and 5-aminolevulinic acid-derived protoporphyrin IX for photodynamic inactivation of medulloblastoma cells // PLoS One. - 2012. - Vol. 7, No.12. – P.e51974. DOI:10.1371/journal.pone.0051974.; Kim H., Kim S.W., Seok K.H., Hwang C.W., Ahn J.C., Jin J.O., Kang H.W. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer // Photodiagnosis Photodyn. Ther. - 2018. – Vol.24. – P.15–21. DOI:10.1016/j.pdpdt.2018.08.008.; Valletta E., Rinaldi A., Marini M., Franzese O., Roscetti G. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells // Phytother. Res. - 2018. - Vol. 32, No.9. - P. 1803–1811. DOI:10.1002/ptr.6114.; You M.K., Kim H.J., Kook J.H., Kim H.A. St. John’s wort regulates proliferation and apoptosis in MCF-7 human breast cancer cells by inhibiting AMPK/mTOR and activating the mitochondrial pathway // Int. J. Mol. Sci. - 2018. - Vol. 19, No.4. - pii: E966. DOI:10.3390/ijms19040966.; Zaher M., Tang R., Bombarda I., Merhi F., Bauvois B., Billard C. Hyperforin induces apoptosis of chronic lymphocytic leukemia cells through upregulation of the BH3-only protein Noxa // Int. J. Oncol. - 2012. - Vol. 40, No.1. - P. 269–276. DOI:10.3892/ijo.2011.1206.; Mirmalek S.A., Azizi M.A., Jangholi E., Yadollah-Damavandi S., Javidi M.A., Parsa Y., Parsa T., Salimi-Tabatabaee S.A., Ghasemzadeh Kolagar H., Alizadeh-Navaei R. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line // Cancer Cell. Int. - 2017. - Vol. 16. – P. 3. DOI:10.1186/s12935-016-0279-4.; Ocak Z., Acar M., Gunduz E., Gunduz M., Demircan K., Uyeturk U., Ozlü T. Effect of hypericin on the ADAMTS-9 and ADAMTS-8 gene expression in MCF7 breast cancer cells // Eur. Rev. Med. Pharmacol. Sci. - 2013. - Vol. 17, No.9. - P. 1185–90.; Merhi F., Tang R., Piedfer M., Mathieu J., Bombarda I., Zaher M., Kolb J.P., Billard C., Bauvois B. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells // PLoS One. - 2011. - Vol. 6, No.10. – e25963. DOI:10.1371/journal.pone.0025963.; Kıyan H.T., Demirci B., Başer K.H., Demirci F. The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay // Pharm. Biol. - 2014. - Vol. 52, No.1. - P. 44–50. DOI:10.3109/13880209.2013.810647.; Raak C., Büssing A., Gassmann G., Boehm K., Ostermann T. A systematic review and meta-analysis on the use of Hypericum perforatum (St. John’s Wort) for pain conditions in dental practice // Homeopathy. - 2012. - Vol. 101, No.4. - P. 204–210. DOI:10.1016/j.homp.2012.08.001.; Melo M.S. de, Quintans J. de S., Araújo A.A., Duarte M.C., Bonjardim L.R., Nogueira P.C., Moraes V.R., de Araújo-Júnior J.X., Ribeiro E.A., Quintans-Júnior L.J. A systematic review for anti-inflammatory property of Clusiaceae family: a preclinical approach // Evid. Based Complement. Alternat. Med. - 2014. – P.960258. DOI:10.1155/2014/960258.; Hammer K.D., Birt D.F. Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum // Crit. Rev. Food Sci. Nutr. - 2014. - Vol. 54, No.6. - P. 781–789. DOI:10.1080/10408398.2011.607519.; Stojanović N.M., Radulović N.S., Randjelović P.J., Laketić D. Antinociceptive properties of St. John’s Wort (Hypericum perforatum) and other Hypericum species // Nat. Prod. Commun. - 2016. - Vol. 11, No.11. - P. 1741–1747.; Galeotti N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions // J. Ethnopharmacol. - 2017. - Vol. 200. - P. 136–146. DOI:10.1016/j.jep.2017.02.016.; Sanna M.D., Ghelardini C., Galeotti N. St. John’s Wort potentiates anti-nociceptive effects of morphine in mice models of neuropathic pain // Pain Med. - 2017. - Vol. 18, No.7. - P. 1334–1343. DOI:10.1093/pm/pnw241.; Dellafiora L., Galaverna G., Cruciani G., Dall’Asta C., Bruni R. On the mechanism of action of anti-inflammatory activity of hypericin: An in silico study pointing to the relevance of Janus kinases inhibition // Molecules. - 2018. - Vol. 23, No.12. - Pii: E3058. DOI:10.3390/molecules23123058.; Koeberle A., Rossi A., Bauer J., Dehm F., Verotta L., Northoff H., Sautebin L., Werz O. Hyperforin, an anti-inflammatory constituent from St. John’s Wort, inhibits microsomal prostaglandin E(2) synthase-1 and suppresses prostaglandin E(2) formation in vivo // Front. Pharmacol. - 2011. - Vol. 2. – P. 7. DOI:10.3389/fphar.2011.00007.; Hammer K.D., Yum M.Y., Dixon P.M., Birt D.F. Identification of JAK-STAT pathways as important for the anti-inflammatory activity of a Hypericum perforatum fraction and bioactive constituents in RAW 264.7 mouse macrophages // Phytochemistry. - 2010. - Vol. 71, No.7. - P. 716–725. DOI:10.1016/j.phytochem.2010.02.006.; Huang N., Rizshsky L., Hauck C., Nikolau B.J., Murphy P.A., Birt D.F. Identification of anti-inflammatory constituents in Hypericum perforatum and Hypericum gentianoides extracts using RAW 264.7 mouse macrophages // Phytochemistry. - 2011. - Vol. 72, No.16. - P. 2015–2023. DOI:10.1016/j.phytochem.2011.07.016.; Huang N., Rizshsky L., Hauck C.C., Nikolau B.J., Murphy P.A., Birt D.F. The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3 // Phytochemistry. - 2012. - Vol. 76. - P. 106–116. DOI:10.1016/j.phytochem.2011.12.001.; Hatano T., Sameshima Y., Kawabata M., Yamada S., Shinozuka K., Nakabayashi T., Mizuno H. St. John’s wort promotes adipocyte differentiation and modulates NF-κB activation in 3T3-L1 cells // Biol. Pharm. Bull. - 2014. - Vol. 37, No.7. - P. 1132–1138.; Samadi S., Khadivzadeh T., Emami A., Moosavi N.S., Tafaghodi M., Behnam H.R. The effect of Hypericum perforatum on the wound healing and scar of cesarean // J. Altern. Complement. Med. - 2010. - Vol. 16, No.1. - P. 113–117. DOI:10.1089/acm.2009.0317.; Mansouri P., Mirafzal S., Najafizadeh P., Safaei-Naraghi Z., Salehi-Surmaghi M.H., Hashemian F. The impact of topical Saint John’s Wort (Hypericum perforatum) treatment on tissue tumor necrosis factor-alpha levels in plaque-type psoriasis: A pilot study // J. Postgrad. Med. - 2017. - Vol. 63, No.4. - P. 215–220. DOI:10.4103/0022-3859.201423.; Nazıroğlu M., Sahin M., Ciğ B., Aykur M., Erturan I., Ugan Y. Hypericum perforatum modulates apoptosis and calcium mobilization through voltage-gated and TRPM2 calcium channels in neutrophil of patients with Behcet’s disease // J. Membr. Biol. - 2014. - Vol. 247, No.3. - P. 253–262. DOI:10.1007/s00232-014-9630-7.; Yücel A., Kan Y., Yesilada E., Akın O. Effect of St.John’s wort (Hypericum perforatum) oily extract for the care and treatment of pressure sores; a case report // J. Ethnopharmacol. - 2017. – Vol.196. - P. 236–241. DOI:10.1016/j.jep.2016.12.030.; Paterniti I., Briguglio E., Mazzon E., Galuppo M., Oteri G., Cordasco G., Cuzzocrea S. Effects of Hypericum perforatum, in a rodent model of periodontitis // BMC Complement. Altern. Med. - 2010. - Vol. 10. – P. 73. DOI:10.1186/1472-6882-10-73.; Süntar I. P., Akkol E. K., Yilmazer D., Baykal T., Kirmizibekmez H., Alper M., Yeşilada E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. // J. Ethnopharmacol. - 2010. - Vol. 127. - P. 468–477.; Prisăcaru A.I., Andriţoiu C.V., Andriescu C., Hăvârneanu E.C., Popa M., Motoc A.G., Sava A. Evaluation of the wound-healing effect of a novel Hypericum perforatum ointment in skin injury // Rom. J. Morphol. Embryol. - 2013. - Vol. 54, No.4. - P. 1053–1059.; Orhan I.E., Kartal M., Gülpinar A.R., Yetkin G., Orlikova B., Diederich M., Tasdemir D. Inhibitory effect of St. John’s Wort oil macerates on TNFα-induced NF-κB activation and their fatty acid composition // J. Ethnopharmacol. - 2014. - Vol. 155, No.2. - P. 1086–1092. DOI:10.1016/j.jep.2014.06.030.; Tanideh N., Namazi F., Andisheh Tadbir A., Ebrahimi H., Koohi-Hosseinabadi O. Comparative assessment of the therapeutic effects of the topical and systemic forms of Hypericum perforatum extract on induced oral mucositis in golden hamsters // Int. J. Oral Maxillofac. Surg. - 2014. - Vol. 43, No.10. - P. 1286–1292. DOI:10.1016/j.ijom.2014.05.013.; Farsak M., Özdağli G., Özmüş D., Çömelekoğlu Ü., Yalın S., Bozdoğan Arpacı R., Gen R., Kanık A., Ümit Talas D. Effects of Hypericum perforatum on an experimentally induced diabetic wound in a rat model // Wounds. - 2017. - Vol. 29, No.2. - P. E10–E17.; Altan A., Aras M.H., Damlar İ., Gökçe H., Özcan O., Alpaslan C. The effect of Hypericum perforatum on wound healing of oral mucosa in diabetic rats // Eur. Oral Res. - 2018. - Vol. 52, No.3. - P. 143–149. DOI:10.26650/eor.2018.505.; Akay M.A., Akduman M., Tataroğlu A.Ç., Eraldemir C., Kum T., Vural Ç., Yıldız G.E. Evaluation of the efficacy of Hypericum perforatum (St. John’s wort) oil in the prevention of stricture due to esophageal corrosive burns // Esophagus. - 2019. - Vol. 16, No.4. - P. 352–361. DOI:10.1007/s10388-019-00671-2.; Yılmaz U., Kaya H., Turan M., Bir F., Şahin B. Investigation the effect of Hypericum perforatum on corneal alkali burns // Cutan. Ocul. Toxicol. - 2019. - Vol. 38, No.4. - P. 356–359. DOI:10.1080/15569527.2019.1622560.; Füller J., Müller-Goymann C. C. Anti-proliferative and anti-migratory effects of hyperforin in 2D and 3D artificial constructs of human dermal fibroblasts - A new option for hypertrophic scar treatment? // Eur. J. Pharm. Biopharm. - 2018. - Vol. 126. - P. 108–114. DOI:10.1016/j.ejpb.2017.03.003.; Sharma K.V., Davids L.M. Depigmentation in melanomas increases the efficacy of hypericin-mediated photodynamic-induced cell death // Photodiagnosis Photodyn. Ther. - 2012. - Vol. 9, No.2. - P. 156–163. DOI:10.1016/j.pdpdt.2011.09.003.; Arokiyaraj S., Balamurugan R., Augustian P. Antihyperglycemic effect of Hypericum perforatum ethyl acetate extract on streptozotocin-induced diabetic rats // Asian Pac. J. Trop. Biomed. - 2011. – Vol.1, No.5. - P. 386–390. DOI:10.1016/S2221-1691(11)60085-3.; Can Ö.D., Öztürk Y., Öztürk N., Sagratini G., Ricciutelli M., Vittori S., Maggi F. Effects of treatment with St. John’s Wort on blood glucose levels and pain perceptions of streptozotocin-diabetic rats // Fitoterapia. - 2011. - Vol. 82, No.4. - P. 576–584. DOI:10.1016/j.fitote.2011.01.008.; You M.K., Rhuy J., Jeong K.S., Bang M.A., Kim M.S., Kim H.A. Effect of St. John’s Wort (Hypericum perforatum) on obesity, lipid metabolism and uterine epithelial proliferation in ovariectomized rats // Nutr. Res. Pract. - 2014. - Vol. 8, No.3. - P. 292–296. DOI:10.4162/nrp.2014.8.3.292.; Husain G.M., Chatterjee S.S., Singh P.N., Kumar V. Hypolipidemic and antiobesity-like activity of standardised extract of Hypericum perforatum L. in rats // ISRN Pharmacol. - 2011. – P. 505247. DOI:10.5402/2011/505247.; Moghaddam M.H.G., Roghani M., Maleki M. Effect of Hypericum perforatum aqueous extracts on serum lipids, aminotransferases, and lipid peroxidation in hyperlipidemic rats // Res. Cardiovasc. Med. - 2016. - Vol. 5, No.2. - e31326. DOI:10.5812/cardiovascmed.31326.; Novelli M., Beffy P., Menegazzi M., De Tata V., Martino L., Sgarbossa A., Porozov S., Pippa A., Masini M., Marchetti P., Masiello P. St. John’s wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity // Acta Diabetol. - 2014. - Vol. 51, No.1. - P. 113–121.; Richard A.J., Amini Z.J., Ribnicky D.M., Stephens J.M. St. John’s Wort inhibits insulin signaling in murine and human adipocytes // Biochim. Biophys. Acta. - 2012. - Vol. 1822, No.4. - P. 557–563. DOI:10.1016/j.bbadis.2011.12.005.; Abd El Motteleb D.M., Abd El Aleem D.I. Renoprotective effect of Hypericum perforatum against diabetic nephropathy in rats: Insights in the underlying mechanisms // Clin. Exp. Pharmacol. Physiol. - 2017. - Vol. 44, No.4. - P. 509–521. DOI:10.1111/1440-1681.12729.; Valeri A., Capasso R., Valoti M., Pessina F. Effects of St John’s wort and its active constituents, hypericin and hyperforin, on isolated rat urinary bladder // J. Pharm. Pharmacol. - 2012. - Vol. 64, No.12. - P. 1770–1776. DOI:10.1111/j.2042-7158.2012.01556.x.; Khalili M., Jalali M.R., Mirzaei-Azandaryani M. Effect of hydroalcoholic extract of Hypericum perforatum L. leaves on ethylene glycol-induced kidney calculi in rats // Urol. J. - 2012. - Vol. 9, No.2. - P. 472–479.; Eatemadnia A., Ansari S., Abedi P., Najar S. The effect of Hypericum perforatum on postmenopausal symptoms and depression: A randomized controlled trial // Complement. Ther. Med. - 2019. - Vol. 45. - P. 109–113. DOI:10.1016/j.ctim.2019.05.028.; Ghazanfarpour M., Kaviani M., Asadi N., Ghaffarpasand F., Ziyadlou S., Tabatabaee H.R., Dehghankhalili M. Hypericum perforatum for the treatment of premenstrual syndrome // Int. J. Gynaecol. Obstet. - 2011. - Vol. 113, No.1. - P. 84–85. DOI:10.1016/j.ijgo.2010.11.007.; Conceição A.O. da, Takser L., Lafond J. Effect of St. John’s Wort standardized extract and hypericin on in vitro placental calcium transport // J. Med. Food. - 2010. - Vol. 13, No.4. - P. 934–942. DOI:10.1089/jmf.2009.0161.; Kahyaoğlu F., Gökçimen A., Demirci B. Investigation of the embryotoxic and teratogenic effect of Hypericum perforatum in pregnant rats // Turk. J. Obstet. Gynecol. - 2018. – Vol.15, No.2. – P.87–90. DOI:10.4274/tjod.84429.; Demirci B., Kahyaoğlu F., Atakul T., Yılmaz M., Özoran Y. Detrimental effect of Hypericum perforatum on ovarian functions // J. Turk. Ger. Gynecol. Assoc. - 2019. - Vol. 20, No.2. - P. 65–69. DOI:10.4274/jtgga.galenos.2018.2018.0041.; Halicioglu K., Çörekçi B., Akkaş İ., Irgin C., Özan F., Yilmaz F., Türker A. Effect of St John’s wort on bone formation in the orthopaedically expanded premaxillary suture in rats: a histological study // Eur. J. Orthod. - 2015. - Vol. 37, No.2. - P. 164–169. DOI:10.1093/ejo/cju028.; Seferos N., Petrokokkinos L., Kotsiou A., Rallis G., Tesseromatis C. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats // Stomatologija. - 2016. - Vol. 18, No.1. - P. 9–13.; Mendi A., Gökçınar Yağcı B., Saraç N., Kızıloğlu M., Uğur A., Uçkan D., Yılmaz D. The effects of Hypericum perforatum L. on the proliferation, osteogenic differentiation, and inflammatory response of mesenchymal stem cells from different niches // Cells Tissues. Organs. - 2018. - Vol. 205, No.4. - P. 208–216. DOI:10.1159/000491633.; Damlar I., Arpağ O.F., Tatli U., Altan A. Effects of Hypericum perforatum on the healing of xenografts: a histomorphometric study in rabbits // Br. J. Oral Maxillofac. Surg. - 2017. - Vol. 55, No.4. - P. 383–387. DOI:10.1016/j.bjoms.2016.12.003.; Aydin A., Sakrak O., Yilmaz T.U., Kerem M. The effects of Hypericum perforatum on hepatic ischemia-reperfusion injury in rats // Bratisl. Lek. Listy. - 2014. - Vol. 115, No.4. - P. 209–215.; Hohmann M.S., Cardoso R.D., Fattori V., Arakawa N.S., Tomaz J.C., Lopes N.P., Casagrande R., Verri W.A.Jr. Hypericum perforatum reduces paracetamol-induced hepatotoxicity and lethality in mice by modulating inflammation and oxidative stress // Phytother. Res. - 2015. - Vol. 29, No.7. - P. 1097–1101. DOI:10.1002/ptr.5350.; Bayramoglu G., Bayramoglu A., Engur S., Senturk H., Ozturk N., Colak S. The hepatoprotective effects of Hypericum perforatum L. on hepatic ischemia/reperfusion injury in rats // Cytotechnology. - 2014. - Vol. 66, No.3. - P. 443–448. DOI:10.1007/s10616-013-9595-x.; Mohammadinia S., Abedi S.M., Noaparast Z. St. John’s Wort accelerates the liver clearance of technetium-99-sestamibi in rats // Nucl. Med. Commun. - 2018. - Vol. 39, No.9. - P. 839–844. DOI:10.1097/MNM.0000000000000880.; Khan A.U., Gilani A.H., Najeeb-ur-Rehman. Pharmacological studies on Hypericum perforatum fractions and constituents // Pharm. Biol. - 2011. - Vol. 49, No.1. - P. 46–56. DOI:10.3109/13880209.2010.494307.; Heinrich M., Lorenz P., Daniels R., Stintzing F.C., Kammerer D.R. Lipid and phenolic constituents from seeds of Hypericum perforatum L. and Hypericum tetrapterum Fr. and their antioxidant activity // Chem. Biodivers. - 2017. - Vol. 14, No.8. - e1700100. DOI:10.1002/cbdv.201700100.; Heydarian M., Jooyandeh H., Nasehi B., Noshad M. Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling // Int. J. Biol. Macromol. - 2017. - Vol. 104, Pt A. - P. 287–293. DOI:10.1016/j.ijbiomac.2017.06.049.; Meinke M.C., Schanzer S., Haag S.F., Casetti F., Müller M.L., Wölfle U., Kleemann A., Lademann J., Schempp C.M. In vivo photoprotective and anti-inflammatory effect of hyperforin is associated with high antioxidant activity in vitro and ex vivo // Eur. J. Pharm. Biopharm. - 2012. - Vol. 81, No.2. - P. 346–350. DOI:10.1016/j.ejpb.2012.03.002.; Micioni Di Bonaventura MV, Vitale G, Massi M, Cifani C. Effect of Hypericum perforatum Extract in an Experimental Model of Binge Eating in Female Rats // J Obes. – 2012. Vol.2012. – P.956137. DOI:10.1155/2012/956137.; Peron A.P., Mariucci R.G., de Almeida I.V., Düsman E., Mantovani M.S., Vicentini V.E. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of a natural antidepressant, Hypericum perforatum L. (St. John’s wort), on vegetal and animal test systems // BMC Complement. Altern. Med. - 2013. - Vol. 13. – P. 97. Doi:10.1186/1472-6882-13-97.; Imreova P., Feruszova J., Kyzek S., Bodnarova K., Zduriencikova M., Kozics K., Mucaji P., Galova E., Sevcovicova A., Miadokova E., Chalupa I. Hyperforin exhibits antigenotoxic activity on human and bacterial cells // Molecules. - 2017. - Vol. 22, No.1. - Pii: E167. DOI:10.3390/molecules22010167.; Ševčovičová A., Šemeláková M., Plšíková J., Loderer D., Imreová P., Gálová E., Kožurková M., Miadoková E., Fedoročko P. DNA-protective activities of hyperforin and aristoforin // Toxicol. In Vitro. - 2015. - Vol. 29, No.3. - P. 631–637. DOI:10.1016/j.tiv.2015.01.016.; You M.K., Kim D.W., Jeong K.S., Bang M.A., Kim H.S., Rhuy J., Kim H.A. St. John’s Wort (Hypericum perforatum) stimulates human osteoblastic MG-63 cell proliferation and attenuates trabecular bone loss induced by ovariectomy // Nutr. Res. Pract. - 2015. - Vol. 9, No.5. - P. 459–465. DOI:10.4162/nrp.2015.9.5.459.; Abtahi Froushani S.M., Esmaili Gouvarchin Galee H., Khamisabadi M., Lotfallahzade B. Immunomudulatory effects of hydroalcoholic extract of Hypericum perforatum // Avicenna J. Phytomed. - 2015. - Vol. 5, No.1. - P. 62–68.; Eğilmez O.K., Kökten N., Ekici A.I., Kalcıoğlu M.T., Yesilada E., Tekin M. The effect of Hypericum perforatum L. (St. John’s Wort) on prevention of myringosclerosis after myringotomy in a rat model // Int. J. Pediatr. Otorhinolaryngol. - 2015. - Vol. 79, No.7. - P. 1128–1134. DOI:10.1016/j.ijporl.2015.05.009.; Radulović N.S., Genčić M.S., Stojanović N.M., Randjelović P.J., Baldovini N., Kurteva V. Prenylated β-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites // Food Chem. Toxicol. - 2018. - Vol. 118. - P. 505–513. DOI:10.1016/j.fct.2018.05.009.; Guo Y., Zhang N., Sun W., Duan X., Zhang Q., Zhou Q., Chen C., Zhu H., Luo Z., Liu J., Li X. N., Xue Y., Zhang Y. Bioactive polycyclic polyprenylated acylphloroglucinols from Hypericum perforatum // Org. Biomol. Chem. - 2018. - Vol. 16, No.43. - P. 8130–8143. DOI:10.1039/c8ob02067a.; Yang J.F., Liu Y.R., Huang C.C., Ueng Y.F. The time-dependent effects of St John’s wort on cytochrome P450, uridine diphosphate-glucuronosyltransferase, glutathione S-transferase, and NAD(P)H-quinone oxidoreductase in mice // J. Food Drug. Anal. - 2018. - Vol. 26, No.1. - P. 422–431. DOI:10.1016/j.jfda.2017.01.004.; https://www.pharmpharm.ru/jour/article/view/793

  6. 6
    Academic Journal

    Source: Current issues in pharmacy and medicine: science and practice; Vol. 12 No. 3 (2019) ; Актуальные вопросы фармацевтической и медицинской науки и практики; Том 12 № 3 (2019) ; Актуальні питання фармацевтичної і медичної науки та практики; Том 12 № 3 (2019) ; 2409-2932 ; 2306-8094

    File Description: application/pdf

  7. 7
    Academic Journal

    Source: Drug development & registration; Том 8, № 1 (2019); 86-90 ; Разработка и регистрация лекарственных средств; Том 8, № 1 (2019); 86-90 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/652/647; Вахитова Ю. В., Антипина Е. И., Ямиданов Р. С., Хисамутдинова Р.Ю. Идентификация генов-мишеней 5-аминоэкзо-3-азатрицикло[5.2.1.02,6]декан-4-она на модели аритмии in vivo. Биоорганическая химия. 2011; 6(37): 9–11. Doi.org/10.1134/S1068162011060148.; Миронов А. Н., Бунатян Н. Д. Руководство по проведению доклинических исследований лекарственных средств. – М.: Гриф и К, 2012; 944 с.; Современные методы в биохимии / Под. ред. акад. В. Н. Ореховича. – М.: Медицина. 1977; С. 66–68.; Хисамутдинова Р. Ю., Сапожникова Т. А., Макара Н. ., Габдрахманова С. Ф., Зарудий Ф. С. Экспериментальное изучение антиаритмической активности и хронической токсичности 5-аминоэкзо-3-азатрицикло[5.2.1.02,6]декан-4-она. Разработка и регистрация лекарственных средств. 2015; 2(11): 90–93.; Цыпышева И. П., Ковальская А. В., Макара Н. С., Лобов А. Н., Петренко И. А., Галкин Е. Г., Сапожникова Т. А., Зарудий Ф. С., Юнусов М. С. Синтез и специфическая ноотропная активность производных (-)-цитизина, имеющих в структуре фрагменты карбамидов и тиокарбамидов. Химия природных соединений. 2012; 4: 565. Doi.org/10.1007/s10600-012-0329-7.; Martino M. V., Guandalini L., Mannelli L. C. Di, Menicatti M., Bartolucci G., Dei S., Manetti D., Teodori E., Ghelardini C., Romanelli M. Piperazines as nootropic agents: New derivatives of the potent cognition-enhancer DM235 carrying hydrophilic substituents. Bioorganic and Medicinal Chemistry. 2017; 25: 1795–1803. DOI:10.1016/j.bmc.2017.02.019.; Tsypysheva I. P., Koval’skaya A. V., Lobov A. N., Makara N. S., Petrova P. R., Farafontova E. I., Zainullina L. F., Vakhitova Yu. V., Zarudii F. S. Synthesis and nootropic activity of new 3-amino-12-nmethylcytisine derivatives. Chemistry of Natural Compounds. 2015; 5(51): 910–915. Doi.org/10.1007/s10600-015-1446-x.; Zveiniece L., Svalbe B., Veinberg G., Grinberga S., Vorona M., Kalvinsh I., Dambrova M. Investigation into stereoselective pharmacological activity of phenotropil. Basic and Clinical Pharmacology and Toxicology. 2011; 109: 407–412. Doi.org/10.1111/j.1742-7843.2011.00742.x.; https://www.pharmjournal.ru/jour/article/view/652

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20