Showing 1 - 20 results of 367 for search '"НЕФТЯНОЕ ЗАГРЯЗНЕНИЕ"', query time: 2.82s Refine Results
  1. 1
    Academic Journal

    Source: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».

  2. 2
    Academic Journal

    Source: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Contributors: The research was funded by Russian Foundation for Basic Research, project number 20-45-596018 (RFBR competition r_NOTs_Perm region), Исследования выполнены при поддержке Российского фонда фундаментальных исследований (проект №20-45-596018, конкурс РФФИ р_НОЦ_Пермский край)

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 1 (2023); 17-24 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 1 (2023); 17-24 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1208/613; Johnston J.E., Lim E., Roh H. Impact of upstream oil extraction and environmental public health: a review of the evidence // Sci. Total. Environ. 2019. Vol. 657. P. 187–199.; Костарев С.М. Формирование техногенных скоплений компонентов глубинных флюидов в приповерхностных массивах горных пород (на примере районов нефтедобычи Пермской области) // Известия ВУЗов. Нефть и газ. 2004. № 5. C. 132–143.; Костарев С.М., Бачурин Б.А., Одинцова Т.А. Методические проблемы оценки нефтяного загрязнения подземных вод // Нефтепромысловое дело. 2016. № 12. С. 52–56; Rodríguez-Urine M.L., Peña-Cabriales J.J., RiveraCruz M.C., Délano-Frier J.P. Native bacteria isolated from weathered petroleum oil-contaminated soils in Tabasco, Mexico, accelerate the degradation petroleum hydrocarbons in saline soil microcosms // Env. Tech. Innov. 2021. Vol. 23: 101781.; Kingston P. Long-term environmental impact of oil spills // Spill. Sci. Technol. Bull. 2002. Vol. 7. N 1–2. P. 53–61.; Fahrenfeld N.L., Reyes H.D., Eramo A., Akob D.M., Mumford A.C., Cozzarelli I.M. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics // Sci. Total Environ. 2016. Vol. 580. P. 1205–1213.; Avona A., Capadici M., Trapani D.Di., Giustra M.G., Lucchina P.G., Lumia L., Di Bella G., Rossetti S., Tonazi B., Viviani G. Hydrocarbons removal from real marine sediments: Analysis of degradation pathways and microbial community development during // Sci. Total Environ. 2022. Vol. 838: 156458.; Shaoping K., Zhiwewi D., Bingchen W., Huihui W., Jialiang L., Hongbo S. Changes of sensitive microbial community in oil polluted soil in the coastal area in Shandong, China for ecorestoration // Ecotox. Environ. Saf. 2021. Vol. 207: 111551.; Khan M.A.I., Biswas B., Smith E., Mahmud S.A., Hasan N.A., Khan M.A.W., Naidu R., Megharaj M. Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils // Ecotox. Environ. Saf. 2018. Vol. 156. P. 434–442; Liu Q., Tang J., Gao K., Gurav R., Giesy J.P. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China // Sci. Rep. 2017. Vol. 7: 14856.; Huang L., Te J., Jiang K., Wang Y., Li Y. Oil contamination drives the transformation of soil microbial communities: Co-occurrence pattern, metabolic enzymes and culturable // Ecotox. Environ. Saf. 2021. Vol. 225: 112740.; Зырин Н.Г., Орлов Д.С. Физико-химические методы исследования почв. М.: Изд-во Моск. ун-та, 1964. 348 с.; Bates S.T., Berg-Lyons J.G., Caporaso W.A., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil // ISME J. 2010. Vol. 5. N 5. Р. 908–917.; Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: Highresolution sample inference from Illumina amplicon data // Nat. Methods. 2016. Vol. 13. N 7. P. 581–583.; McMurdie P.J., Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data // PLoS One. 2013. Vol. 8. N 4: e61217; Wright E.S. Using DECIPHER v2.0 to Analyze big biological sequence data in R // R J. 2016. Vol. 8. N. 1. P. 352–359.; Caporaso J.G, Kuczynski J., Stombaugh J. et. al. QIIME allows analysis of highthroughput community sequencing data // Nat. Methods. 2010. Vol. 7. N 5. P. 335–336.; King G.M., Kostka J.E., Hazen T.C., Sobecky P.A. Microbial responses to the deepwater horizon oil spill: from coastal wetlands to the deep sea // Ann. Rev. Mar. Sci. 2015. Vol. 7. P. 377–401.; Cabello-Yeves P.J., Callieri C., Picazo A., Mehrshad M., Haro-Moreno J.M., Roda-Garcia J.J., Dzhembekova N., Slabakova V., Slabakova N., Moncheva S., Rodriguez-Valera F. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics // Environ. Microbiol. 2021. Vol. 16: 5.; Schwab L., Popp D., Nowack G., Bombach P., Vogt C., Richnow H.H. Structural analysis of microbiomes from salt caverns used for underground gas storage // Int. J. Hydrogen Energy. 2022. Vol. 47. N 47. P. 20684–20694.; Gillan D.C., Danis B. The archaebacterial communities in Antarctic bathypelagic sediments // DeepSea Res. II. 2007. Vol. 54. N 16–17. P. 1682–1690.; Ganesan M., Mani R., Sai S., Kasivelu G., Awasthi M.K., Rajagopal R., Azelee N.I.W., Selvi P.K., Chang S.W., Ravindra B. Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes // Chemosphere. 2022. Vol. 303: 134956.; Hou Y., Li S., Dong W., Yuan Y., Wang Y., Shen W., Li J., Cui Z. Community structure of a propanil-degrading consortium and the metabolic pathway of Microbacterium sp. Strain T4-7 // Int. Biodeter. Biodegrad. 2015. Vol. 105. P. 80–89.; Iminova L., Delegan Y., Frantsuzova E., Bogun A., Zvonarev A., Suzina N., Anbumani S., Solyanikova I. Physiological and biochemical characterization and genome analysis of Rhodococcus qingshengii strain 7B capable of crude oil degradation and plant stimulation // Biotech. Rep. 2022. Vol. 35: e00741.; Petrikov K., Delegan Y., Surin A., Ponamoreva O., Puntus I., Filonov A., Boronin A. Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure // Proc. Biochem. 2013. Vol. 48. N 5–6. P. 931–935.; Ma Y., Wang L., Shao Z. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer // Environ. Microbiol. 2006. Vol. 8. N 3. P. 455–465.

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Журнал інженерних наук, Vol 5, Iss 2, Pp H9-H17 (2018)

    File Description: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20