Showing 1 - 20 results of 122 for search '"НЕФРОПРОТЕКЦИЯ"', query time: 1.94s Refine Results
  1. 1
    Academic Journal

    Contributors: Исследование выполнено в рамках темы фундаментальных научных исследований «Защита органов оксидом азота в сердечно-сосудистой хирургии: технологическая поддержка (устройства синтеза и доставки), механизмы реализации защитных эффектов и влияние на клинические исходы» (№ 122123000017-3).

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 3 (2025); 40-50 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 3 (2025); 40-50 ; 2587-9537 ; 2306-1278 ; undefined

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1618/1041; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1618/1942; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1618/1943; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1618/1944; Amano K., Takami Y., Ishikawa H., Ishida M., Tochii M., Akita K., Sakurai Y., Noda M., Takagi Y. Lower body ischaemic time is a risk factor for acute kidney injury after surgery for type A acute aortic dissection. Interact Cardiovasc Thorac Surg. 2020;30(1):107-112. doi:10.1093/icvts/ivz220.; Wu H.B., Ma W.G., Zhao H.L., Zheng J., Li J.R., Liu O., Sun L.Z. Risk factors for continuous renal replacement therapy after surgical repair of type A aortic dissection. J Thorac Dis. 2017;9(4):1126-1132. doi:10.21037/jtd.2017.03.128.; Wang J., Yu W., Zhai G., Liu N., Sun L., Zhu J. Independent risk factors for postoperative AKI and the impact of the AKI on 30-day postoperative outcomes in patients with type A acute aortic dissection: an updated meta-analysis and meta-regression. J Thorac Dis. 2018;10(5):2590-2598. doi:10.21037/jtd.2018.05.47.; Ghincea C.V., Reece T.B., Eldeiry M., Roda G.F., Bronsert M.R., Jarrett M.J., Pal J.D., Cleveland J.C.Jr., Fullerton D.A., Aftab M. Predictors of Acute Kidney Injury Following Aortic Arch Surgery. J Surg Res. 2019;242:40-46. doi:10.1016/j.jss.2019.03.055.; Козлов Б.Н., Панфилов Д.С., Сондуев Э.Л., Лукинов В.Л. Предикторы ранних осложнений после протезирования восходящей аорты. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):108–117. doi:10.29001/2073-8552-2022-37-1-108-117.; Yan Y., Kamenshchikov N., Zheng Z., Lei C. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis. Nitric Oxide. 2024;146:64-74. doi:10.1016/j.niox.2024.03.004; Kamenshchikov N.O., Podoksenov Y.K., Kozlov B.N., Maslov L.N., Mukhomedzyanov A.V., Tyo M.A., Boiko A.M., Margolis N.Y. et al. The Nephroprotective Effect of Nitric Oxide during Extracorporeal Circulation: An Experimental Study. Biomedicines. 2024;12(6):1298. doi:10.3390/biomedicines12061298; Ostermann M., Kunst G., Baker E., Weerapolchai K., Lumlertgul N. Cardiac Surgery Associated AKI Prevention Strategies and Medical Treatment for CSA-AKI. J Clin Med. 2021;10(22):5285. doi:10.3390/jcm10225285; Nadim M.K., Forni L.G., Bihorac A., Hobson C., Koyner J.L., Shaw A., Arnaoutakis G.J., Ding X., et al. Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. J Am Heart Assoc. 2018;7(11):e008834. doi:10.1161/JAHA.118.008834; Ostermann M., Liu K. Pathophysiology of AKI. Best Pract Res Clin Anaesthesiol. 2017;31(3):305-314. doi:10.1016/j.bpa.2017.09.001; Wang Y., Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13(11):697-711. doi:10.1038/nrneph.2017.119.; Bro S, Bentzon JF, Falk E, et al. Chronic renal failure accelerates atherogenesis in apolipoprotein E-deficient mice. J Am Soc Nephrol. 2003;14(10):2466-74. doi:10.1097/01.asn.0000088024.72216.2e. PMID: 14514724.; Bellomo R., Auriemma S., Fabbri A., Andersen C.B., Olgaard K., Nielsen L.B. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs. 2008;31(2):166-178. doi:10.1177/039139880803100210; Arellano D.L. Acute Kidney Injury Following Cardiothoracic Surgery. Crit Care Nurs Clin North Am. 2019;31(3):407-417. doi:10.1016/j.cnc.2019.05.008; Wang J., Cong X., Miao M., Yang Y., Zhang J. Inhaled nitric oxide and acute kidney injury risk: a meta-analysis of randomized controlled trials. Ren Fail. 2021;43(1):281-290. doi:10.1080/0886022X.2021.1873805; Kamenshchikov N.O., Anfinogenova Y.J., Kozlov B.N., Svirko Y.S., Pekarskiy S.E., Evtushenko V.V., Lugovsky V.A., Shipulin V.M., Lomivorotov V.V., Podoksenov Y.K. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial. J Thorac Cardiovasc Surg. 2022;163(4):1393-1403.e9. doi:10.1016/j.jtcvs.2020.03.182.; Vermeulen Windsant I.C., Snoeijs M.G., Hanssen S.J., Altintas S., Heijmans J.H., Koeppel T.A., Schurink G.W., Buurman W.A., Jacobs M.J. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney Int. 2010;77(10):913-920. doi:10.1038/ki.2010.24; Kamenshchikov N.O., Duong N., Berra L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines. 2023;11(4):1085. doi:10.3390/biomedicines11041085.; Hu J., Spina S., Zadek F., Kamenshchikov N.O., Bittner E.A., Pedemonte J., Berra L. Effect of nitric oxide on postoperative acute kidney injury in patients who underwent cardiopulmonary bypass: a systematic review and meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9(1):129. doi:10.1186/s13613-019-0605-9; Ruan S.Y., Huang T.M., Wu H.Y., Wu H.D., Yu C.J., Lai M.S. Inhaled nitric oxide therapy and risk of renal dysfunction: a systematic review and meta-analysis of randomized trials. Crit Care. 2015;19(1):137. doi:10.1186/s13054-015-0880-2.; Гребенчиков, О., Филипповская, Ж., Забелина, Т., Филипповская Ж.С., Улиткина О.Н., Скрипкин Ю.В., Лихванцев В.В. Определение нитротирозина не позволяет оценить степень выраженности оксидантного стресса и прогнозировать вероятность развития ранних осложнений послеоперационного периода. Патология кровообращения и кардиохирургия. 2017; 21(2):77–84. doi:10.21688/1681-3472-2017-2-77-84; Wigner P., Szymańska B., Bijak M., Sawicka E., Kowal P., Marchewka Z., Saluk-Bijak J. Oxidative stress parameters as biomarkers of bladder cancer development and progression. Sci Rep. 2021;11(1):15134. doi:10.1038/s41598-021-94729-w.; Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315-424. doi:10.1152/physrev.00029.2006.; Kumar S., Saxena J., Srivastava V.K., Kaushik S., Singh H., Abo-El-Sooud K., Abdel-Daim M.M., Jyoti A., Saluja R. The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines (Basel). 2022;10(10):1575. doi:10.3390/vaccines10101575.; Mohiuddin I., Chai H., Lin P.H., Lumsden A.B., Yao Q., Chen C. Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006;133(2):143-9. doi:10.1016/j.jss.2005.10.008.; Cheng H., Sun J.Z., Ji F.H., Liu H. Prevention and Treatment of Cardiac Surgery Associated Acute Kidney Injury. J Anesth Perioper Med. 2016;3(1):42-51.; Liu Y., Guo W., Zhang J., Xu C., Yu S., Mao Z., Wu J., Ye C., Mei C., Dai B. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis. 2013;62(6):1058-67. doi:10.1053/j.ajkd.2013.05.014.; Lin X., Yuan J., Zhao Y., Zha Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol. 2015 Feb;28(1):7-16. doi:10.1007/s40620-014-0113-9.; Hirooka Y., Nozaki Y. Interleukin-18 in Inflammatory Kidney Disease. Front Med (Lausanne). 2021;8:639103. doi:10.3389/fmed.2021.639103.; Liang H., Xu F., Zhang T., Huang J., Guan Q., Wang H., Huang Q. Inhibition of IL-18 reduces renal fibrosis after ischemia-reperfusion. Biomed Pharmacother. 2018;106:879-889. doi:10.1016/j.biopha.2018.07.031.; Parikh C.R., Coca S.G., Thiessen-Philbrook H., Shlipak M.G., Koyner J.L., Wang Z., Edelstein C.L., Devarajan P., Patel U.D., Zappitelli M., Krawczeski C.D., Passik C.S., Swaminathan M., Garg A.X.; TRIBE-AKI Consortium. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011;22(9):1748-57. doi:10.1681/ASN.2010121302.

  2. 2
    Academic Journal

    Contributors: The study was conducted as part of the basic research project «Organ Protection with Nitric Oxide in Cardiovascular Surgery: Technological Support (Synthesis and Delivery Devices), Mechanisms of Protective Effects, and Impact on Clinical Outcomes» (No. 122123000017-3)., Исследование выполнили в рамках темы Фундаментальных научных исследований «Защита органов оксидом азота в сердечно-сосудистой хирургии: технологическая поддержка (устройства синтеза и доставки), механизмы реализации защитных эффектов и влияние на клинические исходы» (№ 122123000017-3).

    Source: General Reanimatology; Том 21, № 2 (2025); 34-41 ; Общая реаниматология; Том 21, № 2 (2025); 34-41 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2523/1934; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1123; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1124; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1125; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1126; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1127; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1128; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1144; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1145; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1146; https://www.reanimatology.com/rmt/article/downloadSuppFile/2523/1147; Clouse W. D., Hallett J. W. Jr, Schaff H. V., Gayari M. M., Ilstrup D. M., Melton L. J. 3rd. Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA. 1998; 280 (22): 1926–1929. DOI:10.1001/jama.280.22.1926. PMID: 9851478.; Olsson C., Thelin S., Ståhle E., Ekbom A., Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006; 114 (24): 2611–2618. DOI:10.1161/CIRCULATIONAHA.106.630400. PMID: 17145990.; Downey R. T., Aron R. A. Thoracic and thoracoabdominal aneurysms: etiology, epidemiology, and natural history. Anesthesiol Clin. 2022; 40 (4): 671–683. DOI:10.1016/j.anclin.2022.08.011. PMID: 36328622.; Ortega-Loubon C., Tamayo E., Jorge-Monjas P. Cardiac surgery-associated acute kidney injury: current updates and perspectives. J Clin Med. 2022; 11 (11): 3054. DOI:10.3390/jcm11113054. PMID: 35683442.; Isselbacher E. M. Thoracic and abdominal aortic aneurysms. Circulation. 2005; 111 (6): 816–828. DOI:10.1161/01.CIR.0000154569.08857.7A. PMID: 15710776.; Zhou Z., Cecchi A. C., Prakash S. K., Milewicz D. M. Risk factors for thoracic aortic dissection. Genes (Basel). 2022; 13 (10): 1814. DOI:10.3390/genes13101814. PMID: 36292699.; Козлов Б. Н., Панфилов Д. С., Базарбекова Б. А., Сондуев Э. Л., Бойко А. М. Непосредственные результаты хирургического лечения аневризмы восходящей аорты в сочетании со стенотическим поражением аортального клапана. Сибирский журнал клинической и экспериментальной медицины. 2023; 38 (3): 135–142. DOI:10.29001/2073-8552-2022-424.; Gambardella I., Gaudino M., Lau C., Munjal M., Di Franco A., Ohmes L. B., Hameedi F., et al. Contemporary results of hemiarch replacement. Eur J Cardiothorac Surg. 2017; 52 (2): 333–338. DOI:10.1093/ejcts/ezx071. PMID: 28387791.; Amano K., Takami Y., Ishikawa H., Ishida M., Tochii M., Akita K., Sakurai Y., et al. Lower body ischaemic time is a risk factor for acute kidney injury after surgery for type A acute aortic dissection. Interact Cardiovasc Thorac Surg. 2020; 30 (1): 107–112. DOI:10.1093/icvts/ivz220. PMID: 31501854.; Wu H. B., Ma W. G., Zhao H. L., Zheng J., Li J. R., Liu O., Sun L. Z. Risk factors for continuous renal replacement therapy after surgical repair of type A aortic dissection. J Thorac Dis. 2017; 9 (4): 1126–1132. DOI:10.21037/jtd.2017.03.128. PMID: 28523169.; Wang J., Yu W., Zhai G., Liu N., Sun L., Zhu J. Independent risk factors for postoperative AKI and the impact of the AKI on 30-day postoperative outcomes in patients with type A acute aortic dissection: an updated meta-analysis and meta-regression. J Thorac Dis. 2018; 10 (5): 2590–2598. DOI:10.21037/jtd.2018.05.47. PMID: 29997920.; Ghincea C. V., Reece T. B., Eldeiry M., Roda G. F., Bronsert M. R., Jarrett M. J., Pal J. D., et al. Predictors of acute kidney injury following aortic arch surgery. J Surg Res. 2019; 242: 40–46. DOI:10.1016/j.jss.2019.03.055. PMID: 31063910.; Arnaoutakis G. J., Vallabhajosyula P., Bavaria J. E., Sultan I., Siki M., Naidu S., Milewski R. K., et al. The impact of deep versus moderate hypothermia on postoperative kidney function after elective aortic hemiarch repair. Ann Thorac Surg. 2016; 102 (4): 1313–1321. DOI:10.1016/j.athoracsur.2016.04.007. PMID: 27318775.; Kamenshchikov N. O., Duong N., Berra L. Nitric oxide in cardiac surgery: a review article. Biomedicines. 2023; 11 (4): 1085. DOI:10.3390/biomedicines11041085. PMID: 37189703.; Kamenshchikov N. O., Anfinogenova Y. J., Kozlov B. N., Svirko Y. S., Pekarskiy S. E., Evtushenko V. V., Lugovsky V. A., et al. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: a randomized trial. J Thorac Cardiovasc Surg. 2022; 163 (4): 1393–1403.e9. DOI:10.1016/j.jtcvs.2020.03.182. PMID: 32718702.; Kellum J. A., Lameire N. KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013; 17 (1): 204. DOI:10.1186/cc11454. PMID: 23394211.; Сборник тезисов Cъезд Федерации анестезиологов и реаниматологов, Форум анестезиологов и реаниматологов России (ФАРР-2024), СПб: 2024: 25. https://cdn.congressfar.ru/140/material.pdf. (in Russ.).; Arellano D. L. Acute kidney injury following cardiothoracic surgery. Crit Care Nurs Clin North Am. 2019; 31 (3): 407–417. DOI:10.1016/j.cnc.2019.05.008. PMID: 31351558.; Wang J., Cong X., Miao M., Yang Y., Zhang J. Inhaled nitric oxide and acute kidney injury risk: a meta-analysis of randomized controlled trials. Ren Fail. 2021; 43 (1): 281–290. DOI:10.1080/0886022X.2021.1873805. PMID: 33494652.; Minneci P. C., Deans K. J., Zhi H., Yuen P. S., Star R. A., Banks S. M., Schechter A. N., et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest. 2005; 115 (12): 3409–17. DOI:10.1172/JCI25040. PMID: 16294219.; Troncy E., Francoeur M., Salazkin I., Yang F., Charbonneau M., Leclerc G., Vinay P., Blaise G. Extra-pulmonary effects of inhaled nitric oxide in swine with and without phenylephrine. Br J Anaesth. 1997; 79 (5): 631–640. DOI:10.1093/bja/79.5.631. PMID: 9422904.; Ross J. T., Robles A. J., Mazer M. B., Studer A. C., Remy K. E., Callcut R. A. Cell-free hemoglobin in the pathophysiology of trauma: a scoping review. Crit Care Explor. 2024; 6 (2): e1052. DOI:10.1097/CCE.0000000000001052. PMID: 38352942.; Kamenshchikov N. O., Diakova M. L., Podoksenov Y. K., Churilina E. A., Rebrova T. Y., Akhmedov S. D., Maslov L. N., et al. Potential mechanisms for organoprotective effects of exogenous nitric oxide in an experimental study. Biomedicines. 2024; 12 (4): 719. DOI:10.3390/biomedicines12040719. PMID: 38672075.; Те М. А., Каменщиков Н. О., Подоксенов Ю. К., Мухомедзянов А. В., Маслов Л. Н., Козлов Б. Н. Влияние донации оксида азота на выраженность митохондриальной дисфункции почечной ткани при моделировании искусственного кровообращения: экспериментальное исследование. Вестник интенсивной терапии им. А. И. Салтанова. 2023; 4: 176–184. DOI:10.21320/1818-474X-2023-4-176-184.; Hu J., Spina S., Zadek F., Kamenshchikov N. O., Bittner E. A., Pedemonte J., Berra L. Effect of nitric oxide on postoperative acute kidney injury in patients who underwent cardiopulmonary bypass: a systematic review and meta-analysis with trial sequential analysis. Ann Intensive Care. 2019; 9 (1): 129. DOI:10.1186/s13613-019-0605-9. PMID: 31754841.; Yan Y., Kamenshchikov N., Zheng Z., Lei C. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: a systematic review and meta-analysis. Nitric Oxide. 2024; 146: 64–74. DOI:10.1016/j.niox.2024.03.004. PMID: 38556145.; de Geus H. R., Ronco C., Haase M., Jacob L., Lewington A., Vincent J. L. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage. J Thorac Cardiovasc Surg. 2016; 151 (6): 1476–1481. DOI:10.1016/j.jtcvs.2016.01.037. PMID: 26952930.; Mostafa E. A., Shahin K. M., El Midany A. A. H., Hassaballa A. S., El-Sokkary I. N., Gamal M. A., Elsaid M. E., et al. Validation of cardiac surgery-associated neutrophil gelatinase-associated lipocalin score for prediction of cardiac surgery-associated acute kidney injury. Heart Lung Circ. 2022; 31 (2): 272–277. DOI:10.1016/j.hlc.2021.05.084. PMID: 34219024.; Haase M., Bellomo R., Devarajan P., Schlattmann P., Haase-Fielitz A.; NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009; 54 (6): 1012–1024. DOI:10.1053/j.ajkd.2009.07.020. PMID: 19850388.; Zhou F., Luo Q., Wang L., Han L. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg. 2016; 49 (3): 746–755. DOI:10.1093/ejcts/ezv199. PMID: 26094017.; Дымова О. В., Еременко А. А., Минболатова Н. М. Нейтрофильный желатиназа-ассоциированный липокалин (UNGAL) в ранней диагностике и прогнозировании острого почечного повреждения, СПОН и исходов лечения у кардиохирургических пациентов. Анестезиология и реаниматология. 2017; 62 (5): 347–351. DOI:10.18821/0201-7563-2017-62-5-347-351.; Wen Y., Parikh C. R. Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci. 2021; 58 (5): 354–368. DOI:10.1080/10408363.2021.1879000. PMID: 33556265.; Schrezenmeier E. V., Barasch J., Budde K., Westhoff T., Schmidt-Ott K. M. Biomarkers in acute kidney injury — pathophysiological basis and clinical performance. Acta Physiol (Oxf). 2017; 219 (3): 554–572. DOI:10.1111/apha.12764. PMID: 27474473.; Pode Shakked N., de Oliveira M. H. S., Cheruiyot I., Benoit J. L., Plebani M., Lippi G., Benoit S. W., et al. Early prediction of COVID-19-associated acute kidney injury: are serum NGAL and serum Cystatin C levels better than serum creatinine? Clin Biochem. 2022; 102: 1–8. DOI:10.1016/j.clinbiochem.2022.01.006. PMID: 35093314.; Lan H., Liu X., Yang D., Zhang D., Wang L., Hu L. Comparing diagnostic accuracy of biomarkers for acute kidney injury after major surgery: a PRISMA systematic review and net-work meta-analysis. Medicine (Baltimore). 2023; 102 (40): e35284. DOI:10.1097/MD.0000000000035284. PMID: 37800811.; https://www.reanimatology.com/rmt/article/view/2523

  3. 3
  4. 4
  5. 5
    Academic Journal

    Contributors: The work was supported by the comprehensive program of fundamental scientific research of the Russian Academy of Sciences within the framework of the fundamental theme of the Research Institute of the CPSU No. 0419-2024-0002 «Perioperative neuroprotective strategies in surgery of congenital heart defects» with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of the national project «Science and Universities». State registration number in R&D: 124041800039-2., Работа выполнена при поддержке комплексной программы фундаментальных научных исследований РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2024-0002 «Периоперационные нейропротективные стратегии в хирургии врожденных пороков сердца» при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках национального проекта «Наука и университеты». Номер государственного учета в НИОКТР: 124041800039-2.

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 6 (2024); 122-129 ; Вестник анестезиологии и реаниматологии; Том 21, № 6 (2024); 122-129 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/1115/771; Балахнин Д. Г., Чермных И. И., Ивкин А. А. и др. Проблема острого повреждения почек у кардиохирургических пациентов // Вестник анестезиологии и реаниматологии. – 2022. – Т. 19, № 5. – С. 93–101. https://doi.org/10.21292/2078-5658-2022-19-5-93-101.; Баутин А. Е., Маричев А. О., Карпова Л. И. и др. Факторы, определяющие динамику содержания свободного гемоглобина в плазме крови при выполнении кардиохирургических вмешательств в условиях искусственного кровообращения: проспективное наблюдательное исследование // Вестник интенсивной терапии имени А. И. Салтанова. – 2024. – № 1. – С. 69–81. https://doi.org/10.21320/1818-474X-2024-1-69-81.; Бойко А. М., Каменщиков Н. О., Мирошниченко А. Г. и др. Влияние доставки оксида азота на повреждение почек при моделировании искусственного кровообращения с циркуляторным арестом в эксперименте // Фундаментальная и клиническая медицина. – 2023. – Т. 8, № 3. – С. 18–25. https://doi.org/10.23946/2500-0764-2023-8-3-18-25.; Деревягина О. С., Нароган М. В., Иванец Т. Ю. и др. Острое повреждение почек у недоношенных детей: частота, клинические особенности, ассоциированные факторы и состояния // Неонатология: Новости. Мнения. Обучение. – 2021. – Т. 34, № 4. – С. 11–19. https://doi.org/10.33029/2308-2402-2021-9-4-12-19.; Радовский А. М., Воротынцев И. В., Атласкин А. А. и др. Воздействие высокой концентрации оксида азота на оксигенаторы аппаратов искусственного кровообращения (экспериментальное исследование) // Общая реаниматология. – 2024. – Т. 20, № 1. – С. 50–62. https://doi.org/10.15360/1813-9779-2024-1-2351.; Тё М. А., Каменщиков Н. О., Подоксенов Ю. К. и др. Влияние доставки оксида азота на энергетическое обеспечение почечной ткани при проведении искусственного кровообращения: экспериментальное исследование // Сибирский журнал клинической и экспериментальной медицины. – 2024. – Т. 39, № 1. – С. 163–170. https://doi.org/10.29001/2073-8552-2022-592.; Тё М. А., Каменщиков Н. О., Подоксенов Ю. К. и др. Влияние доставки оксида азота на процессы апоптоза, некроптоза и пироптоза в почечной паренхиме при моделировании искусственного кровообращения: экспериментальное исследование // Вестник анестезиологии и реаниматологии. – 2024. – Т. 21, № 3. – С. 26–33. https://doi.org/10.24884/2078-5658-2024-21-3-26-33.; Abosamak M. F., Lippi G., Benoit S. W. et al. Bladder urine oxygen partial pressure monitoring: Could it be a tool for early detection of acute kidney injury? // Egypt J Anaesthesia. – 2021. – Vol. 37, № 1. – P. 43–49. https://doi.org/10.1080/11101849.2021.187868.; Azem K., Novakovsky D., Krasulya B. et al. Effect of nitric oxide delivery via cardiopulmonary bypass circuit on postoperative oxygenation in adults undergoing cardiac surgery (NOCARD trial): a randomised controlled trial // Eur J Anaesthesiol. – 2024. – Vol. 41, № 9. – P. 677–686. https://doi.org/10.1097/EJA.0000000000002022.; Baylis C., Qiu C. Importance of nitric oxide in the control of renal hemodynamics // Kidney Int. – 1996. – Vol. 49, № 6. – P. 1727–1731. https://doi.org/10.1038/ki.1996.256.; Broman L. M., Carlström M., Källskog Ö. et al. Effect of nitric oxide on renal autoregulation during hypothermia in the rat // Pflugers Arch. – 2017. – Vol. 469, № 5–6. – P. 669–680. https://doi.org/10.1007/s00424-017-1967-1.; Broman M., Källskog Ö., Kopp U. C. et al. Influence of the sympathetic nervous system on renal function during hypothermia // Acta Physiol Scand. – 1998. – Vol. 163, № 3. – P. 241–249. https://doi.org/10.1046/j.1365-201x.1998.00356.x.; Carlström M., Wilcox C. S., Arendshorst W. J. Renal autoregulation in health and disease // Physiol Rev. – 2015. – Vol. 95, № 2. – P. 405–511. https://doi.org/10.1152/physrev.00042.2012.; Cavalcante C. T. M. B., Cavalcante M. B., Castello Branco K. M. P. et al. Biomarkers of acute kidney injury in pediatric cardiac surgery // Pediatr Nephrol. – 2022. – Vol. 37, № 1. – P. 61–78. https://doi.org/10.1007/s00467-021-05094-9.; Cherry A. D., Hauck J. N., Andrew B. Y. et al. Intraoperative renal resistive index threshold as an acute kidney injury biomarker // J Clin Anesth. – 2020. – № 61. – P. 109626. https://doi.org/10.1016/j.jclinane.2019.109626.; Daiber A., Xia N., Steven S. et al. New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease // Int J Mol Sci. – 2019. – Vol. 20, № 1. – P. 187. https://doi.org/10.3390/ijms20010187.; Deuel J. W., Schaer C. A., Boretti F. S. et al. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response // Cell Death Dis. – 2016. – Vol. 7, № 1. – P. e2064. https://doi.org/10.1038/cddis.2015.392.; Galić S., Milošević D., Filipović-Grčić B. et al. Early biochemical markers in the assessment of acute kidney injury in children after cardiac surgery // Ther Apher Dial. – 2022. – Vol. 26, № 3. – P. 583–593. https://doi.org/10.1111/1744-9987.13736.; Galletti P. M., Brecher G. A. Heart-lung bypass: principles and techniques of extracorporeal circulation. – New York: Grune & Stratton, 1962.; Ghidini F., Benetti E., Zucchetta P. et al. Transcutaneous near-infrared spectroscopy (NIRS) for monitoring kidney and liver allograft perfusion // Int J Clin Pract. – 2021. – Vol. 75, № 5. – P. e14034. https://doi.org/10.1111/ijcp.14034.; Greenberg J. W., Hogue S., Raees M. A. et al. Exogenous nitric oxide delivery protects against cardiopulmonary bypass associated acute kidney injury: Histologic and serologic evidence from an ovine model // J Thorac Cardiovasc Surg. – 2023. – Vol. 166, № 5. – P. e164–e173. https://doi.org/10.1016/j.jtcvs.2023.03.030.; Jacob K. A., Leaf D. E. Prevention of cardiac surgery-associated acute kidney injury: a review of current strategies // Anesthesiol Clin. – 2019. – Vol. 37, № 4. – P. 729–749. https://doi.org/10.1016/j.anclin.2019.08.007.; Jha V., Al-Ghamdi S. M. G, Li G. et al. Global economic burden associated with chronic kidney disease: a pragmatic review of medical costs for the inside CKD research programme // Adv Ther. – 2023. – Vol. 40, № 10. – P. 4405–4420. https://doi.org/10.1007/s12325-023-02608-9.; Kamenshchikov N. O., Anfinogenova Y. J., Kozlov B. N. et al. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: A randomized trial // J Thorac Cardiovasc Surg. – 2022. – Vol. 163, № 4. – P. 1393–1403.e9. https://doi.org/10.1016/j.jtcvs.2020.03.182.; Kolcz J., Karnas E., Madeja Z. et al. The cardioprotective and anti-inflammatory effect of inhaled nitric oxide during Fontan surgery in patients with single ventricle congenital heart defects: a prospective randomized study // J Intensive Care. – 2022. – Vol. 10, № 1. – P. 48. https://doi.org/10.1186/s40560-022-00639-y.; Kraft F., Schmidt C., Van Aken H. et al. Inflammatory response and extracorporeal circulation // Best Pract Res Clin Anaesthesiol. – 2015. – Vol. 29, № 2. – P. 113–123. https://doi.org/10.1016/j.bpa.2015.03.001.; Kwiatkowski D. M., Krawczeski C. D. Acute kidney injury and fluid overload in infants and children after cardiac surgery // Pediatr Nephrol. – 2017. – Vol. 32, № 9. – P. 1509–1517. https://doi.org/10.1007/s00467-017-3643-2.; Lee H. M., Choi J. W., Choi M. S. et al. Role of nitric oxide and protein s-nitrosylation in ischemia-reperfusion injury // Antioxidants (Basel). – 2021. – Vol. 11, № 1. – P. 57. https://doi.org/10.3390/antiox11010057.; Lundberg J. O., Weitzberg E. Nitric oxide signaling in health and disease // Cell. – 2022. – Vol. 185, № 16. – P. 2853–2878. https://doi.org/10.1016/j.cell.2022.06.010.; Minneci P. C., Deans K. J., Zhi H. et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin // J Clin Invest. – 2005. – Vol. 115, № 12. – P. 3409–3417. https://doi.org/10.1172/JCI25040.; Schuermans A., Van den Eynde J., Mekahli D. et al. Long-term outcomes of acute kidney injury in children // Curr Opin Pediatr. – 2023. – Vol. 35, № 2. – P. 259–267. https://doi.org/10.1097/MOP.0000000000001202.; Sun Q., Yue J., Liang P. Killer hiding under normal oxygen saturation: a case report about methemoglobinemia // Transl Pediatr. – 2022. – Vol. 11, № 6. – P. 1058–1062. https://doi.org/10.21037/tp-21-588. PMID: 35800286; PMCID: PMC9253941.; Taylor C.T., Moncada S. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia // Arterioscler Thromb Vasc Biol. – 2010. – Vol. 30, № 4. – P. 643–647. https://doi.org/10.1161/ATVBAHA.108.181628.; Vermeulen Windsant I. C., de Wit N. C., Sertorio J. T. et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage // Front Physiol. – 2014. – № 5. – P. 340. https://doi.org/10.3389/fphys.2014.00340.; Villacorta L., Gao Z., Schopfer F. J. et al. Nitro-fatty acids in cardiovascular regulation and diseases: characteristics and molecular mechanisms // Front Biosci (Landmark Ed). – 2016. – Vol. 21, № 4. – P. 873–889. https://doi.org/10.2741/4425.; Vuong T. A., Rana M. S., Moore B. et al. Association between exogenous nitric oxide given during cardiopulmonary bypass and the incidence of postoperative kidney injury in children // J Cardiothorac Vasc Anesth. – 2022. – Vol. 6, № 8. – P. 2352–2357. https://doi.org/10.1053/j.jvca.2021.10.007.; Wang J., Cong X., Miao M. et al. Inhaled nitric oxide and acute kidney injury risk: a meta-analysis of randomized controlled trials // Ren Fail. – 2021. – Vol. 43, № 1. – P. 281–290. https://doi.org/10.1080/0886022X.2021.1873805.; Yaqub S., Hashmi S., Kazmi M. K. et al. A Comparison of AKIN, KDIGO, and RIFLE Definitions to Diagnose Acute Kidney Injury and Predict the Outcomes after Cardiac Surgery in a South Asian Cohort // Cardiorenal Med. – 2022. – Vol. 12, № 1. – P. 29–38. https://doi.org/10.1159/000523828.; Yu Y., Li C., Zhu S. et al. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review // Eur J Med Res. – 2023. – Vol. 28, № 1. – P. 45. https://doi.org/10.1186/s40001-023-00990-2.

  6. 6
  7. 7
    Academic Journal

    Authors: L.I. Vakulenko

    Source: Zdorovʹe Rebenka, Vol 13, Iss 2, Pp 165-170 (2018)
    CHILD`S HEALTH; Том 13, № 2 (2018); 165-170
    Здоровье ребенка-Zdorovʹe rebenka; Том 13, № 2 (2018); 165-170
    Здоров'я дитини-Zdorovʹe rebenka; Том 13, № 2 (2018); 165-170

    File Description: application/pdf

  8. 8
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 3 (2023); 99-106 ; Российский вестник перинатологии и педиатрии; Том 68, № 3 (2023); 99-106 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1832/1383; Amanullah F., Malik A.A., Zaidi Z. Chronic kidney disease causes and outcomes in children: Perspective from a LMIC setting. PLoS One 2022; 17(6): 1–9. DOI:10.1371/journal.pone.0269632; Webster A.C., Nagler E.V., Morton R.L., Masson P. Chronic Kidney Disease. Lancet 2017; 389(10075): 1238–1252. DOI:10.1016/S0140–6736(16)32064–5; Agarwal A. Nephrology-Taking the Lead. Clin J Am Soc Nephrol 2021; 16(7): 1113–1116. DOI:10.2215/CJN.20061220; Hall Y.N. Social Determinants of Health: Addressing Unmet Needs in Nephrology. Am J Kidney Dis 2018; 72(4): 582–591. DOI:10.1053/j.ajkd.2017.12.016; Long D.A., Fink E.L. Transitions from short to long-term outcomes in pediatric critical care: considerations for clinical practice. Transl Pediatr 2021; 10(10): 2858–2874. DOI:10.21037/tp-21–61; Coleman C., Tambay Perez A., Selewski D.T., Steflik H.J. Neonatal Acute Kidney Injury. Front Pediatr 2022; 10: 842544. DOI:10.3389/fped.2022.842544; Chen C.C., Yu T., Chou H.H., Chiou Y.Y., Kuo P.L. Premature birth carries a higher risk of nephrotic syndrome: a cohort study. Sci Rep 2021; 11(1): 20639. DOI:10.1038/s41598–021–00164–2; Rodriguez M.M. Congenital Anomalies of the Kidney and the Urinary Tract (CAKUT). Fetal Pediatr Pathol 2014; 33(5–6): 293–320. DOI:10.3109/15513815.2014.959678; Ye M., Wang C., Li L., Zhao Q., Peng Y., Liu H. The influences of α-hemolytic Streptococcus on class switching and complement activation of human tonsillar cells in IgA nephropathy. Immunol Res 2022; 70(1): 86–96. DOI:10.1007/s12026–021–09223–2; Pekuz S., Soysal A., Akkoc G., Atıcı S., Yakut N., Gelmez G.A. et al. Prevalence of Nasopharyngeal Carriage, Serotype Distribution, and Antimicrobial Resistance of Streptococcus pneumoniae among Children with Chronic Diseases. Jpn J Infect Dis 2019; 72(1): 7–13. DOI:10.7883/yoken.JJID.2017.410; Папаян А.В., Савенкова Н.Д. Клиническая нефрология детского возраста. Санкт-Петербург: Левша, 2008; 600; Игнатова М.С., Длин В.В. Нефротический синдром: прошлое, настоящее и будущее. Российский вестник перинатологии и педиатрии 2017; 62(6): 29–44.; Седашкина О.А., Куликова Н.И., Маковецкая Г.А., Печкуров Д.В. Молекулярно-генетические аспекты прогрессирования хронической болезни почек у детей (обзор литературы). Успехи современного естествознания 2015; 9(1): 81–83.; Седашкина О.А., Маковецкая Г.А., Печкуров Д.В. Роль некоторых генетических факторов в прогрессировании хронической болезни почек у детей. Практическая медицина 2015; 7(92): 72–77.; Юрьева Э.А., Длин В.В. Руководство по клинико-лабораторной диагностике заболеваний почек у детей. Москва: Оверлей, 2020; 244.; Yilmaz B., Ozkaya O., Islek I. Nephrotic syndrome following hepatitis B vaccination: A 17-year follow-up. North Clin Istanb 2021; 8(2): 196–198. DOI:10.14744/nci.2019.13281; Nakazawa T., Uchimura Y., Hirai H., Togashi Y., Oyama A., Inaba A. et al. New-onset pediatric nephrotic syndrome following Pfizer-BioNTech SARS-CoV-2 vaccination: a case report and literature review. CEN Case Rep 2022; 11(2): 242–246. DOI:10.1007/s13730–021–00656–0; Леонидова Г.В., Басова Е.А. Неравенство возможностей: фактор «родительской базы» (на материалах социологического опроса населения СЗФО) Проблемы развития территории 2020; 1(105): 7–21.; Krissberg J.R., Sutherland S.M., Chamberlain L.J., Wise P.H. Policy in pediatric nephrology: successes, failures, and the impact on disparities. Pediatr Nephrol 2021; 36(8): 2177–2188. DOI:10.1007/s00467–020–04755–5; Orantes-Navarro C.M., Almaguer-López M.M., Alonso-Galbán P., Díaz-Amaya M., Hernández S., Herrera-Valdés R. et al. The Chronic Kidney Disease Epidemic in El Salvador: A Cross-Sectional Study. MEDICC Rev 2019; 21(2–3): 29–37. DOI:10.37757/MR2019.V21.N2–3.7; James M.T., Bhatt M., Pannu N., Tonelli M. Long-term outcomes of acute kidney injury and strategies for improved care. Nat Rev Nephrol 2020; 16(4): 193–205. DOI:10.1038/s41581–019–0247-z; Calderon-Margalit R., Golan E., Twig G., Leiba A., Tzur D., Afek A. et al. History of Childhood Kidney Disease and Risk of Adult End-Stage Renal Disease. N Engl J Med 2018; 378(5): 428–438. DOI:10.1056/NEJMoa1700993; Şafak S., Çalışkan Y. Primary Glomerular Diseases and Novel Biomarkers. Turk J Nephrol 2022; 31(2): 93–102. DOI:10.5152/turkjnephrol.2022.21253; Маковецкая Г.А., Мазур Л.И., Борисова О.В., Баринов В.Н., Седашкина О.А., Баранникова Е.А. Волчаночный нефрит в педиатрической практике: 20-летний опыт наблюдений. Российский вестник перинатологии и педиатрии 2020; 65(6): 108–115.; Mishra K., Kanval C.K., Cadjan C.V., Bxaskar B., Pat B. Predictors of poor outcome in children with steroid sensitive nephrotic syndrome. Nephrologia 2018; 38(4): 420–424. DOI:10.1016/j.nefro.2017.11.022; Golay M., Douillard A., Nagot N., Fila M., Ichay L., Dalla Vale F. et al. Syndrome nephrotique idiopathique corticodependant de l’enfant: facteurs predictifs de recours a un traitement immunosuppresseur Childhood steroid-dependent idiopathic nephrotic syndrome: Predictive factors for the need of immunosuppressive treatment. Arch Pediatr 2017; 24(11): 1096–1102. DOI:10.1016/j.arcped.2017.08.013; Yamaguchi T., Tsuji S., Akagawa S., Akagawa Y., Kino J., Yamanouchi S. et al. Clinical Significance of Probiotics for Children with Idiopathic Nephrotic Syndrome. Nutrients 2021; 13(2): 365. DOI:10.3390/nu13020365; Levey A.S., Titan S.M., Powe N.R., Coresh J., Inker L.A. Kidney Disease, Race, and GFR Estimation. Clin J Am Soc Nephrol 2020; 15(8): 1203–1212. DOI:10.2215/CJN.12791019; Маковецкая Г.А., Мазур Л.И., Балашова Е.А., Куликова Н.И., Баринов В.Н., Терехин С.С. Опыт работы Самарского областного детского уронефрологического центра. Педиатрия 2016; 95(5): 76–81.; Морозова О.Л., Ростовская В.В., Мальцева Л.Д., Морозова Н.С., Бадаева А.В., Макарова В.Д. и др. Диагностика острого повреждения почек с позиций молекулярной медицины. Педиатрия 2019; 98 (5):128–135.; Маковецкая Г.А., Мазур Л.И., Балашова Е.А., Терехин С.С. Врожденные обструктивные уропатии у детей: нефропротективная стратегия. Педиатрия. Журнал им. Г.Н. Сперанского 2017; 96(5): 38–43.; Саганова Е.С., Зубина И.М., Богданова Е.О., Галкина О.В., Сиповский В.Г., Смирнов А.В. Диагностическое значение экскреции биомаркеров в оценке морфологических повреждений при первичных гломерулопатиях. Терапевтический архив 2021; 93 (6): 699–705.; Ahmed H.M., Morgan D.S., Doudar N.A., Naguib M.S. High Serum Endothelin-1 Level is Associated with Poor Response to Steroid Therapy in Childhood-Onset Nephrotic Syndrome. Saudi J Kidney Dis Transpl 2019; 30(4): 769–774. DOI:10.4103/1319–2442.265451; Chashmniam S., Kalantari S., Nafar M., Boroumandnia N. The metabolomics signature associated with responsiveness to steroid therapy in focal segmental glomerulosclerosis: a pilot study. Rev Invest Clin 2019; 71(2): 106–115. DOI:10.24875/RIC.18002668; Suresh C.P., Saha A., Kaur M, Kumar R., Dubey N.K., Basak T. et al. Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome. Clin Exp Nephrol 2016; 20(2): 273–283.DOI:10.1007/s10157–015–1162–7; Печкуров Д.В., Полканова В.А., Воронина Е.Н., Порецкова Г.Ю. Ранняя диагностика хронической болезни почек у детей и нефропротекция. Практическая медицина 2022; 20(1): 12–20.; Шулутко Б.И., Зус Б.А. Гломерулонефрит сегодня. Арх Патол 1987; 49(1): 79–82.; Oda T., Yoshizawa N. Factors Affecting the Progression of Infection-Related Glomerulonephritis to Chronic Kidney Disease. 2021; 22(2): 905. DOI:10.3390/ijms22020905; Зоркин С.Н., Гурская А.С., Баязитов Р.Р., Борисова С.А., Карпачев С.А., Шахновский Д.С. и др. Предикторы эффективности лечения пузырно-мочеточникового рефлюкса у детей. Педиатрия им. Г.Н. Сперанского 2022; 101(2): 92–95.; Sims Sanyahumbi A., Colquhoun S., Wyber R., Carapetis J.R. Global Disease Burden of Group A Streptococcus. https:// www.ncbi.nlm.nih.gov/books/NBK333415 / Ссылка активна на 4.01.2023.; Kanwal S., Vaitla P. Streptococcus Pyogenes Updated 2022 Aug 1. In: StatPearls Internet. Treasure Island (FL): Stat-Pearls Publishing, 2022 https://www.ncbi.nlm.nih.gov/books/NBK554528 / Ссылка активна на 14.04.2023.; Stenvinkel P., Shiels P.G., Painer J., Miranda J.J., Natterson-Horowitz B., Johnson R.J. A planetary health perspective for kidney disease. Kidney Int 2020; 98(2): 261–265. DOI:10.1016/j.kint.2020.03.024; Постановление Правительства Российской Федерации от 08.02.2022 № 133 «Об утверждении Федеральной научно-технической программы в области экологического развития Российской Федерации и климатических изменений на 2021–2030 годы».; Kibria G.M.A., Crispen R. Prevalence and trends of chronic kidney disease and its risk factors among US adults: An analysis of NHANES 2003–18. Prev Med Rep 2020; 1(20): 101193. DOI:10.1016/j.pmedr.2020.101193; Rodig N.M., Roem J., Schneider M.F., Seo-Mayer P.W., Reidy K.J., Kaskel F.J. et al. Longitudinal outcomes of body mass index in overweight and obese children with chronic kidney disease. Pediatr Nephrol 2021; 36(7): 1851–1860. DOI:10.1007/s00467–020–04907–7; Robinson C., Hessey E., Nunes S., Dorais M., Chanchlani R., Lacroix J. et al. Acute kidney injury in the pediatric intensive care unit: outpatient follow-up. Pediatr Res 2022; 91(1): 209–217. DOI:10.1038/s41390–021–01414–9; Montinaro V., Gallieni M., Montinaro A., Rella F., Coppari E., Miliani R. et al. Social media for continuing education in nephrology. Myth or reality?. G Ital Nefrol 2021; 38(4): 2021–vol4.; Pandya A., Elrggal M.E., Jhaveri K.D. Use of Semiprivate Smartphone Communication Applications in Nephrology Education. Semin Nephrol 2020; 40(3): 303–308. DOI:10.1016/j.semnephrol.2020.04.010; Raff A.C. Great nephrologists begin with great teachers: update on the nephrology curriculum. Curr Opin Nephrol Hypertens 2021; 30(2): 215–222. DOI:10.1097/MNH.0000000000000676

  11. 11
    Academic Journal

    Contributors: Статья подготовлена по результатам выполнения ПНИ 12 «Управление рисками у пациентов с нарушениями углеводного обмена при плановых чрескожных коронарных вмешательствах».

    Source: Complex Issues of Cardiovascular Diseases; Том 11, № 1 (2022); 124-134 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 1 (2022); 124-134 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1046/639; Карева Е.Н. Эволюция сартанов или все ли сартаны одинаковы? Клиническая фармакология и терапия. 2016; 25(3): 11-21.; Мартынюк Т.В., Чазова И.Е. Роль блокатора рецепторов ангиотензина телмисартана в лечении артериальной гипертонии. Кардиологический вестник. 2017; (3): 76-82.; Dahlof В., Devereux R.B., Kjeldsen S.E., Julius S., Beevers G., de Faire U., Fyhrquist F., Ibsen H., Kristiansson K., Lederballe-Pedersen O., Lindholm L.H., Nieminen M.S., Omvik P., Oparil S., Wedel H.; LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002; 359(9311): 995-1003. doi:10.1016/S0140-6736(02)08089-3.; Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A. et al. 2013 ESC guidelines on the management of stable coronary artery. Eur Heart J. 2013; 34: 2949-3003. doi:10.1093/eurheartj/eht296.; Косарев В.В., Бабанов С.А. Особенности клинической фармакологии сартанов. Русский медицинский журнал. 2012; 20(28): 1427-1432.; Schwalm J.D., McCready T., Lopez-Jaramillo P., Yusoff K., AttaranA., Lamelas P Camacho PA, Majid F, Bangdiwala SI, Thabane L, Islam S, McKee M, Yusuf S. A community-based comprehensive intervention to reduce cardiovascular risk in hypertension (HOPE 4): a cluster-randomised controlled trial. Lancet. 2019; 394(10205): 1231-1242. doi:10.1016/S0140-6736(19)31949-X.; Fox K.M. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomased, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003; 362(9386); 782-788. doi:10.1016/s0140-6736(03)14286-9.; Bots M.L., Remme W.J., Luscher T.F., Fox K.M., Bertrand M., Ferrari R., Simoons M.L., Grobbee D.E.; EUROPA-PERFECT Investigators. ACE inhibition and endothelial function: main findings of PERFECT, a sub-study of the EUROPA trial. Cardiovasc Drugs Ther. 2007; 21(4): 269279. doi:10.1007/s10557-007-6041-3.; ONTARGET Investigators,Yusuf S., Teo K.K., Pogue J., Dyal L., Copland I., Schumacher H., Dagenais G., Sleight P., Anderson C. Telmisartan, ramipril or both in patients at high risk for vascular events. N Engl J Med. 2008; 358(15): 15471559. doi:10.1056/NEJMoa0801317.; Suzuki T., Nozawa T., Fujii N., Sobajima M., Ohori T., Shida T., Matsuki A, Kameyama T, Inoue H. Combination therapy of candesartan with statin inhibits progression of atherosclerosis more than statin alone in patients with coronary artery disease. Coron Artery Dis. 2011; 22(5): 352-335. doi:10.1097/MCA.0b013e328346b8a2.; Джаиани Н.А. Применение кандесартана в кардиологической практике. Медицинский совет. 2017; (7): 12-16. doi:10.21518/2079-701X-2017-7-12-16.; Белялов Ф.И. Ишемическая болезнь сердца и нарушение функции почек. Рациональная фармакотерапия в кардиологии. 2017; 13(3): 409-415. doi:10.20996/1819-64462017-13-3-409-415.; Нурматов Ш.И., Зокиров Ф.К., Курбанов Б.В., Гамаянова К.С., Белоус А.А. Микроальбуминурия как ранний диагностический, клинический и прогностический маркер при артериальной гипертензии. Colloquium-journal. 2019; 16-5 (40): 36-40.; Леонова М.В. Клиническая фармакология антагонистов рецепторов AT II: особенности валсартана. Медицинский совет. 2014; 17: 66-71.; Kunz R., Friedrich C., Wolbers M., Mann J.F.E. Metaanalysis: effect of monotherapy and combination therapy with inhibitors of the renin-angiotensin system on proteinuria in renal disease. Ann Intern Med. 2008, 148(1): 30-48. doi:10.7326/0003-4819-148-1-200801010-00190.; Sarafidis P.A., Stafylas P.C., Kanaki A.I., Lasaridis A.N. Effects of renin-angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: an updated meta-analysis. Am J Hypertens. 2008; 21(8): 922929. doi:10.1038/ajh.2008.206.; Viberti G., Wheeldon N.M. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 2002; 106(6): 672678. doi:10.1161/01.cir.0000024416.33113.0a.; Brenner B.M., Cooper M.E., de Zeeuw D., Keane W.F., Mitch W.E., Parving H.H., Remuzzi G., Snapinn S.M., Zhang Z., Shahinfar S.; RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345(12): 861-869. doi:10.1056/NEJMoa011161.; Uzu T., Sawaguchi M., Maegawa H., Kashiwagi A. Reduction of microalbuminuria in patients with type 2 diabetes. Diabetes Care. 2007; 30(6): 1581-1583. doi:10.2337/dc06-2493.; Кириченко А.А. Сартаны и проблема коморбидности. Русский медицинский журнал. 2018; 26(1-2): 110-114.; Andersen S., Brochner-Mortensen J., Parving H.H. Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria. Diabetes Care. 2003; 26(12): 3296-302. doi:10.2337/diacare.26.12.3296.; Haller H., Ito S., Izzo J.L., Januszewicz A., Katayama S. Menne J., Mimran A., Rabelink T.J., Ritz E., Ruilope L.M., Rump L.C., Viberti G.; ROADMAP Trial Investigators. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011; 364(10): 907-917. doi:10.1056/NEJMoa1007994.; Artham S., Fouda A.Y., El-Remessy A.B., Fagan S.C. Vascular protective effects of angiotensin receptor blockers: beyond blood pressure. Receptors Clin Investig. 2015; 2(3): e774. doi:10.14800/rci.774.; BoschA.J., Harazny J.M., Kistner I., Friedrich S., Wojtkiewicz J., Schmieder R.E. Retinal capillary rarefaction in patients with untreated mild-moderate hypertension. BMC Cardiovasc Disord. 2017; 17(1): 300. doi:10.1186/s12872-017-0732-x.; Priya M.K., Sahu G., Soto-Pantoja D.R., Goldy N., Sundaresan A.M., Jadhav V., Barathkumar T.R., Saran U., Jaffar Ali B.M., Roberts D.D., Bera A.K., Chatterjee S. Tipping off endothelial tubes: nitric oxide drives tip cells. Angiogenesis. 2015; 18(2): 175-189. doi:10.1007/s10456-014-9455-0.; Matsumoto S., Shimabukuro M., Fukuda D., Soeki T., Yamakawa K., Masuzaki H., Sata M. Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser(1177)/ Thr(497) of endothelial nitric oxide synthase in diabetic mice. Cardiovasc Diabetol. 2014; 13: 30. doi:10.1186/1475-2840-13-30.; Ishrat T., Pillai B., Soliman S., Fouda A.Y., Kozak A., Johnson M.H., Ergul A., Fagan S.C. et al. Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol. 2015; 51(3): 1542-1553. doi:10.1007/s12035-014-8830-6.; Soliman S., Ishrat T., Pillai A., Somanath P.R., Ergul A., El-Remessy A.B., Fagan S.C. Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of vascular endothelial growth factors A and B. J Pharmacol Exp Ther. 2014; 349(3): 444-457. doi:10.1124/jpet.113.212613.; Miller A.G., Tan G., Binger K.J., Pickering R.J., Thomas M.C., Nagaraj R.H., Cooper M.E., Wilkinson-Berka J.L. Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes. 2010; 59(12): 3208-3215. doi:10.2337/db10-0552.; Barauna V.G., Mantuan P.R., Magalhaes F.C., Campos L.C., Krieger J.E. AT1 receptor blocker potentiates shear-stress induced nitric oxide production via modulation of eNOS phosphorylation of residues Thr(495) and Ser(1177). Biochem Biophys Res Commun. 2013; 441(4): 713-719. doi:10.1016/j.bbrc.2013.10.108.; Koike A., Minamiguchi I., Fujimori K., Amano F. Nitric oxide is an important regulator of heme oxygenase-1 expression in the lipopolysaccharide and interferon-gamma-treated murine macrophage-like cell line J774.1/JA-4. Biol Pharm Bull. 2015; 38(1): 7-16. doi:10.1248/bpb.b14-00405.; Shanab A.Y., Elshaer S.L., El-Azab M.F., Soliman S., Sabbineni H., Matragoon S., Fagan S.C., El-Remessy A.B. Candesartan stimulates reparative angiogenesis in ischemic retinopathy model: role of hemeoxygenase-1 (HO-1). Angiogenesis. 2015; 18(2): 137-150. doi:10.1007/s10456-014-9451-4.; Барбараш О.Л., Усольцева Е.Н., Кашталап В.В., Коломыцева И.С., Сизова И.Н., Волыкова М.А., Шибанова И.А. Роль субклинического воспаления в прогрессировании мультифокального атеросклероза в течение года после инфаркта миокарда Кардиология. 2014; 54(8): 19-25. doi:10.18565/cardio.2014.8.19-25; Derosa G., Cicero A.F., Carbone A., Querci F., Fogari E., D'Angelo A., Maffioli P. Different aspects of sartan + calcium antagonist association compared to the single therapy on inflammation and metabolic parameters in hypertensive patients. Inflammation. 2014; 37(1): 154-162. doi:10.1007/s10753-013-9724-x.; Евдокимова А.Г., Ложкина М.В., Коваленко Е.В. Особенности применения кандесартана в клинической практике. Consilium Medicum. 2016; 18(1): 54-59. https://doi.org/10.26442/2075-1753_2016.1.54-59.; Недогода С.В., Чумачек Е.В., Цома В.В., Саласюк А.С., Смирнова В.О., Попова Е.А. Возможности азилсартана в коррекции инсулинорезистентности и уровня адипокинов при артериальной гипертензии в сравнении с другими сартанами. Российский кардиологический журнал. 2019; 24(1): 70-79. http://dx.doi.org/10.15829/1560-4071-2019-1-70-79.; Murakami K., Wada J., Ogawa D., Horiguchi C.S., Miyoshi T., Sasaki M., Uchida H.A., Nakamura Y., Makino H. The effects of telmisartan treatment on the abdominal fat depot in patients with metabolic syndrome and essential hypertension: Abdominal fat Depot Intervention Program of Okayama (ADIPO). Diab Vasc Dis Res. 2013; 10(1): 93-96. doi:10.1177/1479164112444640.; Подзолков В.И., Писарев М.В. Блокаторы рецепторов ангиотензина с плейотропными свойствами: новый стандарт в управлении сердечно-сосудистыми рисками и лечении артериальной гипертензии. Рациональная фармакотерапия в кардиологии. 2017; 13(3): 383-390. doi:10.20996/1819-6446-2017-13-3-383-390.; Кочергина А.М., Хорлампенко А.А. Плановое чрескожное коронарное вмешательство у пациентов с сахарным диабетом 2 типа: риски и новые способы управления. Сахарный диабет. 2019; 22(2): 151-158. doi:10.14341/DM9827.; Nomura S., Shouzu A., Omoto S., Nishikawa M., Fukuhara S., Iwasaka T. Effect of valsartan on monocyte/ endothelial cell activation markers and adiponectin in hypertensive patients with type 2 diabetes mellitus. Thromb Res. 2006; 117(4): 385-392. doi:10.1016/j.thromres.2005.04.008.; Mori Y., Itho Y., Tajima N. Telmisartan improves lipid metabolism and adiponectin production but does not affect glycemic control in hypertensive patients with type 2 diabetes. Adv Ther. 2007; 24(1): 146-153. doi:10.1007/bf02850002.; Карпов Ю.А., Мелехов А.В. Кандесартан: выход за пределы сердечно-сосудистого континуума. Атмосфера. Новости кардиологии. 2019; (2): 31-40.; Rizos C.V., Milionis H.J., Kostapanos M.S., Florentin M., Kostara C.E., Elisaf M.S., Liberopoulos E.N. Effects of rosuvastatin combined with olmesartan, irbesartan, or telmisartan on indices of glucose metabolism in Greek adults with impaired fasting glucose, hypertension, and mixed hyperlipidemia: a 24week, randomized, open-label, prospectivestudy. Clin Ther. 2010; 32(3): 492-505. doi:10.1016/j.clinthera.2010.03.018.; Остроумова О.Д., Кочетков А.И. Антигипертензивные и органопротективные свойства фиксированной комбинации телмисартана и гидрохлоротиазида. Рациональная фармакотерапия в кардиологии. 2019; 15(4): 558-567. doi:10.20996/1819-6446-2019-15-4-558-567.; Rawish E., Nickel L., Schuster F., Stoelting I., Frydrychowicz A., Saar K., Hubner N., Othman A., Kuerschner L., Raasch W. Telmisartan prevents development of obesity and normalizes hypothalamic lipid droplets. J Endocrinol. 2020; 244(1): 95-110. doi:10.1530/JOE-19-0319.; Schuster F., Huber G., Stolting I., Wing E.E., Saar K., Hubner N., Banks W.A., Raasch W. Telmisartan prevents diet-induced obesity and preserves leptin transport across the bloodbrain barrier in high-fat diet-fed mice. Pflugers Arch. 2018; 470(11): 1673-1689. doi:10.1007/s00424-018-2178-0.; Dhiman N., Awasthi R., Jindal S., Khatri S., Dua K. Development of bilayer tablets with modified release of selected incompatible drugs. Polim Med. 2016; 46(1): 5-15. doi:10.17219/pim/62511.; Liu Z., Zhao Y., Wei F., Ye L., Lu F., Zhang H., Diao Y., Song H., Qi Z. Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis. Atherosclerosis. 2014; 233(1): 291-299. doi:10.1016/j.atherosclerosis.2013.12.004.; Свистунов А.А., Осадчук М.А., Балашов Д.В., Осад-чук М.М. Дифференцированный подход к назначению сартанов при артериальной гипертензии и ассоциированных с ней заболеваниях. М.: Издательство РАМН; 2017. 72 с.; Трухан Д.И. Блокаторы рецепторов к ангиотензину II в лечении артериальной гипертензии у пациентов с сопутствующей патологией: фокус внимания на кандесартан. Системные гипертензии. 2014; 11(3): 24-29. https://doi.org/10.26442/2075-082x_11.3.24-29.

  12. 12
  13. 13
    Academic Journal

    Source: Буковинський медичний вісник; Том 15 № 4(60) (2011); 47-50
    Буковинский медицинский вестник; Том 15 № 4(60) (2011); 47-50
    Bukovinian Medical Herald; Vol. 15 No. 4(60) (2011); 47-50

    File Description: application/pdf

  14. 14
  15. 15
    Academic Journal

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 35, № 1 (2020); 80-92 ; Сибирский журнал клинической и экспериментальной медицины; Том 35, № 1 (2020); 80-92 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2020-35-1

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/918/514; Васильцева О.Я., Ворожцова И.Н., Крестинин А.В., Cтефанова Е.В., Карпов Р.С. Влияние основной нозологической патологии и выбранной врачебной стратегии на исход тромбоэмболии легочной артерии. Кардиология. 2017;1:37–41. DOI:10.18565/cardio.2017.1.37-41.; US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. URL: http://www.usrds.org/.; Bakris G.L., Williams M., Dworkin L., Elliott W., Epstein M., Toto R. et al. Preserving renal function in adults with hypertension and diabetes: A consensus approach. Am. J. Kidney Dis. 2000;36(3):646–661. DOI:10.1053/ajkd.2000.16225.; De Nicola L., Borrelli S., Gabbai F.B., Chiodini P., Zamboli P., Iodice C. et al. Burden of resistant hypertension in hypertensive patients with non-dialysis chronic kidney disease. Kidney Blood Press. Res. 2011;34:58–67. DOI:10.1159/000322923.; Подзолков В.И., Брагина А.Е., Ишина Т.И., Брагина Г.И., Васильева Л.В. Нефропротективная стратегия в лечении артериальной гипертензии как современная общемедицинская задача. Российский кардиологический журнал. 2018;23(12):107–118. DOI:10.15829/1560-4071-2018-12-107-118.; Viazzi F., Piscitelli P., Ceriello A., Fioretto P., Giorda C., Guida P. et al. Resistant hypertension, time-updated blood pressure values and renal outcome in type 2 diabetes mellitus. J. Am. Heart Assoc. 2017;6(9):e006745. DOI:10.1161/JAHA.117.006745.; Viazzi F., Greco E., Ceriello A., Fioretto P., Giorda C., Guida P. et al. Apparent treatment resistant hypertension, blood pressure control and the progression of chronic kidney disease in patients with type 2 diabetes. Kidney Blood Press. Res. 2018;43(2):422–438. DOI:10.1159/000488255.; Vrijens B., Antoniou S., Burnier M., de la Sierra A., Volpe M. Current situation of medication adherence in hypertension. Front. Pharmacol. 2017;8:100. DOI:10.3389/fphar.2017.00100.; Investigators Simplicity HTN-1. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911–917. DOI:10.1161/HYPERTENSIONAHA.110.163014.; Delacroix S., Chokka R.G., Nelson A.J., Wong D.T., Sidharta S., Pederson S.M. et al. Renal sympathetic denervation increases renal blood volume per cardiac cycle: a serial magnetic resonance imaging study in resistant hypertension. Int. J. Nephrol. Renovasc. Dis. 2017;10:243–249. DOI:10.2147/IJNRD.S131220.; Mahfoud F., Cremers B., Janker J., Link B., Vonend O., Ukena C. et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419–424. DOI:10.1161/HYPERTENSIONAHA.112.193870.; Singh R.R., Denton K.M. Renal denervation: А treatment for hypertension and chronic kidney disease. Hypertension. 2018;72(3):528–536. DOI:10.1161/HYPERTENSIONAHA.118.10265.; Пекарский С.Е., Мордовин В.Ф., Рипп Т.М., Фальковская А.Ю. Ренальная денервация в 2019 году. Сибирский медицинский журнал. 2019;34(3):21–32. DOI:10.29001/2073-8552-2019-34-3-21-32.; Mahfoud F., Böhm M., Schmieder R., Narkiewicz K., Ewen S., Ruilope L. et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. European Heart Journal. 2019;40(42):3474–3482. DOI:10.1093/eurheartj/ehz118.; Sakakura K., Ladich E., Cheng Q., Otsuka F., Yahagi K., Fowler D.R. et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J. Am. Coll. Cardiol. 2014;64(7):635–643. DOI:10.1016/j.jacc.2014.03.059.; Mahfoud F., Tunev S., Ewen S., Cremers B., Ruwart J., Schulz-Jander D. et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J. Am. Coll. Cardiol. 2015;66(16):1766–1775. DOI:10.1016/j.jacc.2015.08.018.; Pekarskiy S., Baev A., Mordovin V., Sitkova E., Semke G., Ripp T. et al. Failure of renal denervation in SYMPLICITY HTN-3 is a predictable result of anatomically inadequate operative technique and not the true limitations of the technology. Journal of Hypertension. 2015;33(1):e108. DOI:10.1097/01.hjh.0000467641.39623.fb.; Grassi G., Quarti-Trevano F., Seravalle G., Arenare F., Volpe M., Furiani S. et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57(4):846–851. DOI:10.1161/HYPERTENSIONAHA.110.164780.; Glassock R.J., Winearls C. Ageing and the glomerular filtration rate: truths and consequences. Trans. Am. Clin. Climatol. Assoc. 2009;120:419–428.; Глыбочко П.В., Светанкова А.А., Родионов А.В., Мальцева А.С., Сулимов В.А., Фомин В.В. Ренальная денервация при резистентной артериальной гипертензии: результаты 5-летнего наблюдения. Терапевтический архив. 2018;09:88–91. DOI:10.26442/terarkh201890988-91.; Hering D., Marusic P., Duval J., Sata Y., Head G.A., Denton K.M. et al. Effect of renal denervation on kidney function in patients with chronic kidney disease. International. Int. J. Cardiol. 2017;232:93–97. DOI:10.1016/j.ijcard.2017.01.047.; Fadl Elmula F.E.M., Jin Y., Yang W.-Y., Thijs L., Lu Y.-C., Larstorp A.C. et al. Meta-analysis of randomized controlled trials of renal denervation in treatment-resistant hypertension. Blood Press. 2015;24(5):263–274. DOI:10.3109/08037051.2015.1058595.; Sanders M.F., Reitsma J.B., Morpey M., Gremmels H., Bots M.L., Pisano A. et al. Renal safety of catheter-based renal denervation: systematic review and meta- analysis. Nephrology Dialysis Transplantation. 2017;32(9):1440–1447. DOI:10.1093/ndt/gfx088.; Ott C., Mahfoud F., Schmid A., Toennes S.W., Ewen S., Ditting T. et al. Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J. Hypertens. 2015;33(6):1261–1266. DOI:10.1097/HJH.0000000000000556.; Kiuchi M.G., Graciano M.L., Carreira M.A., Kiuchi T., Shaojie C., Lugon J. Long-term effects of renal sympathetic denervation on hypertensive patients with mild to moderate chronic kidney disease. J. Clin. Hypertens. (Greenwich). 2016;18(3):190–196. DOI:10.1111/jch.12724.; Sousa H., Branco P., de Sousa Almeida M., de Araújo Gonçalves P., Gaspar A., Dores H. et al. Changes in albumin-to-creatinine ratio at 12-month follow-up in patients undergoing renal denervation Rev. Port. Cardiol. 2017;36(5):343–351. DOI:10.1016/j.repc.2016.09.019.; Zhang Z.-H., Yang K., Jiang F.-L., Zeng L.-X., Jiang W.-H., Wang X.-Y. The effects of catheter-based radiofrequency renal denervation on renal function and renal artery structure in patients with resistant hypertension J. Clin. Hypertens. 2014;16(8):599–605. DOI:10.1111/jch.12367.; Ott C., Mahfoud F., Schmid A., Ditting T., Veelken R., Ewen S. et al. Improvement of albuminuria after renal denervation. Int. J. Card. 2014;173(2):311–315. DOI:10.1016/j.ijcard.2014.03.017.; Yao Y., Fomison-Nurse I.C., Harrison J.C., Walker R.J., Davis G., Sammut I.A. Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 2014;307(3):F251–F262. DOI:10.1152/ajprenal.00578.2013.; Yao Y., Davis G., Harrison J.C., Walker R.J., Sammut I.A. Renal functional responses in diabetic nephropathy following chronic bilateral renal denervation. Auton. Neurosci. 2017;204:98–104. DOI:10.1016/j.autneu.2016.09.019.; Ott C., Janka R., Schmid A., Titze S., Ditting T., Sobotka P.A. et al. Vascular and renal hemodynamic changes after renal denervation. Clin. J. Am. Soc. Nephrol. 2013;8(7):1195–1201. DOI:10.2215/CJN.08500812.; https://www.sibjcem.ru/jour/article/view/918

  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: The Russian Archives of Internal Medicine; Том 9, № 2 (2019); 93-106 ; Архивъ внутренней медицины; Том 9, № 2 (2019); 93-106 ; 2411-6564 ; 2226-6704 ; 10.20514/2226-6704-2019-0-2

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/900/773; https://www.medarhive.ru/jour/article/view/900/782; Ponikowski P., Voors A., Рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности 2016. Российский кардиологический журнал. 2017; 141(1): 7-81.; Джиоева О.Н., Орлов Д.О., Резник Е.В. и др. Современные принципы снижения периоперационных кардиальных осложнений при внесердечных хирургических вмешательствах. РМЖ. Кардиология. 2018; 6(I): 33-41.; Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П. Национальные Рекомендации ВНОК и ОССН по диагностике и лечению ХСН (второй пересмотр). Сердечная недостаточность. 2007; 39(1): 4-41.; Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П., Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Журнал Сердечная недостаточность. 2013; 14(7): 379-472.; Мареев В.Ю., Фомин И.В., Агеев Ф.Т. и др. Клинические рекомендации. Профилактика, диагностика и лечение хронической сердечной недостаточности (и острой декомпенсации). 2018; 124 с.; Мареев В.Ю., Фомин И.В., Агеев Ф.Т. и др. Клинические рекомендации. Хроническая сердечная недостаточность (ХСН). 2016; 92 с.; Медведева Е.А., Шиляева Н.В. и др. Кардиоренальный синдром при хронической сердечной недостаточности: патогенез, диагностика, прогноз и возможности терапии. Российский кардиологический журнал. 2017; 141(1): 136-141.; Моисеев В.С., Мухин Н.А., Смирнов А.В. Сердечно-сосудистый риск и хроническая болезнь почек: стратегии кардио-нефропро-текции. Российский кардиологический журнал, 2014; 112(8): 7-37.; Резник Е.В. Почки как орган-мишень при хронической сердечной недостаточности. Lamber. 2011; 188 с.; Резник Е.В. Особенности поражения органов-мишеней у больных с хронической сердечной недостаточностью. Диссертация на соискание ученой степени доктора медицинских наук. Москва. 2016; 500 с.; Резник Е.В., Гендлин Г.Е., Гущина В.М. и др. Хроническая болезнь почек у больных с хронической сердечной недостаточностью (Обзор литературы). Нефрология и диализ. 2010; 12(1): 13-24.; Резник Е.В., Гендлин Г.Е., Хрипун А.И. и др. Функциональное состояние почек, экскреция альбумина с мочой и почечная гемодинамика у больных с хронической сердечной недостаточностью. Нефрология и диализ. 2010; 12(4): 275-286.; Резник Е.В., Никитин И.Г АЛГОРИТМ ЛЕЧЕНИЯ БОЛЬНЫХ С ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ С НИЗКОЙ ФРАКЦИЕЙ ВЫБРОСА ЛЕВОГО ЖЕЛУДОЧКА. Архивъ внутренней медицины. 2018; 8(2): 85-99. DOI:10.20514/2226-6704-2018-8-2-85-99.; Резник Е.В., Никитин И.Г. Минеральные и костные нарушения у больных с хронической сердечной недостаточностью. Кардиология. 2018; 58(S2): 34-54.; Смирнов А.В., Шилов Е.М., Бобкова И.Н. НАЦИОНАЛЬНЫЕ РЕКОМЕНДАЦИИ ХРОНИЧЕСКАЯ БОЛЕЗНЬ ПОЧЕК: ОСНОВНЫЕ ПОЛОЖЕНИЯ, ОПРЕДЕЛЕНИЕ, ДИАГНОСТИКА, СКРИНИНИГ, ПОДХОДЫ К ПРОФИЛАКТИКЕ И ЛЕЧЕНИЮ. Нефрология. 2012; 16(1): 89-115.; Смирнов А.В., Шилов Е.М., Добронравов В.А. Национальные рекомендации. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению. Левша: Санкт-Петербург. 2012; 51 с.; Шилов Е.М., Кутырина И.М., Новикова М.С. Терапевтические стратегии лечения кардиоренального синдрома. Лечащий врач. 2012; 1: 8-13.; Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med. 1991; 325 (5): 293-302.; Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigattors. N Engl J Med. 1992; 327 (10): 685-91.; K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39 (2 Suppl 1): S1-266.; Abraham W.T., Aranda J.M., Boehmer J.P, et al. Rationale and design of the treatment of hyponatremia based on lixivaptan in NYHA class III/IV cardiac patient evaluation (THE BALANCE) study. Clin Transl Sci. 2010; 3 (5): 249-53.; Akhter M.W., Aronson D., Bitar F. et al. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol. 2004; 94 (7): 957-60.; Al-Khadra A.S., Salem D.N., Rand W.M. et al. Antiplatelet agents and survival: a cohort analysis from the Studies of Left Ventricular Dysfunction (SOLVD) trial. J Am Coll Cardiol. 1998; 31 (2): 419-25.; Anker S.D., Comin Colet J., Filippatos G. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009; 361 (25): 2436-48.; Bagshaw S.M., Cruz D.N., Epidemiology of cardiorenal syndromes. Contrib Nephrol. 2010; 165: 68-82.; Bakris G.L., Townsend R.R., Liu M. et al. Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol. 2014; 64 (11): 1071-8.; Besarab A., Goodkin D.A., Nissenson A.R. The normal hematocrit study-follow-up. N Engl J Med. 2008; 358 (4): 433-4.; Boerrigter G., Costello-Boerrigter L.C., Abraham WT. et al. Cardiac resynchronization therapy improves renal function in human heart failure with reduced glomerular filtration rate. J Card Fail. 2008; 14 (7): 539-46.; Burger D., Xenocostas A., Feng Q.P. Molecular basis of cardioprotec-tion by erythropoietin. Curr Mol Pharmacol. 2009; 2 (1): 56-69.; Butler J., Chirovsky D., Phatak H. et al. Renal function, health outcomes, and resource utilization in acute heart failure: a systematic review. Circ Heart Fail. 2010; 3 (6): 726-45.; Butler J., Geisberg C., Howser R. et al. Relationship between renal function and left ventricular assist device use. Ann Thorac Surg. 2006; 81 (5): 1745-51.; Chatterjee P.K. Pleiotropic renal actions of erythropoietin. Lancet. 2005; 365 (9474): 1890-2.; Chen H.H., Anstrom K.J., Givertz M.M. et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. Jama. 2013; 310 (23): 2533-43.; Chung E.S., Packer M., Lo K.H. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003; 107 (25): 3133-40.; Conrad K.P, Maternal vasodilation in pregnancy: the emerging role of relaxin. Am J Physiol Regul Integr Comp Physiol. 2011; 301 (2): R267-75.; Costello-Boerrigter L.C., Smith W.B., Boerrigter G. et al. Vasopressin-2-receptor antagonism augments water excretion without changes in renal hemodynamics or sodium and potassium excretion in human heart failure. Am J Physiol Renal Physiol. 2006; 290 (2): F273-8.; Cowie M.R., Komajda M., Murray-Thomas T. et al. Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J. 2006; 27 (10): 1216-22.; Cruz D.N. Cardiorenal syndrome in critical care: the acute cardiorenal and renocardiac syndromes. Adv Chronic Kidney Dis. 2013; 20 (1): 56-66.; Cruz D.N., Schmidt-Ott K.M., Vescovo G. et al. Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013; 182: 117-36.; Damman K., Gori M., Claggett B. et al. Renal Effects and Associated Outcomes During Angiotensin-Neprilysin Inhibition in Heart Failure. JACC Heart Fail. 2018.; Damman K., Navis G., Voors A.A. et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007; 13 (8): 599-608.; de Silva R., Nikitin N.P., Witte K.K. et al. Incidence of renal dysfunction over 6 months in patients with chronic heart failure due to left ventricular systolic dysfunction: contributing factors and relationship to prognosis. Eur Heart J. 2006; 27 (5): 569-81.; de Silva R., Rigby A.S., Witte K.K. et al. Anemia, renal dysfunction, and their interaction in patients with chronic heart failure. Am J Cardiol. 2006; 98 (3): 391-8.; Delles C., Schmieder R.E. The kidney in congestive heart failure: renal adverse event rate of treatment. J Cardiovasc Pharmacol. 2001; 38 (1): 99-107.; Demirozu Z.T., Etheridge W.B., Radovancevic R. et al. Results of Heart-Mate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant. 2011; 30 (2): 182-7.; Desai A.S., Vardeny O., Claggett B. et al. Reduced Risk of Hyperkalemia During Treatment of Heart Failure With Mineralocorticoid Receptor Antagonists by Use of Sacubitril/Valsartan Compared With Enalapril: A Secondary Analysis of the PARADIGM-HF Trial. JAMA Cardiol, 2017; 2 (1): 79-85.; Dittrich H.C., Gupta D.K., Hack T.C. et al. The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Card Fail. 2007; 13 (8): 609-17.; Dobre D., Rossignol P,, Metra M. et al. Can we prevent or treat renal dysfunction in chronic heart failure? Heart Fail Rev. 2012; 17 (2): 283-90.; Dries D.L., Exner D.V., Domanski M.J. et al. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2000; 35 (3): 681-9.; Feenstra J. in't Veld B.A., van der Linden P.D. et al. Risk factors for mortality in users of ibopamine. Br J Clin Pharmacol. 1998; 46 (1): 71-7; Filippatos G., Parissis J.T. Vasopressin antagonists for the treatment of acute decompensated heart failure: when, for whom, for how long, and on what standard therapy? J Card Fail. 2008; 14 (8): 648-50.; Filippatos G., Rossi J., Lloyd-Jones D.M. et al. Prognostic value of blood urea nitrogen in patients hospitalized with worsening heart failure: insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) study. J Card Fail. 2007; 13 (5): 360-4.; Fonarow G.C., Adams K.F., Jr., Abraham W.T. et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. Jama. 2005; 293 (5): 572-80.; Forman D.E., Butler J., Wang Y. et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004; 43 (1): 61-7.; Frances C.D., Noguchi H., Massie B.M. et al., Are we inhibited? Renal insufficiency should not preclude the use of ACE inhibitors for patients with myocardial infarction and depressed left ventricular function. Arch Intern Med. 2000; 160 (17): 2645-50.; Gheorghiade M., Gattis W.A., O'Connor C.M. et al. Effects of tolvap-tan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. Jama. 2004; 291 (16): 1963-71.; Gheorghiade M., Konstam M.A., Burnett J.C., Jr. et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. Jama. 2007; 297 (12): 1332-43.; Givertz M.M., Massie B.M., Fields T.K. et al. The effects of KW-3902, an adenosine A1-receptor antagonist,on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol. 2007; 50 (16): 1551-60.; Goldsmith S.R., Brandimarte F., Gheorghiade M. Congestion as a therapeutic target in acute heart failure syndromes. Prog Cardiovasc Dis. 2010; 52 (5): 383-92.; Gottlieb S.S. Renal effects of adenosine A1-receptor antagonists in congestive heart failure. Drugs. 2001; 61 (10): 1387-93.; Gottlieb S.S. Adenosine A1 antagonists and the cardiorenal syndrome. Curr Heart Fail Rep. 2008; 5 (2): 105-9.; Gottlieb S.S., Abraham W., Butler J. et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail. 2002; 8 (3): 136-41.; Gottlieb S.S., Givertz M.M., Metra M. et al. The effects of adenosine A(1) receptor antagonism in patients with acute decompensated heart failure and worsening renal function: the REACH UP study. J Card Fail. 2010; 16 (9): 714-9.; Gu J., Noe A., Chandra P, et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). Clin Pharmacol,. 2010; 50 (4): 401-14.; Halbesma N., Jansen D.F., Heymans M.W. et al. Development and validation of a general population renal risk score. Clin J Am Soc Nephrol. 2011; 6 (7): 1731-8.; Hampton J.R. PRIME II (Second Prospective Randomized Study of Ibu-pamine on Mortality and Efficacy): another disappointment in heart failure therapy. Eur Heart J. 1997; 18 (10): 1519-20.; Hasin T., Topilsky Y., Schirger J.A. et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012; 59 (1): 26-36.; Hatamizadeh P., Fonarow G.C., Budoff M.J. et al. Cardiorenal syndrome: pathophysiology and potential targets for clinical management. Nat Rev Nephrol. 2013; 9 (2): 99-111.; Heywood J.T. The cardiorenal syndrome: lessons from the ADHERE database and treatment options. Heart Fail Rev. 2004; 9 (3): 195-201.; Heywood J.T., Fonarow G.C., Costanzo M.R. et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007; 13 (6): 422-30.; Hillege H., Van Gilst W., de Zeeuw D. et al. Renal function as a predictor of prognosis in chronic heart failure. Heart Fail Monit. 2002; 2 (3): 78-84.; Hillege H.L., Girbes A.R., de Kam P.J. et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000; 102 (2): 203-10.; House A.A., Anand I., Bellomo R. et al. Definition and classification of Cardio-Renal Syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010; 25 (5): 1416-20.; Hsu C.Y., McCulloch C.E., Iribarren C. et al. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006; 144 (1): 21-8.; Hunt S.A. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol. 2005; 46 (6): e1-82.; Hunt S.A., Abraham W.T., Chin M.H. et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009; 53 (15): e1-e90.; Hunt S.A., Abraham W.T., Chin M.H. et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009; 119 (14): e391-479.; Ismail Y., Kasmikha Z., Green H.L. et al. Cardio-renal syndrome type 1: epidemiology, pathophysiology, and treatment. emin Nephrol. 2012; 32 (1): 18-25.; Jafar T.H., Stark P.C., Schmid C.H. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003; 139 (4): 244-52.; Jessup M., Abraham W.T., Casey D.E. et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009; 119 (14): 1977-2016.; Jois P., Mebazaa A. Cardio-renal syndrome type 2: epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012; 32 (1): 26-30.; Kazory A., Ross E.A. Anemia: the point of convergence or divergence for kidney disease and heart failure? J Am Coll Cardiol. 2009; 53 (8): 639-47; Klein L., Massie B.M., Leimberger J.D. et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail. 2008; 1 (1): 25-33.; Komukai K., Ogawa T., Yagi H. et al. Decreased renal function as an independent predictor of re-hospitalization for congestive heart failure. Circ J. 2008; 72 (7): 1152-7.; Konstam M.A., Gheorghiade M., Burnett J.C., et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. Jama. 2007; 297 (12): 1319-31.; Kraehling J.R., Sessa W.C. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease. Circ Res. 2017; 120 (7): 1174-1182.; Krum H., Iyngkaran P., Lekawanvijit S. Pharmacologic management of the cardiorenal syndrome in heart failure. Curr Heart Fail Rep. 2009; 6 (2): 105-11.; Krum H., Teerlink J.R. Medical therapy for chronic heart failure. Lancet. 2011; 378 (9792): 713-21.; Krumholz H.M., Chen Y.T., Vaccarino V. et al. Correlates and impact on outcomes of worsening renal function in patients > or =65 years of age with heart failure. Am J Cardiol. 2000; 85 (9): 1110-3.; Levey A.S., de Jong P.E., Coresh J. et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011; 80 (1): 17-28.; Logeart D., Tabet J.Y., Hittinger L. et al. Transient worsening of renal function during hospitalization for acute heart failure alters outcome. Int J Cardiol. 2008; 127 (2): 228-32.; Madsen B.K., Keller N., Christiansen E. et al. Prognostic value of plasma catecholamines, plasma renin activity, and plasma atrial natriuretic peptide at rest and during exercise in congestive heart failure: comparison with clinical evaluation, ejection fraction, and exercise capacity. J Card Fail. 1995; 1 (3): 207-16.; Maggioni A.P., Dahlstrom U., Filippatos G. et al. EURObservational Research Programme: regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail. 2013; 15 (7): 808-17.; Mahapatra, H.S., Lalmalsawma, R., Singh, N.P. et al., Cardiorenal syndrome. Iran J Kidney Dis, 2009. Vol. 3 (2): P. 61-70.; Mancia G., Fagard R., Narkiewicz K. et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. Blood Press. 2013.; Mann D.L., McMurray J.J., Packer M. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004; 109 (13): 1594-602.; Marcus L.S., Hart D., Packer M. et al. Hemodynamic and renal excretory effects of human brain natriuretic peptide infusion in patients with congestive heart failure. A double-blind, placebo-controlled, randomized crossover trial. Circulation. 1996; 94 (12): 3184-9.; Massie B.M., Collins J.F., Ammon S.E. et al. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure: the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial. Circulation. 2009; 119 (12): 1616-24.; Massie B.M., O'Connor C.M., Metra M. et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010; 363 (15): 1419-28.; Maxwell A.P., Ong H.Y., Nicholls D.P. Influence of progressive renal dysfunction in chronic heart failure. Eur J Heart Fail. 2002; 4 (2): 125-30.; McMurray J.J., Anand I.S., Diaz R. et al. Design of the Reduction of Events with Darbepoetin alfa in Heart Failure (RED-HF): a Phase III, anaemia correction, morbidity-mortality trial. Eur J Heart Fail. 2009; 11 (8): 795-801.; McMurray J.J., Teerlink J.R., Cotter G. et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA. 2007; 298 (17): 2009-19.; Metra M., Nodari S., Parrinello G. et al. Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail. 2008; 10 (2): 188-95.; Morrissey R.P., Czer L., Shah P.K. Chronic heart failure: current evidence, challenges to therapy, and future directions. Am J Cardiovasc Drugs, 2011; 11 (3): 153-71.; Mullens W., Abrahams Z., Skouri H.N. et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008; 51 (3): 300-6.; Nohria A., Hasselblad V., Stebbins A. et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008; 51 (13): 1268-74.; O'Connor C.M., Abraham W.T., Albert N.M. et al. Predictors of mortality after discharge in patients hospitalized with heart failure: an analysis from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). Am Heart J. 2008; 156 (4): 662-73.; Owan T.E., Hodge D.O., Herges R.M. et al. Secular trends in renal dysfunction and outcomes in hospitalized heart failure patients. J Card Fail. 2006; 12 (4): 257-62.; Packer M., Califf R.M., Konstam M.A. et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002; 106 (8): 920-6.; Pinto-Sietsma S.J., Mulder J., Janssen W.M. et al. Smoking is related to albuminuria and abnormal renal function in nondiabetic persons. Ann Intern Med. 2000; 133 (8): 585-91.; Pitt B., Segal R., Martinez F.A. et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997; 349 (9054): 747-52.; Pokhrel N., Maharjan N., Dhakal B. et al. Cardiorenal syndrome: A literature review. Exp Clin Cardiol. 2008; 13 (4): 165-70.; Ponikowski P., Mitrovic V., O'Connor C.M. et al. Haemodynamic effects of rolofylline in the treatment of patients with heart failure and impaired renal function. Eur J Heart Fail. 2010; 12 (11): 1238-46.; Ponikowski P., Voors A.A., Anker S.D. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37 (27): 2129-2200.; Preeti J., Alexandre M., Pupalan I. et al. Chronic Heart Failure and Comorbid Renal Dysfunction — A Focus on Type 2 Cardiorenal Syndrome. Curr Cardiol Rev. 2016; 12 (3): 186-94.; Ronco C., Maisel A. Volume overload and cardiorenal syndromes. Congest Heart Fail. 2010; 16 Suppl 1: P. Si-iv; quiz Svi.; Ruilope L.M., Dukat A., Bohm M. et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010; 375 (9722): 1255-66.; Ruilope L.M., van Veldhuisen D.J., Ritz E. et al. Renal function: the Cinderella of cardiovascular risk profile. J Am Coll Cardiol. 2001; 38 (7): 1782-7.; Sandner S.E., Zimpfer D., Zrunek P. et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009; 87 (4): 1072-8.; Schmidt H.H., Schmidt P.M., Stasch J.P., NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol. 2009; (191): 309-39.; Schrier R.W., Masoumi A., Elhassan E. Role of vasopressin and vasopressin receptor antagonists in type I cardiorenal syndrome. Blood Purif. 2009; 27 (1): 28-32.; Sen J., Chung E., McGill D. Tolvaptan for Heart Failure in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. Heart Lung Circ. 2018; 27 (8): 928-939.; Shlipak M.G. Pharmacotherapy for heart failure in patients with renal insufficiency. Ann Intern Med. 2003; 138 (11): 917-24.; Shlipak M.G., Massie B.M. The clinical challenge of cardiorenal syndrome. Circulation. 2004; 110 (12): 1514-7.; Singh M., Shullo M., Kormos R.L. et al. Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann Thorac Surg. 2011; 91 (5): 1348-54.; Smith G.L., Lichtman J.H., Bracken M.B. et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006; 47 (10): 1987-96.; Smith G.L., Vaccarino V., Kosiborod M. et al. Worsening renal function: what is a clinically meaningful change in creatinine during hospitalization with heart failure? J Card Fail. 2003; 9 (1): 13-25.; Strippoli G.F., Navaneethan S.D., Johnson D.W, et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ. 2008; 336 (7645): 645-51.; Tangri N., Stevens L.A., Griffith J. et al. A predictive model for progression of chronic kidney disease to kidney failure. Jama. 2011; 305 (15): 1553-9.; Teerlink J.R., Cotter G., Davison B.A. et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013; 381 (9860): 29-39.; Torre-Amione G., Young J.B., Colucci W.S. et al. Hemodynamic and clinical effects of tezosentan, an intravenous dual endothelin receptor antagonist, in patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2003; 42 (1): 140-7.; Verbrugge F.H., Dupont M., Steels P. et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013; 62 (6): 485-95.; Verbrugge F.H., Grieten L., Mullens W., Management of the cardiorenal syndrome in decompensated heart failure. Cardiorenal Med. 2014; 4 (3-4): 176-88.; Voors A.A., Gori M., Liu L.C. et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2015; 17 (5): 510-7.; Wang D.J., Dowling T.C., Meadows D. et al. Nesiritide does not improve renal function in patients with chronic heart failure and worsening serum creatinine. Circulation. 2004; 110 (12): 1620-5.; Warmoth L., Regalado M.M., Simoni J. et al. Cigarette smoking enhances increased urine albumin excretion as a risk factor for glomerular filtration rate decline in primary hypertension. Am J Med Sci. 2005; 330 (3): 111-9.; Weatherley B.D., Cotter G., Dittrich H.C. et al. Design and rationale of the PROTECT study: a placebo-controlled randomized study of the selective A1 adenosine receptor antagonist rolofylline for patients hospitalized with acute decompensated heart failure and volume overload to assess treatment effect on congestion and renal function. J Card Fail. 2010; 16 (1): 25-35.; Whelton P.K., Carey R.M., Aronow, W.S. et al. 2017 ACC/AHA/AAPA/ ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018; 71 (6): e13-e115.; Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39 (33): 3021-3104.; Wright S.P., Verouhis D., Gamble, G. et al., Factors influencing the length of hospital stay of patients with heart failure. Eur J Heart Fail. 2003; 5 (2): 201-9.; Yancy C.W., Krum H., Massie B.M. et al. Safety and efficacy of outpatient nesiritide in patients with advanced heart failure: results of the Second Follow-Up Serial Infusions of Nesiritide (FUSION II) trial. Circ Heart Fail. 2008; 1 (1): 9-16.; https://www.medarhive.ru/jour/article/view/900

  19. 19
    Academic Journal

    File Description: application/pdf

    Relation: Вплив екзогенного мелатоніну на перебіг гострого пошкодження нирок, індукованого ацетамінофеном / Є. А. Дудка, Т. С. Щудрова, А. Є. Петрюк, І. І. Заморський // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. – 2018. – Т. 18, вип. 3 (63). – С. 248–253.; https://repository.pdmu.edu.ua/handle/123456789/12384

  20. 20
    Academic Journal

    Source: Safety and Risk of Pharmacotherapy; Том 5, № 1 (2017); 11-26 ; Безопасность и риск фармакотерапии; Том 5, № 1 (2017); 11-26 ; 2619-1164 ; 2312-7821 ; undefined

    File Description: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/63/64; Дедов ИИ, Шестакова МВ. Результаты реализации подпрограммы «Сахарный диабет» Федеральной целевой программы «Предупреждение и борьба с социально-значимыми заболеваниями 2007-2012 годы». Сахарный диабет 2013; 2-48.; DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58: 773-795; Аляутдин РН, Зацепилова ТА, Романов БК. Антиангинальные лекарственные средства. Российский медицинский журнал 2007; 4: 35-40.; American Diabetes Association. Standards of medical care in diabetes-2014. Diabetes Care. 2014; 37(suppl 1): 14-80.; Nauck M. Update on developments with SGLT-2 inhibitors in the management of type 2 diabetes. Drug Design, Development and Therapy 2014; 8: 1335-1380.; Scheen AJ, Paquot N. Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: A review of the clinical evidence, Diabetes Metab. 2014; 40 (6 Suppl 1): 4-11.; Storgaard H, Gluud LL, Christensen M, Knop FK, Vilsbøll The effects of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: protocol for a systematic review with meta-analysis of randomised trials BMJ Open. 2014; 4(8): e005378.; DeFronzo RA, Hompesch M, Kasichayanula S, Liu X, Hong Y, Pfister M, Morrow LA, Leslie BR, Boulton DW, Ching A, LaCreta FP, Griffen SC. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care. 2013; 36(10): 3169-3176.; Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Rev 2005; 21: 31-8.; Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 1987; 79: 1510-15; Brown GK Glucose transporters: structure, function and consequences of deficiency J Inherit Metab Dis 2000 May; 23 (3): 237-46.; Guyton AC, Hall JE. Textbook of Medical Physiology. 9th ed. Philadelphia, PA: W. B. Saunders Company; 1996: 315-330.; Silverman M, Turner RJ. Glucose transport in the renal proximal tubule. In: Windhager EE, ed. Handbook of Physiology Vol. II. New York, NY:Oxford University Press; 1992: 2017-2038).; Ganong WF. Renal function and micturition. In: Review of Medical Physiology. 21st ed. New York, NY: Lange Medical Books / McGraw Hill; 2003: 702-732.; Abdul-Ghani MA, DeFronzo RA Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract. 2008; 14: 782-790.; Kanwal A, Banerjee SK SGLT inhibitors: a novel target for diabetes Pharm Pat Anal. 2013 Jan; 2(1): 77-91; Scheepers A, Joost HG, Schürmann A. The Glucose Transporter Families SGLT and GLUT: Molecular Basis of Normal and Aberrant Function. JPEN, J. Parenter. Enteral Nutr. 2004; 28: 364-371.; Wright, E. M. Renal Na(+)-Glucose Cotransporters. Am. J. Physiol. Renal Physiol. 2001; 280: 10-18.; Wallne, EI, Wada J, Tramonti G, Lin S Kanwar YS. Status of Glucose Transporters in the Mammalian Kidney and Renal Development. Ren. Fail. 2001; 23: 301-310.; You G, Lee WS, Barros EJ, Kanai. Molecular Characteristics of Na(+) - Coupled Glucose Transporters in Adult and Embryonic Rat Kidney; J. Biol. Chem. 1995; 270: 29365-29371.; Hediger MA, Rhoads DB Molecular Physiology of Sodium-Glucose Cotransporters. Physiol. ReV. 1994; 74: 993-1026.; Инструкция по применению лекарственного препарата для медицинского применения ДЖАРДИНС™. Государственный реестр лекарственных средств России [Интернет]. 2016 (дата обращения 01.12.2016) Доступно на: http://www.grls.rosminzdrav.ru.; Macha S, Brand T, Meinicke T, Link J, Broedl UC. Pharmacokinetics and Pharmacodynamics of Twice Daily and Once Daily Regimens of Empagliflozin in Healthy Subjects Clin Ther. 2015; 6: 0149-2918 (15)00850-4.; Ferrannini E, Seman L, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ. A Phase IIb, randomized, placebo-controlled study of the SGLT-2 inhibitor empagliflozin in patients with type 2 diabetes; Diabetes Obes Metab. 2013; 15(8): 721-8.; Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Broedl UC, Woerle HJ. EMPA-REG MET Trial Investigators Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014; 37(6): 1650-9.; Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, Broedl UC. EMPA-REG METSU Trial Investigators Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial; Diabetes Care. 2013; 36(11): 3396-404.; Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, Broedl UC. EMPAREGPIO™ trial investigators Empagliflozin improves glycaemic and weight control as addon therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial; Diabetes Obes Metab. 2014; 16(2): 147-58.; Maka S, Hedrington S, Davis N. The role of empagliflozin in the management of type 2 diabetes by patient profile. Therapeutics and Clinical Risk Management 2015; 5: 1-5.; Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ. EMPA-REG BASAL trial investigators Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial; Diabetes Obes Metab. 2015; 6: 4.; Инструкция по применению лекарственного препарата для медицинского применения Инвокана™. Государственный реестр лекарственных средств России [Интернет]. 2016 (дата обращения 01.12.2016) Доступно на: http://www.grls.rosminzdrav.ru.; Devineni D, Polidori D, Curtin CR, Murphy J, Wang SS, Stieltjes H, Wajs E Pharmacokinetics and pharmacodynamics of once- and twice-daily multiple-doses of canagliflozin, a selective inhibitor of sodium glucose co-transporter 2, in healthy participants. Int J Clin Pharmacol Ther. 2015; 53(6): 438-46.; Stenlöf K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, Canovatchel W, Meininger G. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013; 15(4): 372-82.; Lavalle-González FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W Meininger. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial; Diabetologia 2013; 56(12): 2582-92.; Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, Balis DA, CanovatchelW, Meininger G. Efficacy and safety of canagliflozin versus glimepiride in patients with type-2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013; 14 (9896): 941-50.; Stenlöf K, Cefalu WT, Kim KA, Jodar E, Alba M, Edwards R, Tong C, Canovatchel W, Meininger G. Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: findings from the 52-week CANTATA-M study Curr Med Res Opin. 2014; 30(2): 163-75.; Forst T, Guthrie R, Goldenberg R, Yee J, Vijapurkar U, Meininger G, Stein P. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone; Diabetes Obes Metab. 2014; 16(5): 467-77.; Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Ways K, Desai M, Shaw W, Capuano G, Alba M, Jiang J, Vercruysse F, Meininger G, Matthews D. CANVAS Trial Collaborative Group. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care 2015; 38(3): 03-11.; Инструкция по применению лекарственного препарата для медицинского применения Форсига™. Государственный реестр лекарственных средств России [Интернет]. 2016 (дата обращения 01.12.2016) Доступно на: http://www.grls.rosminzdrav.ru.; Maranghi M, Carnovale A, Durante C, Tarquini G, Tiseo G, Filetti S Pharmacokinetics, pharmacodynamics and clinical efficacy of dapagliflozin for the treatment of type 2 diabetes. Expert Opin Drug Metab Toxicol. 2015; 11(1): 125-37.; Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010; 33(10): 2217-24; Henry RR, Murray AV, Marmolejo MH, Hennicken D, Ptaszynska A, List JF Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract. 2012; 66(5): 446-56.; Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 2010; 26; 375(9733): 2223-33.; Strojek K, Yoon KH, Hruba V, Sugg J, Langkilde AM, Parikh S Dapagliflozin added to glimepiride in patients with type 2 diabetes mellitus sustains glycemic control and weight loss over 48 weeks: a randomized, double-blind, parallel-group, placebo-controlled trial. Diabetes Ther. 2014; 5(1): 267-83.; Rosenstock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT-2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 2012; 35(7): 1473-8.; John PH, Wilding DM; Vincent W, Norman G, Andrea P. Long-Term Efficacy of Dapagliflozin in Patients With Type 2 Diabetes Mellitus Receiving High Doses of Insulin: A Randomized Trial. Ann Intern Med. 2012; 156(6): 405-415.; Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes N. Engl J Med. 2015; 373(22): 2117-28.; Меркулов ВА, Бунятян НД, Сакаева ИВ, Лепахин ВК, Романов БК, Ефремова ТА. Новые законодательные инициативы по повышению безопасности лекарственных средств в европейском союзе. Ведомости Научного центра экспертизы средств медицинского применения 2013; 3: 45-48.; Ptaszynska A, Johnsson KM, Parikh SJ, de Bruin TW, Apanovitch AM, List JF. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events Drug Saf. 2014; 37(10): 815-29.; Романов Б. К. Кальциевая регуляция активности лизосомальных ферментов миокарда: дис. д-ра мед. наук. Рязань; 2004.; Аляутдин РН, Романов БК, Гусейнов МД, Лопатин ПВ, Зилфикаров ИН. Экспериментальная скрининговая оценка стресспротекторного действия фитопрепаратов. Российский медицинский журнал 2008; 3: 29-33.; Васькова ЛБ, Лопатин ПВ, Романов БК. Фармакоэкономика в фармации. М.: Первый московский гос. мед. университет им. И. М. Сеченова Минздрава России; 2012.; Романов БК, Глаголев СВ, Поливанов ВА, Леонова МВ. Мониторинг безопасности лекарственных средств. Безопасность и риск фармакотерапии 2014; 4: 11-14.; Han HJ, Lee YJ, Park SH, Lee JH, Taub M. High glucose induced oxidative stress inhibits Na/glucose cotransporter activity in renal proximal tubule cells. Am J Physiol Renal Physiol 2005; 288: 988-996.; Mogensen CE. Maximum tubular reabsorption capacity for glucose and renal hemodynamcis during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand J Clin Lab Invest. 1971; 28(1): 101-109.; Lee YJ, Han HJ. Regulatory mechanisms of Na+/ glucose cotransporters in renal proximal tubule cells. Kidney International 2007; 72: 27-35.; Thomson SC, Blantz RC. Glomerulotubular balance, tubuloglomerular feedback and salt homeostasis. J Am Soc Nephrol. 2008;1 9(12): 2272-2275.; Nicola L. Sodium - Glucose Cotransporter 2 Inhibitors and Prevention of Diabetic Nephropathy: Targeting the Renal Tubule in Diabetes Am J Kidney Dis. 2014; 64(1): 16-24.; https://www.risksafety.ru/jour/article/view/63; undefined