-
1Academic Journal
Authors: A. V. Shevchenko, V. F. Prokofiev, V. I. Konenkov, V. V. Chernykh, A. N. Trunov, А. В. Шевченко, В. Ф. Прокофьев, В. И. Коненков, В. В. Черных, А. Н. Трунов
Source: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 128-134 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 128-134 ; 2500-3259 ; 10.18699/vjgb-25-01
Subject Terms: неравновесное сцепление, POAG, polymorphism of toll-like receptor genes, TLR, linkage disequilibrium, ПОУГ, полиморфизм генов толл-лайк рецепторов
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4484/1922; Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2:675-680. doi:10.1038/90609; Arbour N.C., Lorenz E., Schutte B.C., Zabner J., Kline J.N., Jones M., Frees K., Watt J.L., Schwartz D.A. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000; 25(2):187-191. doi:10.1038/76048; Basavarajappa D., Galindo-Romero C., Gupta V., Agudo-Barriuso M., Gupta V.B., Graham S.L., Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: insights into the molecular pathophysiology. Mol Aspects Med. 2023;94:101216. doi:10.1016/j.mam.2023.101216; Baudouin C., Kolko M., Melik-Parsadaniantz S., Messmer E.M. Inflam mation in glaucoma: from the back to the front of the eye, and beyond. Prog Retin Eye Res. 2021;83:100916. doi:10.1016/j.preteyeres.2020.100916; Chaiwiang N., Poyomtip T. The association of toll-like receptor 4 gene polymorphisms with primary open angle glaucoma susceptibility: a meta-analysis. Biosci Rep. 2019;39(4):BSR20190029. doi:10.1042/BSR20190029; Guimarãesa L.O., Bajayb M.M., Monteiroa E.F., Wunderlichc G., Santosd S.E., Kirchgattera K. Genetic ancestry effects on the distribution of toll-like receptors (TLRs) gene polymorphisms in a population of the Atlantic Forest, São Paulo, Brazil. Hum Immunol. 2018; 79(2):101-108. doi:10.1016/j.humimm.2017.11.007; Hamann L., Koch A., Sur S., Hoefer N., Glaeser C., Schulz S., Gross M., Franke A., Nöthlings U., Zacharowski K., Schumann R.R. Association of a common TLR-6 polymorphism with coronary artery disease – implications for healthy ageing? Immun Ageing. 2013;10(1):43. doi:10.1186/1742-4933-10-43; Hauser M.A., Allingham R.R., Linkroum K., Wang J., LaRocque-Abramson K., Figueiredo D., Santiago-Turla C., del Bono E.A., Haines J.L., Pericak-Vance M.A., Wiggs J.L. Distribution of WDR36 DNA sequence variants in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47(6):2542-2546. doi:10.1167/iovs.05-1476; Jahantigh D., Salimi S., Alavi-Naini R., Emamdadi A., Osquee H.O., Mashhadi F.F. Association between TLR4 and TLR9 gene polymorphisms with development of pulmonary tuberculosis in Zahedan, Southeastern Iran. Sci World J. 2013;2013:534053. doi:10.1155/2013/534053; Jiang D., Ma G., Yang R., Li K., Fang M. Bayesian model selection for multiple QTLs mapping combining linkage disequilibrium and linkage. Genet Res. 2014;96:e10. doi:10.1017/S0016672314000135; Kania K.D., Haręża D., Wilczyński J.R., Wilczyński M., Jarych D., Malinowski A., Paradowska E. The Toll-like receptor 4 polymorphism Asp299Gly is associated with an increased risk of ovarian cancer. Cells. 2022;11(19):3137. doi:10.3390/cells11193137; Lin Z., Huang S., Sun J., Xie B., Zhong Y. Associations between TLR4 polymorphisms and open angle glaucoma: a meta-analysis. Biomed Res Int. 2019;2019:6707650. doi:10.1155/2019/6707650; Liu K., Wenling H., Jun Z., Yingxia Z., Hongbo C. Association of WDR36 polymorphisms with primary open angle glaucoma. A systematic review and meta-analysis. Medicine (Baltimore). 2017;96: e7291. doi:10.1097/MD.0000000000007291; Luo C., Yang X., Kain A.D., Powell D.W., Kuehn M.H., Tezel G. Glaucomatous tissue stress and the regulation of immune response through glial Toll-like receptor signaling. Invest Ophthalmol Vis Sci. 2010;51(11):5697-5707. doi:10.1167/iovs.10-5407; Ma L., Tang F., Chu W., Young A., Brelen M., Pang C., Chen L. Association of toll-like receptor 3 polymorphism rs3775291 with age-related macular degeneration : a systematic review and meta-analysis. Sci Rep. 2016;6:19718. doi:10.1038/srep19718; Macedo A.B., Novis C.L., Bosque A. Targeting cellular and tissue HIV reservoirs with Toll-like receptor agonists. Front Immunol. 2019;10: 2450. doi:10.3389/fimmu.2019.02450; Meer E., Aleman T.S., Ross A.G. WDR36-associated neurodegeneration: a case report highlights possible mechanisms of normal tension glaucoma. Genes. 2021;12:1624. doi:10.3390/genes12101624; Mulfaul K., Ozaki E., Fernando N., Brennan K., Chirco K., Connolly E., Greene C., Maminishkis A., Salomon R., Linetsky M., Natoli R., Mullins R., Campbell M., Doyle S. Toll-like receptor 2 facilitates oxidative damage-induced retinal degeneration. Cell Rep. 2020;30(7):2209-2224.е5. doi:10.1016/j.celrep.2020.01.064; Nakamura J., Meguro A., Ota M., Nomura E., Nishide T., Kashiwagi K., Mabuchi F., Iijima H., Kawase K., Yamamoto T., Nakamura M., Negi A., Sagara T., Nishida T., Inatani M., Tanihara H., Aihara M., Araie M., Fukuchi T., Abe H., Higashide T., Sugiyama K., Kanamoto T., Kiuchi Y., Iwase A., Ohno S., Inoko H., Mizuki N. Association of toll-like receptor 2 gene polymorphisms with normal tension glaucoma. Mol Vis. 2009;15:2905-2910; Narkevich A.N., Vinogradov K.A., Grjibovski A.M. Multiple comparisons in biomedical research: the problem and its solutions. Ekologiya Cheloveka = Human Ecology. 2020;27(10):55-64. doi:10.33396/1728-0869-2020-10-55-64 (in Russian); Ranjith-Kumar C.T., Miller W., Sun J., Xiong J., Santos J., Yarbrough I., Lamb R.J., Mills J., Duffy K., Hoose S., Cunningham M., Holzenburg A., Mbow M., Sarisky R., Kao C. Effects of single nucleotide polymorphisms on Toll-like receptor 3 activity and expression in cultured cells. J Biol Chem. 2007;282(24):17696-17705. doi:10.1074/jbc.M700209200; Sameer A.S., Nissar S. Toll-like receptors (TLRs): structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. Biomed Res Int. 2021;2021:1157023. doi:10.1155/2021/1157023; Semlali A., Almutairi M., Rouabhia M., Reddy Parine N., Al Amri A., Al-Numair N.S., Hawsawi Y.M., Saud Alanazi M. Novel sequence variants in the TLR6 gene associated with advanced breast cancer risk in the Saudi Arabian population. PLoS One. 2018;13(11): e0203376. doi:10.1371/journal.pone.0203376; Soto I., Howell G.R. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 2014;4(8):a017269. doi:10.1101/cshperspect.a017269; Stashkevich D.S., Belyaeva S.V., Evdokimov A.V. Comparative assessment of genetic polymorphism of Toll-like 2 and 6 receptors predisposing for non-specific ulcerative colitis and irritable bowel syndrome in Russians from Chelyabinsk Region. Rossiiskii Immunologicheskii Zhurnal = Russ J Immunol. 2022;25(3):327-332. doi:10.46235/1028-7221-1139-CAO (in Russian); Stewart E.A., Wei R., Branch M.J., Sidney L.E., Amoaku W.M. Expression of Toll-like receptors in human retinal and choroidal vascular endothelial cells. Exp Eye Res. 2015;138:114-123. doi:10.1016/j.exer.2015.06.012; Tezel G. Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res. 2022;87:100998. doi:10.1016/j.preteyeres.2021.100998; Titi-Lartey O., Mohammed I., Amoaku W.M. Toll-like receptor signalling pathways and the pathogenesis of retinal diseases. Front Ophthalmol. 2022;2:850394. doi:10.3389/fopht.2022.850394; Törmänen S., Korppi M., Teräsjärvi J., Vononvirta J., Koponen P., Helminen M., He Q., Nuolivirta K. Polymorphism in the gene encoding toll-like receptor 10 may be associated with asthma after bronchiolitis. Sci Rep. 2017;7:2956. doi:10.1038/s41598-017-03429-x; Xiong Y., Song C., Snyder G.A., Sundberg E.J., Medvedev A.E. R753Q polymorphism inhibits Toll-like receptor (TLR) 2 tyrosine phosphorylation, dimerization with TLR6, and recruitment of myeloid differentiation primary response protein 88. J Biol Chem. 2012; 287(45):38327-38337. doi:10.1074/jbc.M112.375493; Zhang Y., Liu J., Wang C., Liu J., Lu W. Toll-Like receptors gene polymorphisms in autoimmune disease. Front Immunol. 2021;12: 672346. doi:10.3389/fimmu.2021.672346; https://vavilov.elpub.ru/jour/article/view/4484
-
2Academic Journal
Authors: E. G. Khamaganova, S. P. Khizhinskiy, A. R. Abdrakhimova, E. P. Kuzminova, E. A. Leonov, O. S. Pokrovskaya, L. A. Kuzmina, E. N. Parovichnikova, Е. Г. Хамаганова, С. П. Хижинский, А. Р. Абдрахимова, Е. П. Кузьминова, Е. А. Леонов, О. С. Покровская, Л. А. Кузьмина, Е. Н. Паровичникова
Contributors: Авторы выражают благодарность всем сотрудникам ФГБУ «НМИЦ гематологии» Минздрава России, занимающихся трансплантацией аллогенных гемопоэтических стволовых клеток у больных с заболеваниями системы крови, без которых это исследование было бы неосуществимо.
Source: Medical Immunology (Russia); Том 26, № 2 (2024); 291-302 ; Медицинская иммунология; Том 26, № 2 (2024); 291-302 ; 2313-741X ; 1563-0625
Subject Terms: секвенирование следующего поколения, families, linkage disequilibrium, HLA-DPB1, transplantation, next-generation sequencing, семьи, неравновесное сцепление, трансплантация
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2651/1903; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10653; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10654; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10655; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10656; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10657; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10658; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10659; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10660; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10661; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10662; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10663; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10669; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10670; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10671; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10672; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10673; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/10772; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2651/12665; Бубнова Л.Н., Кузьмич Е.В., Павлова И.Е., Беляева Е.В., Терентьева М.А. Сравнительный анализ иммуногенетических характеристик потенциальных доноров гемопоэтических стволовых клеток регистров двух российских мегаполисов // Медицинская иммунология, 2022. Т. 24, № 5. С. 1047-1056. doi:10.15789/1563-0625-CAO-2539.; Логинова М.А., Парамонов И.В. Стратегия формирования регистра потенциальных доноров гемопоэтических стволовых клеток // Российский журнал детской гематологии и онкологии, 2020. Т. 7, № 4. С. 35-42.; Хамаганова Е.Г., Абдрахимова А.Р., Леонов Е.А., Хижинский С.П., Гапонова Т.В., Савченко В.Г. Секвенирование следующего поколения в HLA-типировании больных с показаниями к трансплантации аллогенных гемопоэтических стволовых клеток и их доноров // Гематология и трансфузиология, 2021. Т. 66, № 2. С. 206-217.; Хамаганова Е.Г., Леонов Е.А., Абдрахимова А.Р., Хижинский С.П., Гапонова Т.В., Савченко В.Г. HLA генетическое разнообразие русской популяции, выявленное методом секвенирования следующего поколения // Медицинская иммунология, 2021. Т. 23, № 3. С. 509-522. doi:10.15789/1563-0625-HDI-2182.; Askar M., Madbouly A., Zhrebker L., Willis A., Kennedy S., Padros K., Rodriguez M.B., Bach C., Spriewald B., Ameen R., Shemmarif S.A., Tarassi K., Tsirogianni A., Hamdy N., Mossallam G., Höngeri G., Spinnler R., Fischer G., Fae I., Charlton R., Dunk A., Vayntrub T.A., Halagan M., Osoegawa K., Fernández-Viña M. HLA haplotypes in 250 families: the Baylor laboratory results and a perspective on a core NGS testing model for the 17th International HLA and Immunogenetics Workshop. Hum. Immunol., 2019, Vol. 80, no. 11, pp. 897-905.; Bugawan T.L., Klitz W., Blair A., Erlich H.A. High-resolution HLA class I typing in the CEPH families: analysis of linkage disequilibrium among HLA loci. Tissue Antigens, 2000, Vol. 56, no. 5, pp. 392-404.; Creary L.E., Sacchi N., Mazzocco M., Morris G.P., Montero-Martin G., Chong W., Brown C., Dinou A., Stavropoulos-Giokas C., Gorodezky C., Narayan S., Periathiruvadi S., Thomas R., de Santis D., Pepperall J., Ghazalim G.E., Yafeim Z.A., Askar M., Tyagi S., Kanga U., Marino S.R., Planelles D., Chang C.J., Fernández-Viña M.A. High-resolution HLA allele and haplotype frequencies in several unrelated populations determined by next generation sequencing: 17th International HLA and Immunogenetics Workshop joint report. Hum. Immunol., 2021, Vol. 82, no. 7, pp. 505-522.; Cullen M., Noble J., Erlich H., Thorpe K., Beck S., Klitz W., Trowsdale J., Carrington M. Characterization of recombination in the HLA class II region. Am. J. Hum. Genet., 1997, Vol. 60, no. 2, pp. 397-407.; Dehn J., Setterholm M., Buck K., Kempenich J., Beduhn B., Gragert L., Abeer Madbouly A., Fingerson S., Maiers M. HapLogic: a predictive human leukocyte antigen-matching algorithm to enhance rapid identification of the optimal unrelated hematopoietic stem cell sources for transplantation. Biol. Blood Marrow Transplant., 2016, Vol. 22, no. 11, pp. 2038-2046.; Excoffier L., Lischer H.E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 2010, Vol. 10, no. 3, pp. 564-567.; Gragert L., Madbouly A., Freeman J., Maiers M. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum. Immunol., 2013, Vol. 74, no. 10, pp. 1313-1320.; Gragert L., Eapen M., Williams E., Freeman J., Spellman S., Baitty R., Hartzman R., Rizzo J.D., Horowitz M., Confer D., Maiers M. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N. Engl. J. Med., 2014, Vol. 371, no. 4, pp. 339-348.; Grundschober C., Sanchez-Mazas A., Excoffier L., Langaney A., Jeannet M., Tiercy J.M. HLA-DPB1 DNA polymorphism in the Swiss population: linkage disequilibrium with other HLA loci and population genetic affinities. Eur. J. of Immunogenet., 1994, Vol. 21, no. 3, pp. 143-157.; Gua Q., Chen J., Yao Y., Sun M., Shi L. Distribution of HLA-DRB1, DPB1 and DQB1 alleles and haplotypes in Mongolian Minority in China. Hum. Immunol., 2019, Vol. 80, no. 4, pp. 215-217.; Jeffreys A.J., Kauppi L., Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet., 2001, Vol. 29, no. 2, pp. 217-222.; Kauppi L., Stumpf M.P., Jeffreys A.J. Localized breakdown in linkage disequilibrium does not always predict sperm crossover hot spots in the human MHC class II region. Genomics, 2005, Vol. 86, no. 1, pp. 13-24.; Klitz W., Gragert L., Maiers M., Fernandez-Vina M., Ben-Naeh Y., Benedek G., Brautbar C., Israel S. Genetic differentiation of Jewish populations. Tissue Antigens, 2010, Vol. 76, no. 6, pp. 442-458.; Linjama T., Räther C., Ritari J., Peräsaari J., Eberhard H.P., Korhonen M., Koskela S. Extended HLA haplotypes and their impact on DPB1 matching of unrelated hematologic stem cell transplant donors. Biol. Blood Marrow Transplant., 2019, Vol. 25, no. 10, pp. 1956-1964.; Maiers M., Gragert L., Klitz W. High-resolution HLA alleles and haplotypes in the United States population. Hum. Immunol., 2007, Vol. 68, no. 9, pp. 779-788.; Malfroy L., Roth M.P., Carrington M., Borot N., Volz A., Ziegler A., Coppin H. Heterogeneity in rates of recombination in the 6-Mb region telomeric to the human major histocompatibility complex. Genomics, 1997, Vol. 43, no. 2, pp. 226-231.; Nunes E., Heslop H., Fernandez-Vina M., Taves C., Wagenknecht D.R., Eisenbrey A.B., Fischer G., Poulton K., Wacker K., Hurley C.K., Noreen H., Sacchi N. Definitions of histocompatibility typing terms. Human Immunol., 2011, Vol. 72, no. 12, pp. 1214-1216.; Osoegawa K., Mallempati K.C., Gangavarapu S., Gangavarapu S., Oki A., Gendzekhadze K., Marino S.R., Brown N.K., Bettinotti M.P., Weimer E.T., Montero-Martín G., Creary L.E., Vayntrub T.A., Chang C.-J., Askar M., Mack S.J., Fernández-Viña M.A. HLA Alleles and Haplotypes Observed in 263 US Families. Hum. Immunol., 2019, Vol. 80, no. 9, pp. 644-660.; Passweg J.R., Baldomero H., Chabannon C., Basak G.W., de la Cámara R., Corbacioglu S., Dolstra H., Duarte R., Glass B., Greco R., Lankester A.C., Mohty M., Peffault de Latour R., Snowden J.A., Yakoub-Agha I., Kröger N. Hematopoietic cell transplantation and cellular therapy survey of the EBMT: monitoring of activities and trends over 30 years. Bone Marrow Transplant., 2021, Vol. 56, no. 7, pp. 1651-1664.; Petersdorf E.W., Malkki M., Gooley T.A., Martin P.J., Guo Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med., 2007, Vol. 4, no. 1, e8. doi:10.1371/journal.pmed.0040008.; Qin P.Q., Su F., Yan W.X., Xing Z., Meng P., Chengya W., Jie S. Distribution of human leucocyte antigen-A, -B and -DR alleles and haplotypes at high resolution in the population from Jiangsu province of China. Int. J. Immunogenet., 2011, Vol. 38, no. 6, pp. 475-481.; Schmidt A.H., Baier D., Solloch U.V., Stahr A., Cereb N., Wassmuth R., Ehninger G., Rutt C. Estimation of high-resolution HLA-A, -B, -C, -DRB1 allele and haplotype frequencies based on 8862 German stem cell donors and implications for strategic donor registry planning. Hum. Immunol., 2009, Vol. 70, no. 11, pp. 895-902.; Slater N., Louzoun Y., Gragert L., Maiers M., Chatterjee A., Albrecht M. Power laws for heavy-tailed distributions: modeling allele and haplotype diversity for the national marrow donor program. PLoS Comput. Biol., 2015, Vol. 11, no.4, e1004204. doi:10.1371/journal.pcbi.1004204.; Slatkin M. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet., 2008, Vol. 9, no. 6, pp. 477-485.; Stewart C.A., Horton R., Allcock R.J., Ashurst J.L., Atrazhev A.M., Penny Coggill P., Dunham I., Forbes S., Halls K., Howson J.M.M., Humphray S.J., Hunt S., Mungall A.J., Osoegawa K., Palmer S., Roberts A.N., Rogers J., Sims S., Wang Y., Wilming L.G., Elliott J.F., de Jong P.J., Sawcer S., Todd J.A., Trowsdale J., Beck S. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res., 2004, Vol. 14, no. 6, pp. 1176-1187.; Thorstenson Y.R., Creary L.E., Huang H., Rozot V., Nguyen T.T., Babrzadeh F., Kancharla S., Fukushima M., Kuehn R., Wang C., Li M., Krishnakumar S., Mindrinos M., Fernandez Viña M. A., Scriba T.J., Davis M.M. Allelic resolutionNGS HLA typing of class I and class II loci and haplotypes in Cape Town, South Africa. Hum. Immunol., 2018, Vol. 79, no. 12, pp. 839-847.; Tiercy J.M. How to select the best available related or unrelated donor of hematopoietic stem cells? Haematologica, 2016, Vol. 101, no. 6, pp. 680-687.; Timofeeva O.A., Philogene M.C., Zhang Q.J. Current donor selection strategies for allogeneic hematopoietic cell transplantation. Hum. Immunol., 2022, Vol. 83, no. 10, pp. 674-686.; Trachtenberg E., Vinson M., Hayes E., Hsu Y.-M., Houtchens K., Erlich H., Klitz W., Hsia Y., Hollenbach J. HLA class I (A, B, C) and class II (DRB1, DQA1, DQB1, DPB1) alleles and haplotypes in the Han from southern China. Tissue Antigens, 2007, Vol. 70, no. 6, pp. 455-463.; Yu N., Askar M., Wadsworth K., Gragert L., Fernández-Viña M.A. Current HLA testing recommendations to support HCT. Hum. Immunol., 2022, Vol. 83, no. 10, pp. 665-673.; Zhang T., Li Y., Yuan X., Bao X., Chen L., Jiang X., He J. Establishment of NGS-based HLA 9-locus haplotypes in the Eastern Han Chinese population highlights the role of HLA-DP in donor selection for transplantation. HLA, 2022, Vol. 100, no. 6, pp. 582-596.; https://www.mimmun.ru/mimmun/article/view/2651
-
3Academic Journal
Authors: N. V. Kocherina, Yu. V. Chesnokov, Н. В. Кочерина, Ю. В. Чесноков
Contributors: РФФИ
Source: Vegetable crops of Russia; № 1 (2016); 3-9 ; Овощи России; № 1 (2016); 3-9 ; 2618-7132 ; 2072-9146
Subject Terms: программное обеспечение, linkage disequilibrium, identification association marker-trait, software, неравновесное сцепление, установление ассоциаций маркер-признак
File Description: application/pdf
Relation: https://www.vegetables.su/jour/article/view/215/238; Драгавцев В.А. К проблеме генетического анализа полигенных количественных признаков растений. – 2003. СПб. ВИР. – 35 с.; Драгавцев В.А., Литун П.П., Шкель И.М., Нечипоренко Н.Н. Модель эколого-генетического контроля количественных признаков растений. // Доклады АН СССР. – 1984. – Т. 274, №3. – С. 720-723; Кочерина Н.В., Артемьева А.М., Чесноков Ю.В. Использование лод-оценки в картировании локусов количественных признаков у растений. // Доклады Российской академии сельскохозяйственных наук. – 2011. – №3. – С.14-17; Чесноков Ю.В. Картирование локусов количественных признаков у растений. – 2009. СПб., ВИР. 100 с.; Чесноков Ю.В. Молекулярно-генетические маркеры и их использование в предселекционных исследованиях. – 2013.СПб: АФИ. 116 с.; Чесноков Ю.В., Артемьева А.М. Ассоциативное картирование у растений. // Сельскохозяйственная биология. – 2011. – №5. – С.3-16; Чесноков Ю.В., Почепня Н.В., Бёрнер А., Ловассер У., Гончарова Э.А., Драгавцев В.А. Эколого-генетическая организация количественных признаков растений и картирование локусов, определяющих агрономически важные признаки у мягкой пшеницы. // Доклады Академии наук. – 2008. – Т.418, №5. – С.693-696; Abad-Grau M.M., Montes R., Sebastiani P. Building chromosome-wide LD maps. // Bioinformatics. – 2006. – V.22. – P.1933–1934; Allen-Brady K., Wong J., Camp N.J. PedGenie: an analysis approach for genetic association testing in extended pedigrees and genealogies of arbitrary size. // BMC Bioinformatics. – 2006. V.7. – P.209; Borevitz J.O., Maloof J.N., Lutes J., Dabi T., Redfern J.L., Trainer G.T., Werner J.D., Asami T., Berry C.C., Weigel D., Chory J. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. // Genetics. – 2002. – V.160. – P.683–696; Buckingham S.D. Scientific software: seeing the SNPs between us. // Nature Methods. – 2008. – V.5. – P.903–908; Garcia A.A., Kido E.A., Meza A.N., Souza H.M., Pinto L.R., Pastina M.M., Leite C.S., Silva J.A., Ulian E.C., Figueira A., Souza A.P. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. // Theoretical and Applied Genetics. – 2006. – V.112. – P.298–314; Gaunt T.R., Rodriguez S., Zapata C., Day I.N.M. MIDAS: software for analysis and visualization of interallelic disequilibrium between multiallelic markers. // BMC Bioinformatics. – 2006. – V.7. – P. 227; Holland J.B. EPISTACY: a SAS program for detecting two-locus epistasis interactions using genetic marker information. // Journal of Heredity. – 1998. – V.89. – P.374–375; Jourjon M.F., Jasson S., Marcel J., Ngom B., Mangin B. MCQTL: multiallelic QTL mapping in multi-cross design. // Bioinformatics. – 2005. – V.21. – P.128–130; Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. // Genomics. – 1987. – V.1. – P.174–181; Liu J.S., Sabatti C., Teng J., Keats B.J.B., Risch K. Bayesian analysis of haplotypes for linkage disequilibrium mapping. // Genome Research. – 2001. – V.11. – P.1716–1724; Lu X., Niu T., Liu, J.S. Haplotype information and linkage disequilibrium mapping for single nucleotide polymorphisms. // Genome Research. – 2003. – V.13. – P.2112–2117; Mailund T., Schierup M.H., Pedersen C.N.S., Madsen J.N., Hein J., Schauser L. GeneRecon – a coalescent based tool for fine-scale association mapping. // Bioinformatics. – 2006. – V.22. – P. 2317-2318; Manly K.F. A Macintosh program for storage and analysis of experimental genetic mapping data. // Mammalian Genome. – 1993. – V.4. – P.303–313; Martinez V., Thorgaard G., Robison B., Sillanpaa M.J. An application of Bayesian QTL mapping to early development in double haploid lines of rainbow trout including environmental effects. // Genetical Research. – 2005. –V.86. – P.209–221; Pettersson F., Morris A.P., Barnes M.R., Cardon L.R. Goldsurfer2 (Gs2): a comprehensive tool for the analysis and visualization of genome wide association studies. // BMC Bioinformatics. – 2008. – V.9. – P.138; Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. // Genetics. – 2000a. – V.155. – P.945–959; Pritchard J.K., Stephens M., Rosenberg N.A., Donnelly P. Association mapping in structured populations. // American Journal of Human Genetics. – 2000b. – V.67. – P.170–181; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a toolset for whole-genome association and population-based linkage analysis. // American Journal of Human Genetics. – 2007. – V.81. – P.559–575; Seaton G., Haley C.S., Knott S.A., Kearsey M., Visscher P.M. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. // Bioinformatics. – 2002. –V.18. – P.339–340; Skol A.D., Scott L.J., Abecasis G.R., Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. // Nature Genetics. – 2006. – V.38. – P.209–213; Tanksley S.D. Mapping polygenes. // Annual Reviews of Genetics. – 1993. – V.27. – P.205-233; Ukai Y., Osawa R., Saito A., Hayashi T. MAPL: a package of computer programs for construction of DNA polymorphism linkage maps and analysis of QTL. // Breeding Science. – 1995. – V.45. – P.139–142 (in Japanese); Utz H.F., Melchinger A.E. PLABQTL: a program for composite interval mapping of QTL. Journal of Agricultural Genomics. – 1996. – http://www.cabi-publishing.org/jag/papers96/paper196/indexp196.html (доступно с 30 июня 2007 г.); van Ooijen A.J. JoinMap 4.0: Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Plant Research International B.V & Kyazma B.V. Wageningen, Netherlands. – 2006. – 45 p.; van Ooijen J.W. MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands. – 2009. – 60 p.; Vision T.J., Brown D.G., Shmoys D.B., Durrett R.T., Tanksley S.D. Selective mapping: a strategy for optimizing the construction of high-density linkage maps. // Genetics. – 2000. – V.155. – P.407–420; Ware D.H., Jaiswal P., Ni J., Yap I.V., Pan X., Clark K.Y., Teytelman L., Schmidt S.C., Zhao W., Chang K., Cartinhour S., Stein L.D., McCouch S.R. Gramene, a tool for grass genomics. // Plant Physiology. – 2002. – V.130. – P.1606–1613; Yang J., Hu C., Hu H., Yu R., Xia Z., Ye X., Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. // Bioinformatics. – 2008. – V.24. – P.721–723; Zhang Z., Bradbury P.J., Kroon D.E., Casstevens T.M., Buckler E.S. TASSEL 2.0: a software package for association and diversity analyses in plants and animals. Poster presented at Plant and Animal Genomes XIV Conference, 14–18 January 2006. San Diego, California. – 2006.; https://www.vegetables.su/jour/article/view/215
-
4Academic Journal
Authors: Хамаганова, Екатерина, Бидерман, Б., Якутик, И., Кузьминова, Е., Юшкова, А., Кузьмина, Л., Паровичникова, Е., Судариков, А., Савченко, В.
Subject Terms: HLA-ТИПИРОВАНИЕ С ВЫСОКИМ РАЗРЕШЕНИЕМ, СЕКВЕНИРОВАНИЕ HLA-ГЕНОВ, НЕОДНОЗНАЧНОСТИ, ТРАНСПЛАНТАЦИЯ АЛЛОГЕННЫХ ГЕМОПОЭТИЧЕСКИХ СТВОЛОВЫХ КЛЕТОК, НЕРОДСТВЕННЫЙ ДОНОР, НЕРАВНОВЕСНОЕ СЦЕПЛЕНИЕ, HLA-ГАПЛОТИП
File Description: text/html
-
5Academic Journal
Authors: Матюков, В., Тырина, Ю., Кантанен, Ю., Столповский, Ю.
Subject Terms: ДНК, МТДНК, ГАПЛОТИП, Y-ХРОМОСОМА, ХОЛМОГОРСКИЙ СКОТ, НЕРАВНОВЕСНОЕ СЦЕПЛЕНИЕ, ПОЛИМОРФИЗМ, МЕСТНЫЙ СКОТ, ЕДИНИЧНЫЙ НУКЛЕОТИД, МАРКЕР, ОЦЕНКА, ПЛЕМЕННАЯ ЦЕННОСТЬ, МОЛОЧНЫЙ СКОТ, ПОПУЛЯЦИОННЫЙ ГЕНОФОНД
File Description: text/html
-
6Academic Journal
Source: Гематология и трансфузиология.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, HLA-ТИПИРОВАНИЕ С ВЫСОКИМ РАЗРЕШЕНИЕМ, СЕКВЕНИРОВАНИЕ HLA-ГЕНОВ, НЕОДНОЗНАЧНОСТИ, ТРАНСПЛАНТАЦИЯ АЛЛОГЕННЫХ ГЕМОПОЭТИЧЕСКИХ СТВОЛОВЫХ КЛЕТОК, НЕРОДСТВЕННЫЙ ДОНОР, НЕРАВНОВЕСНОЕ СЦЕПЛЕНИЕ, HLA-ГАПЛОТИП
File Description: text/html
-
7Academic Journal
Source: Сельскохозяйственная биология.
Subject Terms: 2. Zero hunger, ДНК, МТДНК, ГАПЛОТИП, Y-ХРОМОСОМА, ХОЛМОГОРСКИЙ СКОТ, НЕРАВНОВЕСНОЕ СЦЕПЛЕНИЕ, ПОЛИМОРФИЗМ, МЕСТНЫЙ СКОТ, ЕДИНИЧНЫЙ НУКЛЕОТИД, МАРКЕР, ОЦЕНКА, ПЛЕМЕННАЯ ЦЕННОСТЬ, МОЛОЧНЫЙ СКОТ, ПОПУЛЯЦИОННЫЙ ГЕНОФОНД
File Description: text/html