Showing 1 - 20 results of 130 for search '"НЕЙРОДЕГЕНЕРАТИВНЫЕ ЗАБОЛЕВАНИЯ"', query time: 0.75s Refine Results
  1. 1
    Academic Journal
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Source: Drug development & registration; Том 14, № 1 (2025); 112-126 ; Разработка и регистрация лекарственных средств; Том 14, № 1 (2025); 112-126 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/2001/1357; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2001/2661; Armstrong M. J., Okun M. S. Diagnosis and Treatment of Parkinson Disease. JAMA. 2020;323(6):548–560. DOI:10.1001/jama.2019.22360.; Braak H., Braak E. Pathoanatomy of Parkinson’s Disease. Journal of Neurology. 2000;247:II3–II10. DOI:10.1007/PL00007758.; Braak H., Del Tredici K., Rüb U., de Vos R. A. I., Jansen Steur E. N. H., Braak E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiology of Aging. 2003;24(2):197–211. DOI:10.1016/S0197-4580(02)00065-9.; Goetz C. G., Lutge W., Tanner C. M. Autonomic Dysfunction in Parkinson’s Disease. Neurology. 1986;36(1):73–75. DOI:10.1212/wnl.36.1.73.; Doty R. L. Olfactory Dysfunction in Parkinson Disease. Nature Reviews Neurology. 2012;8:329–339. DOI:10.1038/nrneurol.2012.80.; Pavese N., Metta V., Bose S. K., Chaudhuri K. R., Brooks D. J. Fatigue in Parkinson’s Disease Is Linked to Striatal and Limbic Serotonergic Dysfunction. Brain. 2010;133(11):3434–3443. DOI:10.1093/brain/awq268.; Miller K. M., Okun M. S., Fernandez H. F., Jacobson C. E., Rodriguez R. L., Bowers D. Depression Symptoms in Movement Disorders: Comparing Parkinson’s Disease, Dystonia, and Essential Tremor. Movement Disorders. 2007;22:666–672. DOI:10.1002/mds.21376.; O’Sullivan S. S., Wu K., Politis M., Lawrence A. D., Evans A. H., Bose S. K., Djamshidian A., Lees A. J., Piccini P. Cue-Induced Striatal Dopamine Release in Parkinson’s Disease-Associated Impulsive-Compulsive Behaviours. Brain. 2011;134(4):969–978. DOI:10.1093/brain/awr003.; Nagano-Saito A., Washimi Y., Arahata Y., Iwai K., Kawatsu S., Ito K., Nakamura A., Abe Y., Yamada T., Kato T., Kachi T. Visual Hallucination in Parkinson’s Disease with FDG PET. Movement Disorders. 2004;19:801–806. DOI:10.1002/mds.20129.; Verbaan D., Marinus J., Visser M., van Rooden S. M., Stiggelbout A. M., Middelkoop H. A. M., van Hilten J. J. Cognitive Impairment in Parkinson’s Disease. Journal of Neurology, Neurosurgery & Psychiatry. 2007;78(11)1182–1187. DOI:10.1136/jnnp.2006.112367.; Marsili L., Rizzo G., Colosimo C. Diagnostic Criteria for Parkinson’s Disease: From James Parkinson to the Concept of Prodromal Disease. Frontiers in Neurology. 2018;9:156. DOI:10.3389/fneur.2018.00156.; Gelb D. J., Oliver E., Gilman S. Diagnostic Criteria for Parkinson Disease. Archives of Neurology. 1999;56(1):33–39. DOI:10.1001/archneur.56.1.33.; Lippa C. F., Duda J. E., Grossman M., Hurtig H. I., Aarsland D., Boeve B. F., Brooks D. J., Dickson D. W., Dubois B., Emre M., Fahn S., Farmer J. M., Galasko D., Galvin J. E., Goetz C. G., Growdon J. H., Gwinn-Hardy K. A., Hardy J., Heutink P., Iwatsubo T., Kosaka K., Lee V. M.-Y., Leverenz J. B., Masliah E., McKeith I. G., Nussbaum R. L., Olanow C. W., Ravina B. M., Singleton A. B., Tanner C. M., Trojanowski J. Q., Wszolek Z. K. DLB and PDD Boundary Issues: Diagnosis, Treatment, Molecular Pathology, and Biomarkers. Neurology. 2007;68(11):812–819. DOI:10.1212/01.wnl.0000256715.13907.d3.; McKeith I. G., Boeve B. F., Dickson D. W., Halliday G., Taylor J.-P., Weintraub D., Aarsland D., Galvin J., Attems J., Ballard C. G., Bayston A., Beach T. G., Blanc F., Bohnen N., Bonanni L., Bras J., Brundin P., Burn D., Chen-Plotkin A., Duda J. E., El-Agnaf O., Feldman H., Ferman T. J., Ffytche D., Fujishiro H., Galasko D., Goldman J. G., Gomperts S. N., Graff-Radford N. R., Honig L. S., Iranzo A., Kantarci K., Kaufer D., Kukull W., Lee V. M. Y., Leverenz J. B., Lewis S., Lippa C., Lunde A., Masellis M., Masliah E., McLean P., Mollenhauer B., Montine T. J., Moreno E., Mori E., Murray M., O’Brien J. T., Orimo S., Postuma R. B., Ramaswamy S., Ross O. A., Salmon D. P., Singleton A., Taylor A., Thomas A., Tiraboschi P., Toledo J. B., Trojanowski J. Q., Tsuang D., Walker Z., Yamada M., Kosaka K. Diagnosis and Management of Dementia with Lewy Bodies. Neurology. 2017;89(1):88–100. DOI:10.1212/WNL.0000000000004058.; Berg D., Lang A. E., Postuma R. B., Maetzler W., Deuschl G., Gasser T., Siderowf A., Schapira A. H., Oertel W., Obeso J. A., Olanow C. W., Poewe W., Stern M. Changing the Research Criteria for the Diagnosis of Parkinson’s Disease: Obstacles and Opportunities. The Lancet Neurology. 2013;12(5):514–524. DOI:10.1016/S1474-4422(13)70047-4.; Yao N.-T., Zheng Q., Xu Z.-Q., Yin J.-H., Lu L.-G., Zuo Q., Yang S., Zhang C.-L., Jiao L. Positron Emission Computed Tomography/Single Photon Emission Computed Tomography in Parkinson Disease. Chinese Medical Journal. 2020; 133(12):1448–1455. DOI:10.1097/CM9.0000000000000836.; Jellinger K. A., Attems J. Challenges of Multimorbidity of the Aging Brain: A Critical Update. Journal of Neural Transmission. 2015;122:505–521. DOI:10.1007/s00702-014-1288-x.; Rizzo G., Copetti M., Arcuti S., Martino D., Fontana A., Logroscino G. Accuracy of Clinical Diagnosis of Parkinson Disease. Neurology. 2016;86(6):566–576. DOI:10.1212/WNL.0000000000002350.; Caslake R., Moore J. N., Gordon J. C., Harris C. E., Counsell C. Changes in Diagnosis with Follow-up in an Incident Cohort of Patients with Parkinsonism. Journal of Neurology, Neurosurgery & Psychiatry. 2008;79(11):1202–1207. DOI:10.1136/jnnp.2008.144501.; Nodel M. R. Diagnostic criteria for Parkinson's disease. Russian Journal of Geriatric Medicine. 2021;(1):92-96. (In Russ.). DOI:10.37586/2686-8636-1-2021-92-96.; Dickson D. W., Braak H., Duda J. E., Duyckaerts C., Gasser T., Halliday G. M., Hardy J., Leverenz J. B., Del Tredici K., Wszolek Z. K., Litvan I. Neuropathological Assessment of Parkinson’s Disease: Refining the Diagnostic Criteria. The Lancet Neurology. 2009;8(12):1150–1157. DOI:10.1016/S1474-4422(09)70238-8.; Ametamey S. M., Honer M., Schubiger P. A. Molecular Imaging with PET. Chemical Reviews. 2008;108(5):1501–1516. DOI:10.1021/cr0782426.; Saeed U., Lang A. E., Masellis M. Neuroimaging Advances in Parkinson’s Disease and Atypical Parkinsonian Syndromes. Frontiers in Neurology. 2020;11:572976. DOI:10.3389/fneur.2020.572976.; Bidesi N. S. R., Vang Andersen I., Windhorst A. D., Shalgunov V., Herth M. M. The Role of Neuroimaging in Parkinson’s Disease. Journal of Neurochemistry. 2021;159:660–689. DOI:10.1111/jnc.15516.; Morrish P. K., Sawle G. V., Brooks D. J. An [ 18 F]dopa– PET and clinical study of the rate of progression in Parkinson’s disease. Brain. 1996;119(2):585–591. DOI:10.1093/brain/119.2.585.; Morrish P. K., Sawle G. V, Brooks D. J. Clinical and [18F] dopa PET findings in early Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry. 1995;59(6):597–600. DOI:10.1136/jnnp.59.6.597.; Martin W. R. W., Wieler M., Stoessl A. J., Schulzer M. Dihydrotetrabenazine Positron Emission Tomography Imaging in Early, Untreated Parkinson’s Disease. Annals of Neurology. 2008;63:388–394. DOI:10.1002/ana.21320.; Collantes M., Peñuelas I., Álvarez-Erviti L., Blesa J., Martí-Climent J. M., Quincoces G., Delgado M., Ecay M., Martínez A., Arbizu J., Rodríguez-Oroz M. C., Obeso J., Richter J. Á. Use of 11C-(+)-α-Dihydrotetrabenazine for the Assessment of Dopaminergic Innervation in Animal Models of Parkinson’s Disease. Revista Española de Medicina Nuclear (English Edition). 2008;27(2):103–111. DOI:10.1016/S1578-200X(08)70033-0.; Hsiao I.-T., Weng Y.-H., Hsieh C.-J., Lin W.-Y., Wey S.-P., Kung M.-P., Yen T.-C., Lu C.-S., Lin K.-J. Correlation of Parkinson Disease Severity and 18 F-DTBZ Positron Emission Tomography. JAMA Neurology. 2014;71(6):758–766. DOI:10.1001/jamaneurol.2014.290.; Hantraye P., Brownell A.-L., Elmaleh D., Spealman R. D., Wüllner U., Brownell G. L., Madras B. K., Isacson O. Dopamine Fiber Detection by [11C]-CFT and PET in a Primate Model of Parkinsonism. NeuroReport. 1992;3(3):265–268. DOI:10.1097/00001756-199203000-00013.; Antonini A., Schwarz J., Oertel W. H., Beer H. F., Madeja U. D., Leenders K. L. [ 11 C]raclopride and positron emission tomography in previously untreated patients with Parkinson's disease. Neurology. 1994;44(7):1325. DOI:10.1212/WNL.44.7.1325.; Farde L., Hall H., Ehrin E., Sedvall G. Quantitative Analysis of D2 Dopamine Receptor Binding in the Living Human Brain by PET. Science. 1986;231:258–261. DOI:10.1126/science.2867601.; Rahmim A., Zaidi H. PET versus SPECT: Strengths, Limitations and Challenges. Nuclear Medicine Communications. 2008;29(3):193–207. DOI:10.1097/MNM.0b013e3282f3a515.; Abbasi Gharibkandi N., Hosseinimehr S. J. Radiotracers for Imaging of Parkinson’s Disease. European Journal of Medicinal Chemistry. 2019;166:75–89. DOI:10.1016/j.ejmech.2019.01.029.; Cerqueira M. D. Cardiac SPECT or PET?: Is There Still a Debate? Journal of Nuclear Cardiology. 2022;29(3):901–903. DOI:10.1007/s12350-022-02982-x.; Innis R. B., Seibyl J. P., Scanley B. E., Laruelle M., Abi-Dargham A., Wallace E., Baldwin R. M., Zea-Ponce Y., Zoghbi S., Wang S. Single Photon Emission Computed Tomographic Imaging Demonstrates Loss of Striatal Dopamine Transporters in Parkinson Disease. Proceedings of the National Academy of Sciences. 1993;90(24):11965–11969. DOI:10.1073/pnas.90.24.11965.; Piccini P. P. Dopamine Transporter: Basic Aspects and Neuroimaging. Movement Disorders. 2003;18:S3–S8. DOI:10.1002/mds.10571.; Pimoule C., Schoemaker H., Javoy-Agid F., Scatton B., Agid Y., Langer S. Z. Decrease in [ 3 H]cocaine binding to the dopamine transporter in Parkinson’s disease. European Journal of Pharmacology. 1983;95(1–2):145–146. DOI:10.1016/0014-2999(83)90281-9.; Janowsky A., Vocci F., Berger P., Angel I., Zelnik N., Kleinman J. E., Skolnick P., Paul S. M. [ 3 H]GBR-12935 Binding to the Dopamine Transporter Is Decreased in the Caudate Nucleus in Parkinson’s Disease. Journal of Neurochemistry. 1987;49:617–621. DOI:10.1111/j.1471-4159.1987.tb02908.x.; Djang D. S. W., Janssen M. J. R., Bohnen N., Booij J., Henderson T. A., Herholz K., Minoshima S., Rowe C. C., Sabri O., Seibyl J., Van Berckel B. N. M., Wanner M. SNM Practice Guideline for Dopamine Transporter Imaging with 123 I-Ioflupane SPECT 1.0. Journal of Nuclear Medicine. 2012;53(1):154–163. DOI:10.2967/jnumed.111.100784.; Eshuis S. A., Jager P. L., Maguire R. P., Jonkman S., Dierckx R. A., Leenders K. L. Direct Comparison of FP-CIT SPECT and F-DOPA PET in Patients with Parkinson’s Disease and Healthy Controls. European Journal of Nuclear Medicine and Molecular Imaging. 2009;36:454–462. DOI:10.1007/s00259-008-0989-5.; Laruelle M., Wallace E., Seibyl J. P., Baldwin R. M., Zea-Ponce Y., Zoghbi S. S., Neumeyer J. L., Charney D. S., Hoffer P. B., Innis R. B. Graphical, Kinetic, and Equilibrium Analyses of in Vivo [ 123 I]β-CIT Binding to Dopamine Transporters in Healthy Human Subjects. Journal of Cerebral Blood Flow & Metabolism. 1994;14:982–994. DOI:10.1038/jcbfm.1994.131.; Asenbaum S., Brücke T., Pirker W., Podreka I., Angelberger P., Wenger S., Wöber C., Müller C., Deecke L. Imaging of Dopamine Transporters with Iodine-123-β-CIT and SPECT in Parkinson’s Disease. Journal of Nuclear Medicine. 1997;38(1):1–6.; Brucke T., Kornhuber J., Angelberger P., Asenbaum S., Frassine H., Podreka I. SPECT Imaging of Dopamine and Serotonin Transporters with [ 123 I]β-CIT. Binding Kinetics in the Human Brain. Journal of Neural Transmission. 1993;94:137–146. DOI:10.1007/BF01245007.; Kuikka J. T., Bergström K. A., Ahonen A., Hiltunen J., Haukka J., Länsimiese E., Wang S., Neumeyer J. L. Comparison of iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane and 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane for imaging of the dopamine transporter in the living human brain. European Journal of Nuclear Medicine. 1995;22:356–360. DOI:10.1007/BF00941854.; Booij J., Tissingh G., Boer G. J., Speelman J. D., Stoof J. C., Janssen A. G., Wolters E. C., van Royen E. A. [ 123 I]FP-CIT SPECT Shows a Pronounced Decline of Striatal Dopamine Transporter Labelling in Early and Advanced Parkinson’s Disease. Journal of Neurology, Neurosurgery & Psychiatry. 1997;62(2):133–140. DOI:10.1136/jnnp.62.2.133.; Jennings D. L., Seibyl J. P., Oakes D., Eberly S., Murphy J., Marek K. (123I) β-CIT and Single-Photon Emission Computed Tomographic Imaging vs Clinical Evaluation in Parkinsonian Syndrome. Archives of Neurology. 2004;61(8):1224–1229. DOI:10.1001/archneur.61.8.1224.; Hauser R. A., Grosset D. G. [ 123 I]FP‐CIT (DaTscan) SPECT Brain Imaging in Patients with Suspected Parkinsonian Syndromes. Journal of Neuroimaging. 2012;22:225–230. DOI:10.1111/j.1552-6569.2011.00583.x.; Gayed I., Joseph U., Fanous M., Wan D., Schiess M., Ondo W., Won K.-S. The Impact of DaTscan in the Diagnosis of Parkinson Disease. Clinical Nuclear Medicine. 2015;40(5):390–393. DOI:10.1097/RLU.0000000000000766.; Benamer H. T. S., Patterson J., Grosset D. G., Booij J., de Bruin K., van Royen E., Speelman J. D., Horstink M. H. I. M., Sips H. J. W. A., Dierckx R. A., Versijpt J., Decoo D., Van Der Linden C., Hadley D. M., Doder M., Lees A. J., Costa D. C., Gacinovic S., Oertel W. H., Pogarell O., Hoeffken H., Joseph K., Tatsch K., Schwarz J., Ries V. Accurate Differentiation of Parkinsonism and Essential Tremor Using Visual Assessment of [ 123 I]-FP-CIT SPECT Imaging: The [ 123 I]-FP-CIT Study Group. Movement Disorders. 2000;15(3):503–510. DOI:10.1002/1531-8257(200005)15:33.0.CO;2-V.; Brigo F., Turri G., Tinazzi M. 123I-FP-CIT SPECT in the Differential Diagnosis between Dementia with Lewy Bodies and Other Dementias. Journal of the Neurological Sciences. 2015;359(1):161–171. DOI:10.1016/j.jns.2015.11.004.; Diaz-Corrales F. J., Sanz-Viedma S., Garcia-Solis D., Escobar-Delgado T., Mir P. Clinical Features and 123I-FP-CIT SPECT Imaging in Drug-Induced Parkinsonism and Parkinson’s Disease. European Journal of Nuclear Medicine and Molecular Imaging. 2010;37:556–564. DOI:10.1007/s00259-009-1289-4.; Hupf H. B., Eldridge J. S., Beaver J. E. Production of Iodine-123 for Medical Applications. The International Journal of Applied Radiation and Isotopes. 1968;19(4):345–351. DOI:10.1016/0020-708x(68)90178-6.; Meegalla S. K., Plössl K., Kung M.-P., Chumpradit S., Stevenson D. A., Kushner S. A., McElgin W. T., Mozley P. D., Kung H. F. Synthesis and Characterization of Technetium-99m-Labeled Tropanes as Dopamine Transporter-Imaging Agents. Journal of Medicinal Chemistry. 1997;40(1):9–17. DOI:10.1021/jm960532j.; Meegalla S., Plössl K., Kung M.-P., Chumpradit S., Stevenson D. A., Frederick D., Kung H. F. Tc-99m-Labeled Tropanes as Dopamine Transporter Imaging Agents. Bioconjugate Chemistry. 1996;7(4):421–429. DOI:10.1021/bc960029l.; Madras B. K., Jones A. G., Mahmood A., Zimmerman R. E., Garada B., Holman B. L., Davison A., Blundell P., Meltzer P. C. Technepine: A High-Affinity99mtechnetium Probe to Label the Dopamine Transporter in Brain by SPECT Imaging. Synapse. 1996;22:239–246. DOI:10.1002/(SICI)1098-2396(199603)22:33.0.CO;2-D.; Chen Y.-K., Liu R.-S., Huang W.-S., Wey S.-P., Ting G., Liu J.-C., Shen Y.-Y., Wan F.-J. The Role of Dopamine Transporter Imaging Agent [ 99m Tc]TRODAT-1 in Hemi-Parkinsonism Rat Brain. Nuclear Medicine and Biology. 2001;28(8):923–928. DOI:10.1016/S0969-8051(01)00255-4.; Fang P., Wu C.-Y., Liu Z.-G., Wan W.-X., Wang T.-S., Chen S.-D., Chen Z.-P., Zhou X. The Preclinical Pharmacologic Study of Dopamine Transporter Imaging Agent [ 99m Tc]TRODAT-1. Nuclear Medicine and Biology. 2000;27(1):69–75. DOI:10.1016/s0969-8051(99)00090-6.; Tzen K. Y., Lu C. S., Yen T. C., Wey S. P., Ting G. Differential Diagnosis of Parkinson’s Disease and Vascular Parkinsonism by (99m)Tc-TRODAT-1. Journal of Nuclear Medicine. 2001;42(3):408–413.; Kung H. F., Kim H-J., Kung M.-P., Meegalla S. K., Plössl K., Lee H.-K. Imaging of Dopamine Transporters in Humans with Technetium-99m TRODAT 1. European Journal of Nuclear Medicine. 1996;23:1527–1530. DOI:10.1007/BF01254479.; Bao S.-Y., Wu J.-C., Luo W.-F., Fang P., Liu Z.-l., Tang J. Imaging of Dopamine Transporters with Technetium-99m TRODAT-1 and Single Photon Emission Computed Tomography. Journal of Neuroimaging. 2000;10:200–203. DOI:10.1111/jon2000104200.; Huang W. S., Lin S. Z., Lin J. C., Wey S. P., Ting G., Liu R. S. Evaluation of Early-Stage Parkinson’s Disease with 99mTc-TRODAT-1 Imaging. Journal of Nuclear Medicine. 2001;42(9):1303–1308.; Mozley P. D., Schneider J. S., Acton P. D., Plössl K., Stem M. B., Siderowf A., Leopold N. A., Li P. Y., Alavi A., Kung H. F. Binding of [99mTc]TRODAT-1 to Dopamine Transporters in Patients with Parkinson’s Disease and in Healthy Volunteers. Journal of Nuclear Medicine. 2000;41(4):584–589.; Dresel S. H. J., Kung M.-P., Plössl K., Meegalla S. K., Kung H. F. Pharmacological Effects of Dopaminergic Drugs on in Vivo Binding of [ 99m Tc]TRODAT-1 to the Central Dopamine Transporters in Rats. European Journal of Nuclear Medicine and Molecular Imaging. 1998;25:31–39. DOI:10.1007/s002590050191.; Sasannezhad P., Juibary A. G., Sadri K., Sadeghi R., Sabour M., Kakhki V. R. D., Alizadeh H. 99m Tc-TRODAT-1 SPECT Imaging in Early and Late Onset Parkinson’s Disease. Asia Oceania Journal of Nuclear Medicine and Biology. 2017;5(2):114–119. DOI:10.22038/aojnmb.2017.8844.; Fallahi B., Esmaeili A., Beiki D., Oveisgharan S., Noorollahi-Moghaddam H., Erfani M., Tafakhori A., Rohani M., Fard-Esfahani A., Emami-Ardekani A., Geramifar P., Eftekhari M. Evaluation of 99mTc-TRODAT-1 SPECT in the Diagnosis of Parkinson’s Disease versus Other Progressive Movement Disorders. Annals of Nuclear Medicine. 2016;30:153–162. DOI:10.1007/s12149-015-1042-y.; Baseri F., Aghamollaii V., Salehi Y., Farzanehfar S., Hosseini A., Tafakhori A., Abbasi M. [ 99m Tc]Tc-TRODAT-1 Scan Diagnostic Accuracy for Differentiation of Dementia of Lewy Body from Alzheimer’s Disease. Iranian Journal of Nuclear Medicine. 2024;32(1):40–44. DOI:10.22034/IRJNM.2023.129231.1556.; Sun Y., Liu C., Chen Z., Li B., Lv Z., Wang J., Lou J., Tang J., Wang Y., Zhang G., Liu X. A Phase 2, Open-Label, Multi-Center Study to Evaluate the Efficacy and Safety of 99mTc-TRODAT-1 SPECT to Detect Parkinson’s Disease. Annals of Nuclear Medicine. 2020;34:31–37. DOI:10.1007/s12149-019-01412-2.; Spies H., Pietzsch H.-J. Stannous Chloride in the Preparation of 99m Tc Pharmaceuticals. In: Zolle I., editor. Technetium-99m Pharmaceuticals. Heidelberg: Springer; 2007. P. 59–66.; Steigman J., Meinken G., Richards P. The Reduction of Pertechnetate-99 by Stannous Chloride-II. The Stoichiometry of the Reaction in Aqueous Solutions of Several Phosphorus(V) Compounds. The International Journal of Applied Radiation and Isotopes. 1978;29(11):653–660. DOI:10.1016/0020-708X(78)90102-3.; De Kieviet W. Technetium Radiopharmaceuticals: Chemical Characterization and Tissue Distribution of Tc-Glucoheptonate Using Tc-99m and Carrier Tc-99. Journal of Nuclear Medicine. 1981;22(8):703–709.; Choi S. R., Kung M.-P., Plössl K., Meegalla S., Kung H. F. An Improved Kit Formulation of a Dopamine Transporter Imaging Agent: [Tc-99m]TRODAT-1. Nuclear Medicine and Biology. 1999;26(4):461–466. DOI:10.1016/S0969-8051(99)00010-4.; Kung M.-P., Stevenson D. A., Plössl K., Meegalla S. K., Beckwith A., Essman W. D., Mu M., Lucki I., Kung H. F. [ 99m Tc]TRODAT-1: A Novel Technetium-99m Complex as a Dopamine Transporter Imaging Agent. European Journal of Nuclear Medicine and Molecular Imaging. 1997;24:372–380. DOI:10.1007/s002590050065.; Vatsa R., Shukla J., Mittal B. R., Sood A., Joshi R. K., Palarwal K., Bhusari P., Modi M. In-House Preparation and Quality Control of Tc99m TRODAT 1 for Diagnostic Single-Photon Emission Computed Tomography/Computed Tomography Imaging in Parkinson’s Disease. Indian Journal of Nuclear Medicine. 2017;32(4):266–270. DOI:10.4103/ijnm.IJNM_111_17.; Shinto A., Antony J., Kamaleshwaran K., Vijayan K., Selvan A., Korde A., Kameshwaran M., Samuel G. Correlative 99m Tc-Labeled Tropane Derivative Single Photon Emission Computer Tomography and Clinical Assessment in the Staging of Parkinson Disease. World Journal of Nuclear Medicine. 2014;13(03):178–183. DOI:10.4103/1450-1147.144818.; Korde A., Kameswaran M., Satpati D., Dev Sarma H., Banerjee S., Shinto A., Kamaleshwaran K. K., Samuel G. Single Vial Freeze-Dried TRODAT-1 Kit: Preparation and Demonstration of Clinical Efficacy of [ 99m Tc]TRODAT-1 in Indian Scenario. Applied Radiation and Isotopes. 2015;96:57–62. DOI:10.1016/j.apradiso.2014.10.017.; Erfani M., Shafiei M., Charkhlooie G., Goudarzi M. Development of a Freeze-Dried Radiopharmaceutical Kit for Dopamine Transporters Imaging. Iranian Journal of Nuclear Medicine. 2015;23(1):15–20.; Erfani M., Shafiei M. Preparation of 99mTc-TRODAT-1 with High Labeling Yield in Boiling Water Bath: A New Formulation. Nuclear Medicine and Biology. 2014;41(4):317–321. DOI:10.1016/j.nucmedbio.2014.01.003.; Gandomkar M., Najafi R., Shafiei M., Mazidi M., Sadat Ebrahimi S. E. Preclinical Evaluation of [ 99m Tc/EDDA/Tricine/ HYNIC 0 , 1-Nal 3 , Thr 8 ]-Octreotide as a New Analogue in the Detection of Somatostatin-Receptor-Positive Tumors. Nuclear Medicine and Biology. 2007;34(6):651–657. DOI:10.1016/j.nucmedbio.2007.06.006.; Erfani M., Shafiei M., Mazidi M., Goudarzi M. Preparation and Biological Evaluation of [ 99m Tc/EDDA/Tricine/HYNIC 0 , BzThi 3 ]-Octreotide for Somatostatin Receptor-Positive Tumor Imaging. Cancer Biotherapy and Radiopharmaceuticals. 2013;28(3):240–247. DOI:10.1089/cbr.2012.1270.; Shirmardi S. P., Gandomkar M., Maragheh M. G., Shamsaei M. Preclinical Evaluation of a New Bombesin Analog for Imaging of Gastrin-Releasing Peptide Receptors. Cancer Biotherapy and Radiopharmaceuticals. 2011;26(3):309–316. DOI:10.1089/cbr.2010.0912.; https://www.pharmjournal.ru/jour/article/view/2001

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/14585

  14. 14
    Academic Journal

    Contributors: This work was supported financially by the Russian Science Foundation under Scientific Project No. 19-75-30039 (R.E.I., K.S.S., U.L.I.) and the Sirius University of Science and Technology under Scientific Project GEN-RND-2019 (V.V.P., K.D.A.).

    Source: Vavilov Journal of Genetics and Breeding; Том 27, № 5 (2023); 495-501 ; Вавиловский журнал генетики и селекции; Том 27, № 5 (2023); 495-501 ; 2500-3259 ; 10.18699/VJGB-23-51

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3866/1736; Bender A., Krishnan K.J., Morris C.M., Taylor G.A., Reeve A.K., Perry R.H., Jaros E., Hersheson J.S., Betts J., Klopstock T., Taylor R.W., Turnbull D.M. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 2006;38(5):515-517. DOI:10.1038/ng1769.; Bendix L., Gade M.M., Staun P.W., Kimura M., Jeune B., Hjelmborg J.V.B., Aviv A., Christensen K. Leukocyte telomere length and physical ability among Danish Twins age 70+. Mech. Ageing Dev. 2011;132(11-12):568-572. DOI:10.1016/j.mad.2011.10.003.; Benetos A., Okuda K., Lajemi M., Kimura M., Thomas F., Skurnick J., Labat C., Bean K., Aviv A. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001;37(2):381-385. DOI:10.1161/01.hyp.37.2.381.; Blackburn E.H., Epel E.S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-1198. DOI:10.1126/science.aab3389.; Cagan A., Baez-Ortega A., Brzozowska N., Abascal F., Coorens T.H.H., Sanders M.A., Lawson A.R.J., … Bochynska D., Smith E.St.J., Gerstung M., Campbell P.J., Murchison E.P., Stratton M.R., Martincorena I. Somatic mutation rates scale with lifespan across mammals. Nature. 2022;604(7906):517-524. DOI:10.1038/s41586-022-04618-z.; Chan S.W., Chevalier S., Aprikian A., Chen J.Z. Simultaneous quantification of mitochondrial DNA damage and copy number in circulating blood: a sensitive approach to systemic oxidative stress. BioMed Res. Int. 2013;2013:157547. DOI:10.1155/2013/157547.; Coskun P.E., Beal M.F., Wallace D.C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA. 2004; 101(29):10726-10731. DOI:10.1073/pnas.0403649101.; Debette S., Schilling S., Duperron M., Larsson S.C., Markus H.S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis. JAMA Neurol. 2019;76(1):81-94. DOI:10.1001/jamaneurol.2018.3122.; Deelen J., Evans D.S., Arking D.E., Tesi N., Nygaard M., Liu X., Wojczynski M.K., … Zeng Y., Zheng W., Holstege H., Kiel D.P., Lunetta K.L., Slagboom P.E., Murabito J.M. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 2019;10(1):3669. DOI:10.1038/s41467-019-11558-2.; de Grey A.D.N.J. A proposed refinement of the mitochondrial free radical theory of aging. BioEssays. 1997;19(2):161-166. DOI:10.1002/bies.950190211.; Demanelis K., Jasmine F., Chen L.S., Chernoff M., Tong L., Delgado D., Zhang C., Shinkle J., Sabarinathan M., Lin H., Ramirez E., Oliva M., Kim-Hellmuth S., Stranger B.E., Lai T.-P., Aviv A., Ardlie K.G., Aguet F., Ahsan H., Doherty J.A., Kibriya M.G., Pierce B.L. Determinants of telomere length across human tissues. Science. 2020;369(6509):eaaz6876. DOI:10.1126/science.aaz6876.; Diaz F. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res. 2002;30(21):4626-4633. DOI:10.1093/nar/gkf602.; Dolcini J., Wu H., Nwanaji-Enwerem J.C., Kiomourtozlogu M.A., Cayir A., Sanchez-Guerra M., Vokonas P., Schwarz J., Baccarelli A.A. Mitochondria and aging in older individuals: an analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study. Aging. 2020;12(3):2070-2083. DOI:10.18632/aging.102722.; Dölle C., Flønes I., Nido G.S., Miletic H., Osuagwu N., Kristoffersen S., Lilleng P.K., Larsen J.P., Tysnes O.B., Haugarvoll K., Bindoff L.A., Tzoulis C. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat. Commun. 2016;22(7):13548. DOI:10.1038/ncomms13548.; Forero D.A., González-Giraldo Y., López-Quintero C., Castro-Vega L.J., Barreto G.E., Perry G. Meta-analysis of telomere length in Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71(8): 1069-1073. DOI:10.1093/gerona/glw053.; Franco I., Helgadottir H.T., Moggio A., Larsson M., Vrtačnik P., Johansson A., Norgren N., Lundin P., Mas-Ponte D., Nordström J., Lundgren T., Stenvinkel P., Wennberg L., Supek F., Eriksson M. Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type. Genome Biol. 2019;20(1):285. DOI:10.1186/s13059-019-1892-z.; Gampawar P., Schmidt R., Schmidt H. Telomere length and brain aging: A systematic review and meta-analysis. Ageing Res. Rev. 2022;80:101679. DOI:10.1016/j.arr.2022.101679.; Garagnani P., Marquis J., Delledonne M., Pirazzini C., Marasco E., Kwiatkowska K.M., Iannuzzi V., … Bertamini L., Martinelli N., Girelli D., Olivieri O., Giuliani C., Descombes P., Franceschi C. Whole-genome sequencing analysis of semi-supercentenarians. eLife. 2021;10:e57849. DOI:10.7554/eLife.57849.; Grünewald A., Rygiel K.A., Hepplewhite P.D., Morris C.M., Picard M., Turnbull D.M. Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons. Ann. Neurol. 2016;79(3):366-378. DOI:10.1002/ana.24571.; Hackenhaar F.S., Josefsson M., Adolfsson A.N., Landfors M., Kauppi K., Hultdin M., Adolfsson R., Degerman S., Pudas S. Short leukocyte telomeres predict 25-year Alzheimer’s disease incidence in non-APOE ε4-carriers. Alzheimers Res. Ther. 2021;13(1):130. DOI:10.1186/s13195-021-00871-y.; Haussmann M.F., Winkler D.W., O’Reilly K.M., Huntington C.E., Nisbet I.C., Vleck C.M. Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc. Biol. Sci. 2003; 270(1522):1387-1392. DOI:10.1098/rspb.2003.2385.; Haussmann M.F., Winkler D.W., Huntington C.E., Nisbet I.C., Vleck C.M. Telomerase activity is maintained throughout the lifespan of long-lived birds. Exp. Gerontol. 2007;42(7):610-618. DOI:10.1016/j.exger.2007.03.004.; Hägg S., Zhan Y., Karlsson R., Gerritsen L., Ploner A., van der Lee S.J., Broer L., … Kuh D., Starr J.M., Deary I.J., Slagboom P.E., van Duijn C.M., Codd V., Pedersen N.L. Short telomere length is associated with impaired cognitive performance in European ancestry cohorts. Transl. Psychiatry. 2017;7(4):e1100. DOI:10.1038/tp.2017.73.; He Y.H., Lu X., Wu H., Cai W.W., Yang L.Q., Xu L.Y., Sun H.P., Kong Q.P. Mitochondrial DNA content contributes to healthy aging in Chinese: a study from nonagenarians and centenarians. Neurobiol. Aging. 2014;35(7):1779.e1-1779.e4. DOI:10.1016/j.neurobiolaging.2014.01.015.; Herbst A., Widjaja K., Nguy B., Lushaj E.B., Moore T.M., Hevener A.L., McKenzie D., Aiken J.M., Wanagat J. Digital PCR quantitation of muscle mitochondrial DNA: age, fiber type, and mutation-induced changes. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72(10):1327-1333. DOI:10.1093/gerona/glx058.; Herbst A., Lee C.C., Vandiver A.R., Aiken J.M., McKenzie D., Hoang A., Allison D., Liu N., Wanagat J. Mitochondrial DNA deletion mutations increase exponentially with age in human skeletal muscle. Aging Clin. Exp. Res. 2021a;33(7):1811-1820. DOI:10.1007/s40520-020-01698-7.; Herbst A., Prior S.J., Lee C.C., Aiken J.M., McKenzie D., Hoang A., Liu N., Chen X., Xun P., Allison D.B., Wanagat J. Skeletal muscle mitochondrial DNA copy number and mitochondrial DNA deletion mutation frequency as predictors of physical performance in older men and women. Geroscience. 2021b;43(3):1253-1264. DOI:10.1007/s11357-021-00351-z.; Holt A.G., Davies A.M. The effect of mitochondrial DNA half-life on deletion mutation proliferation in long lived cells. Acta Biotheor. 2021;69(4):671-695. DOI:10.1007/s10441-021-09417-z.; Huang Z., Sun S., Lee M., Maslov A.Y., Shi M., Waldman S., Marsh A., Siddiqui T., Dong X., Peter Y., Sadoughi A., Shah C., Ye K., Spivack S.D., Vijg J. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat. Genet. 2022;54(4):492-498. DOI:10.1038/s41588-022-01035-w.; Hudson G., Nalls M., Evans J.R., Breen D.P., Winder-Rhodes S., Morrison K.E., Morris H.R., Williams-Gray C.H., Barker R.A., Singleton A.B., Hardy J., Wood N.E., Burn D.J., Chinnery P.F. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology. 2013;80(22):2042-2048. DOI:10.1212/WNL.0b013e318294b434.; Hunt S.C., Chen W., Gardner J.P., Kimura M., Srinivasan S.R., Eckfeldt J.H., Berenson G.S., Aviv A. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell. 2008;7(4):451-458. DOI:10.1111/j.1474-9726.2008.00397.x.; Ikebe S., Tanaka M., Ohno K., Sato W., Hattori K., Kondo T., Mizuno Y., Ozawa T. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem. Biophys. Res. Commun. 1990;170(3):1044-1048. DOI:10.1016/0006-291x(90)90497-b.; Just R.S., Irwin J.A., Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci. Int. Genet. 2015;18:131-139. DOI:10.1016/j.fsigen.2015.05.003.; Kennedy S.R., Loeb L.A., Herr A.J. Somatic mutations in aging, cancer and neurodegeneration. Mech. Ageing Dev. 2012;133(4):118-126. DOI:10.1016/j.mad.2011.10.009.; Kim J.-H., Kim H.K., Ko J.-H., Bang H., Lee D.-C. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLoS One. 2013; 8(6):e67227. DOI:10.1371/journal.pone.0067227.; Kowald A., Kirkwood T. Resolving the enigma of the clonal expansion of mtDNA deletions. Genes (Basel). 2018;9(3):126. DOI:10.3390/genes9030126.; Lee J.W., Park K.D., Im J.A., Kim M.Y., Lee D.C. Mitochondrial DNA copy number in peripheral blood is associated with cognitive function in apparently healthy elderly women Clin. Chim. Acta. 2010; 411(7-8):592-596. DOI:10.1016/j.cca.2010.01.024.; Levstek T., Redenšek S., Trošt M., Dolžan V., Podkrajšek K.T. Assessment of the telomere length and its effect on the symptomatology of Parkinson’s disease. Antioxidants (Basel). 2021;10(1):137. DOI:10.3390/antiox10010137.; Li H., Slone J., Fei L., Huang T. Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 2019;8(6):608. DOI:10.3390/cells8060608.; Lodato M.A., Rodin R.E., Bohrson C.L., Coulter M.E., Barton A.R., Kwon M., Sherman M.A., Vitzthum C.M., Luquette L.J., Yandava C.N., Yang P., Chittenden T.W., Hatem N.E., Ryu S.C., Wood-worth M.B., Park P.J., Walsh C.A. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science. 2018;359(6375):555-559. DOI:10.1126/science.aao4426.; Machado H.E., Mitchell E., Øbro N.F., Kübler K., Davies M., Leongamornlert D., Cull A., Maura F., Sanders M.A., Cagan A.T.J., McDonald C., Belmonte M., Shepherd M.S., Vieira Braga F.A., Osborne R.J., Mahbubani K., Martincorena I., Laurenti E., Green A.R., Getz G., Polak P., Saeb-Parsy K., Hodson D.J., Kent D.G., Campbell P.J. Diverse mutational landscapes in human lymphocytes. Nature. 2022;608(7924):724-732. DOI:10.1038/s41586-022-05072-7.; Mahoney E.R., Dumitrescu L., Seto M., Nudelman K.N.H., Buckley R.F., Gifford K.A., Saykin A.J., Jefferson A.J., Hohman T.J. Telomere length associations with cognition depend on Alzheimer’s disease biomarkers. Alzheimers Dement. (NY). 2019;5:883-890. DOI:10.1016/j.trci.2019.11.003.; Melicher D., Illés A., Pállinger É., Kovács Á.F., Littvay L., Tárnoki Á.D., Tárnoki D.L., Bikov A., Molnár M.J., Buzás E.I., Falus A. Tight co-twin similarity of monozygotic twins for hTERT protein level of T cell subsets, for telomere length and mitochondrial DNA copy number, but not for telomerase activity. Cell. Mol. Life Sci. 2018;75(13):2447-2456. DOI:10.1007/s00018-017-2738-z.; Mengel-From J., Thinggaard M., Dalgård C., Kyvik K.O., Christensen K., Christiansen L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum. Genet. 2014;133(9):1149-1159. DOI:10.1007/s00439-014-1458-9.; Mikhailova A.G., Mikhailova A.A., Ushakova K., Tretiakov E.O., Iliushchenko D., Shamansky V., Lobanova V., Kozenkov I., Efimenko B., Yurchenko A.A., Kozenkova E., Zdobnov E.M., Makeev V., Yurov V., Tanaka M., Gostimskaya I., Fleischmann Z., Annis S., Franco M., Wasko K., Denisov S., Kunz W.S., Knorre D., Mazunin I., Nikolaev S., Fellay J., Reymond A., Khrapko K., Gunbin K., Popadin K. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand. Nucleic Acids Res. 2022;50(18):10264-10277. DOI:10.1093/nar/gkac779.; Milholland B., Dong X., Zhang L., Hao X., Suh Y., Vijg J. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 2017;8(1):15183. DOI:10.1038/ncomms15183.; Miller M.B., Huang A.Y., Kim J., Zhou Z., Kirkham S.L., Maury E.A., Ziegenfuss J.S., Reed H.C., Neil J.E., Rento L., Ryu S.C., Ma C.C., Luquette L.J., Ames H.M., Oakley D.H., Frosch M.P., Hyman B.T., Lodato M.A., Lee E.A., Walsh C.A. Somatic genomic changes in single Alzheimer’s disease neurons. Nature. 2022;604(7907):714-722. DOI:10.1038/s41586-022-04640-1.; Miwa S., Kashyap S., Chini E., von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 2022;132(13): e158447. DOI:10.1172/JCI158447.; Movérare-Skrtic S., Johansson P., Mattsson N., Hansson O., Wallin A., Johansson J.O., Zetterberg H., Blennow K., Svensson J. Leukocyte telomere length (LTL) is reduced in stable mild cognitive impairment but low LTL is not associated with conversion to Alzheimer’s disease: a pilot study. Exp. Gerontol. 2012;47(2):179-182. DOI:10.1016/j.exger.2011.12.005.; Müezzinler A., Zaineddin A.K., Brenner H. A systematic review of leukocyte telomere length and age in adults. Ageing Res. Rev. 2013; 12:509-519. DOI:10.1016/j.arr.2013.01.003.; Müller-Nedebock A.C., Meldau S., Lombard C., Abrahams S., van der Westhuizen F.H., Bardien S. Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson’s disease. Parkinsonism Relat. Disord. 2022;101:1-5. DOI:10.1016/j.parkreldis.2022.06.003.; Nido G.S., Dölle C., Flønes I., Tuppen H.A., Alves G., Tysnes O.-B., Haugarvoll K., Tzoulis C. Ultradeep mapping of neuronal mitochondrial deletions in Parkinson’s disease. Neurobiol. Aging. 2018;63: 120-127. DOI:10.1016/j.neurobiolaging.2017.10.024.; Perier C., Bender A., García-Arumí E., Melià M.J., Bové J., Laub C., Klopstock T., Elstner M., Mounsey R.B., Teismann P., Prolla T., Andreu A.L., Vila M. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms. Brain. 2013;136(Pt. 8):2369-2378. DOI:10.1093/brain/awt196.; Poovathingal S.K., Gruber J., Lakshmanan L., Halliwell B., Gunawan R. Is mitochondrial DNA turnover slower than commonly assumed? Biogerontology. 2012;13(5):557-564. DOI:10.1007/s10522-012-9390-7.; Qiu C., Enquobahrie D., Gelaye B., Hevner K., Williams M. The association between leukocyte telomere length and mitochondrial DNA copy number in pregnant women: A pilot study. Clin. Lab. 2015; 61(3-4):363-369. DOI:10.7754/Clin.Lab.2014.140313.; Rice A.C., Keeney P.M., Algarzae N.K., Ladd A.C., Thomas R.R., Bennett J.P. Jr. Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer’s disease hippocampi. J. Alzheimer’s Dis. 2014;40(2):319-330. DOI:10.3233/JAD-131715.; Rose G., Romeo G., Dato S., Crocco P., Bruni A.C., Hervonen A., Majamaa K., Sevini F., Franceschi C., Passarino G. Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: A GEHA study. PLoS One. 2010;5(10):e13395. DOI:10.1371/journal.pone.0013395.; Sallevelt S.C., de Die-Smulders C.E., Hendrickx A.T., Hellebrekers D.M., de Coo I.F., Alston C.L., Knowles C., Taylor R.W., McFarland R., Smeets H.J. De novo mtDNA point mutations are common and have a low recurrence risk. J. Med. Genet. 2017;54(2):73-83. DOI:10.1136/jmedgenet-2016-103876.; Sanders J.L., Newman A.B. Telomere length in epidemiology: A biomarker of aging, age-related disease, both, or neither? Epidemiol. Rev. 2013;35(1):112-131. DOI:10.1093/epirev/mxs008.; Sondheimer N., Glatz C.E., Tirone J.E., Deardorff M.A., Krieger A.M., Hakonarson H. Neutral mitochondrial heteroplasmy and the influence of aging. Hum. Mol. Genet. 2011;20(8):1653-1659. DOI:10.1093/hmg/ddr043.; Tedone E., Huang E., O’Hara R., Batten K., Ludlow A.T., Lai T.-P., Arosio B., Mari D., Wright W.E., Shay J.W. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell. 2019;18(1):e12859. DOI:10.1111/acel.12859.; Terry D.F., Nolan V.G., Andersen S.L., Perls T.T., Cawthon R. Association of longer telomeres with better health in centenarians. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63(8):809-812. DOI:10.1093/gerona/63.8.809.; Thomas P., O’ Callaghan N.J., Fenech M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease. Mech. Ageing Dev. 2008;129(4):183-190. DOI:10.1016/j.mad.2007.12.004.; Tranah G.J., Nalls M.A., Katzman S.M., Yokoyama J.S., Lam E.T., Zhao Y., Mooney S., Thomas F., Newman A.B., Liu Y., Cummings S.R., Harris T.B., Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J. Alzheimers. Dis. 2012;32(2):357-372. DOI:10.3233/JAD-2012-120466.; Tyrka A.R., Carpenter L.L., Kao H.-T., Porton B., Philip N.S., Ridout S.J., Ridout K.K., Price L.H. Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults. Exp. Gerontol. 2015;66:17-20. DOI:10.1016/j.exger.2015.04.002.; van den Berg N. Family matters in unraveling human longevity. Aging. 2020;12(22):22354-22355. DOI:10.18632/aging.104218.; van Leeuwen N., Beekman M., Deelen J., van den Akker E.B., de Craen A.J.M., Slagboom P.E., ’t Hart L.M. Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. Age (Dordr.). 2014;36(3):9629. DOI:10.1007/s11357-014-9629-0.; Vera E., Bernardes de Jesus B., Foronda M., Flores J.M., Blasco M.A. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2012;2(4):732-737. DOI:10.1016/j.celrep.2012.08.023.; Victorelli S., Passos J.F. Telomeres and cell senescence – size matters not. EBioMedicine. 2017;21:14-20. DOI:10.1016/j.ebiom.2017.03.027.; Vijg J., Dong X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell. 2020;182(1):12-23. DOI:10.1016/j.cell.2020.06.024.; Wachsmuth M., Hübner A., Li M., Madea B., Stoneking M. Age-related and heteroplasmy-related variation in human mtDNA copy number. PLoS Genet. 2016;12(3):e1005939. DOI:10.1371/journal.pgen.1005939.; Yang S.Y., Castellani C.A., Longchamps R.J., Pillalamarri V.K., O’Rourke B., Guallar E., Arking D.E. Blood-derived mitochondrial DNA copy number is associated with gene expression across multiple tissues and is predictive for incident neurodegenerative disease. Genome Res. 2021;31(3):349-358. DOI:10.1101/gr.269381.120.; Zhang R., Wang Y., Ye K., Picard M., Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics. 2017;18(1):890. DOI:10.1186/s12864-017-4287-0.; Zhao X., Liu X., Zhang A., Chen H., Huo Q., Li W., Ye R., Chen Z., Liang L., Liu Q.A., Shen J., Jin X., Li W., Nygaard M., Liu X., Hou Y., Ni T., Bolund L., Gottschalk W., Tao W., Gu J., Tian X.L., Yang H., Wang J., Xu X., Lutz M.W., Min J., Zeng Y., Nie C. The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. Aging (Albany NY). 2018; 10(6):1206-1222. DOI:10.18632/aging.101461.; https://vavilov.elpub.ru/jour/article/view/3866

  15. 15
    Academic Journal

    Contributors: The study did not have sponsorship, Исследование не имело спонсорской поддержки

    Source: Medical Herald of the South of Russia; Том 14, № 2 (2023); 97-105 ; Медицинский вестник Юга России; Том 14, № 2 (2023); 97-105 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2023-14-2

    File Description: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1710/965; Safinia C., Bershad E. M., Clark H. B., Santa Cruz K., Alakbarova N., et al. Chronic Traumatic Encephalopathy in Athletes Involved with High-impact Sports. J Vasc Interv Neurol. 2016; 9 (2): 34-48. PMID: 27829969; PMCID: PMC5094259.; Tharmaratnam T., Iskandar M. A., Tabobondung T. C., Tobbia I., Gopee-Ramanan P., Tabobondung T. A. Chronic Traumatic Encephalopathy in Professional American Football Players: where Are we Now? Front Neurol. 2018; 9: 445. doi:10.3389/fneur.2018.00445; Carone D. A., Bush S. S., eds. Mild traumatic brain injury: Symptom validity assessment and malingering. Springer Publishing Company; 2013.; Langlois J. A., Rutland-Brown W., Wald M. M. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006; 21 (5): 375-8. doi:10.1097/00001199-200609000-00001; Sosin D. M., Sniezek J. E., Thurman D. J. Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj. 1996; 10 (1): 47-54. doi:10.1080/026990596124719; Theadom A., Mahon S., Hume P., Starkey N, Barker-Collo S., et al. Incidence of Sports-Related Traumatic Brain Injury of All Severities: A Systematic Review. Neuroepidemiology. 2020; 54 (2): 192-199. doi:10.1159/000505424; Servadei F., Verlicchi A., Soldano F., Zanotti B., Piffer S. Descriptive epidemiology of head injury in Romagna and Trentino. Comparison between two geographically different Italian regions. Neuroepidemiology. 2002; 21 (6): 297-304. doi:10.1159/000065523; Selassie A. W., Wilson D. A., Pickelsimer E. E., Voronca D. C., Williams N. R., Edwards J. C. Incidence of sport-related traumatic brain injury and risk factors of severity: a population-based epidemiologic study. Ann Epidemiol. 2013; 23 (12): 750-6. doi:10.1016/j.annepidem.2013.07.022; Theadom A. , Starkey N. J., Dowell T., Hume P. A., Kahan M., et al. Sports-related brain injury in the general population: an epidemiological study. J Sci Med Sport. 2014; 17 (6): 591-6. doi:10.1016/j.jsams.2014.02.001; Broglio S. P., Martini D., Kasper L., Eckner J. T., Kutcher J. S. Estimation of head impact exposure in high school football: implications for regulating contact practices. Am J Sports Med. 2013; 41 (12): 2877-84. doi:10.1177/0363546513502458; Mez J., Daneshvar D. H., Kiernan P. T., Abdolmohammadi B., Alvarez V. E., et al. Clinicopathological Evaluation of Chronic Traumatic Encephalopathy in Players of American Football. JAMA. 2017; 318 (4): 360-370. doi:10.1001/jama.2017.8334; Lehman E. J., Hein M. J., Baron S. L., Gersic C. M. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012; 79 (19): 1970-4. doi:10.1212/wNL.0b013e31826daf50; Weir D. R., Jackson J. National Football League Player Care Foundation: Study of Retired NFL Players. Institute for Social Research; 2009.; Casson I. R., Viano D. C., Powell J. W., Pellman E. J. Twelve years of national football league concussion data. Sports Health. 2010; 2 (6): 471-83. doi:10.1177/1941738110383963; Lucke-Wold B. P., Turner R. C., Logsdon A. F., Bailes J. E., Huber J. D., Rosen C. L. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma. 2014; 31 (13): 1129-38. doi:10.1089/neu.2013.3303; Iqbal K., Gong C. X., Liu F. Hyperphosphorylation-induced tau oligomers. Front Neurol. 2013; 4: 112. doi:10.3389/fneur.2013.00112; Mannix R, Meehan W. P., Mandeville J., Grant P. E., Gray T., et al. Clinical correlates in an experimental model of repetitive mild brain injury. Ann Neurol. 2013; 74 (1): 65-75. doi:10.1002/ana.23858; Walker K. R., Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci. 2013; 5: 29. doi:10.3389/fnagi.2013.00029; Greenberg M. S. Handbook of neurosurgery. Ninth edition. New York: Thieme; 2020.; Harmon K. G., Clugston J. R., Dec K., Hainline B., Herring S. A., et al. American Medical Society for Sports Medicine Position Statement on Concussion in Sport. Clin J Sport Med. 2019; 29 (2): 87-100. Erratum in: Clin J Sport Med. 2019; 29 (3): 256. PMID: 30730386. doi:10.1097/JSM.0000000000000720; McCrory P., Meeuwisse W. H., Aubry M., Cantu B., Dvorák J., et al. Consensus statement on concussion in sport: the 4 th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013; 47 (5): 250-8. doi:10.1136/bjsports-2013-092313; Giza C. C., Hovda D. A. The new neurometabolic cascade of concussion. Neurosurgery. 2014; 75 Suppl 4 (0 4): S24-33. doi:10.1227/NEU.0000000000000505; Slobounov S. Concussion Classification: Historical Perspectives and Current Trends. In: Injuries in Athletics: Causes and Consequences. Springer, Boston, MA; 2008. doi:10.1007/978-0-387-72577-2_18; Robbins C. A., Daneshvar D. H., Picano J. D., Gavett B. E., Baugh C. M., et al. Self-reported concussion history: impact of providing a definition of concussion. Open Access J Sports Med. 2014; 5: 99-103. doi:10.2147/OAJSM.S58005; Cantu R. C. Guidelines for Return to Contact Sports After a Cerebral Concussion. Phys Sportsmed. 1986; 14 (10): 75-83. doi:10.1080/00913847.1986.11709197; American Academy of Neurology 40 th annual meeting. Boston, Massachusetts, April 12-19, 1997. Abstracts. Neurology. 1997; 48 (3 Suppl 2): A17-543. PMID: 9074350.; Bailes J. E., Hudson V. Classification of Sport-Related Head Trauma: A Spectrum of Mild to Severe Injury. J Athl Train. 2001; 36 (3): 236-243. PMID: 12937490; PMCID: PMC155412.; Ommaya A. K., Gennarelli T. A. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain. 1974; 97 (4): 633-54. doi:10.1093/brain/97.1.633; Stern R. A., Daneshvar D. H., Baugh C. M., Seichepine D. R., Montenigro P. H., et al. Clinical presentation of chronic traumatic encephalopathy. Neurology. 2013; 81 (13): 1122-9. doi:10.1212/wNL.0b013e3182a55f7f; Koliatsos V. E., Xu L. The Problem of Neurodegeneration in Cumulative Sports Concussions: Emphasis on Neurofibrillary Tangle Formation. In: Kobeissy F. H., ed. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 47. Accessed on April 12, 2023. https://www.ncbi.nlm.nih.gov/books/NBK299181/; Montenigro P. H., Baugh C. M., Daneshvar D. H., Mez J., Budson A. E., et al. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res Ther. 2014; 6 (5): 68. doi:10.1186/s13195-014-0068-z; Lesman-Segev O. H., La Joie R., Stephens M. L., Sonni I., Tsai R., et al. Tau PET and multimodal brain imaging in patients at risk for chronic traumatic encephalopathy. Neuroimage Clin. 2019; 24: 102025. doi:10.1016/j.nicl.2019.102025; Little D. M., Geary E. K., Moynihan M., Alexander A., Pennington M., et al. Imaging chronic traumatic brain injury as a risk factor for neurodegeneration. Alzheimers Dement. 2014; 10 (3 Suppl): S188-95. doi:10.1016/j.jalz.2014.04.002; Orrison W. W., Hanson E. H., Alamo T., Watson D., Sharma M., et al. Traumatic brain injury: a review and high-field MRI findings in 100 unarmed combatants using a literature-based checklist approach. J Neurotrauma. 2009; 26 (5): 689-701. doi:10.1089/neu.2008.0636; Gardner R. C., Hess C. P., Brus-Ramer M., Possin K. L., Cohn-Sheehy B. I., et al. Cavum Septum Pellucidum in Retired American Pro-Football Players. J Neurotrauma. 2016; 33 (1): 157-61. doi:10.1089/neu.2014.3805; Koerte I. K., Lin A. P., Willems A., Muehlmann M., Hufschmidt J., et al. A review of neuroimaging findings in repetitive brain trauma. Brain Pathol. 2015; 25 (3): 318-49. doi:10.1111/bpa.12249; Gardner R. C., Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015; 66 (Pt B): 75-80. doi:10.1016/j.mcn.2015.03.001; Bang S. A., Song Y. S., Moon B. S., Lee B. C., Lee H. Y., et al. Neuropsychological, Metabolic, and GABAA Receptor Studies in Subjects with Repetitive Traumatic Brain Injury. J Neurotrauma. 2016; 33 (11): 1005-14. doi:10.1089/neu.2015.4051; Provenzano F. A., Jordan B., Tikofsky R. S., Saxena C., Van Heertum R. L., Ichise M. F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nucl Med Commun. 2010; 31 (11): 952-7. doi:10.1097/MNM.0b013e32833e37c4; Peskind E. R., Petrie E. C., Cross D. J., Pagulayan K., McCraw K., et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage. 2011; 54 Suppl 1 (Suppl 1): S76-82. doi:10.1016/j.neuroimage.2010.04.008; Stern R. A., Adler C. H., Chen K., Navitsky M., Luo J., et al. Tau Positron-Emission Tomography in Former National Football League Players. N Engl J Med. 2019; 380 (18): 1716-1725. doi:10.1056/NEJMoa1900757; Barrio J. R., Small G. W., Wong K. P., Huang S. C., Liu J., et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015; 112 (16): E2039-47. Erratum in: Proc Natl Acad Sci U S A. 2015; 112 (22): E2981. PMID: 25848027; PMCID: PMC4413350. doi:10.1073/pnas.1409952112; McKee A. C., Stern R. A., Nowinski C. J., Stein T. D., Alvarez V. E., et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013; 136 (Pt 1): 43-64. Erratum in: Brain. 2013; 136 (Pt 10): e255. PMID: 23208308; PMCID: PMC3624697. doi:10.1093/brain/aws307; Meysami S., Raji C. A., Merrill D. A., Porter V. R., Mendez M. F. MRI Volumetric Quantification in Persons with a History of Traumatic Brain Injury and Cognitive Impairment. J Alzheimers Dis. 2019; 72 (1): 293-300. doi:10.3233/JAD-190708; Misquitta K., Dadar M., Tarazi A., Hussain M. W., Alatwi M. K., et al. The relationship between brain atrophy and cognitive-behavioural symptoms in retired Canadian football players with multiple concussions. Neuroimage Clin. 2018; 19: 551-558. doi:10.1016/j.nicl.2018.05.014; Shetty T., Raince A., Manning E., Tsiouris A. J. Imaging in Chronic Traumatic Encephalopathy and Traumatic Brain Injury. Sports Health. 2016; 8 (1): 26-36. doi:10.1177/1941738115588745; Breen P. W., Krishnan V. Recent Preclinical Insights Into the Treatment of Chronic Traumatic Encephalopathy. Front Neurosci. 2020; 14: 616. doi:10.3389/fnins.2020.00616.; Воронков А. В., Мирошниченко К. А., Поздняков Д. И., Потапова А. А., Кодониди И. П., Аненко Д. С. Производные пиримидина – перспективные корректоры метаболических и функциональных нарушений головного мозга в условиях хронической травматической энцефалопатии. Вестник Cмоленской государственной медицинской академии. 2019; (3): 18–24.; Zhang J., Teng Z., Song Y., Hu M., Chen C. Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. J Cereb Blood Flow Metab. 2015; 35 (3): 443-53. Erratum in: J Cereb Blood Flow Metab. 2015; 35 (4): 706. PMID: 25492114; PMCID: PMC4348384. doi:10.1038/jcbfm.2014.216; Amtul Z., Uhrig M., Wang L., Rozmahel R. F., Beyreuther K. Detrimental effects of arachidonic acid and its metabolites in cellular and mouse models of Alzheimer's disease: structural insight. Neurobiol Aging. 2012; 33 (4): 831.e21-31. Erratum in: Neurobiol Aging. 2018; 62: 247. PMID: 21920632. doi:10.1016/j.neurobiolaging.2011.07.014; https://www.medicalherald.ru/jour/article/view/1710

  16. 16
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 21 (2023); 122-127 ; Медицинский Совет; № 21 (2023); 122-127 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7938/7050; Исламов РР, Ризванов АА, Гусева ДС, Киясов АП. Генная и клеточная терапия нейродегенеративных заболеваний. Гены и клетки. 2007;2(3):29–37. Режим доступа: https://genescells.ru/2313-1829/article/view/122372.; Ткачук ЕА, Семинский ИЖ. Роль генетики в современной медицине. Байкальский медицинский журнал. 2022;1(1):81–88. https://doi.org/10.57256/2949-0715-2022-1-81-88.; Федосеева ИФ, Попонникова ТВ, Галиева ГЮ, Мошнегуц СВ. Клинический случай редкого нейродегенеративного заболевания с накоплением железа в мозге, тип 4, у ребенка 15 лет. Российский вестник перинатологии и педиатрии. 2019;64(5):109–113. https://doi.org/10.21508/1027-4065-2019-64-5-109-113.; Осадчая ИВ, Дежкина СА. Нарушение интеллектуального развития у детей дошкольного и младшего школьного возраста. Проблемы современного педагогического образования. 2020;67(2):121–125. Режим доступа: https://gpa.cfuv.ru/attachments/article/4601/Выпуск%2067%20часть%202,%202020%20год.pdf.; Levi S, Tiranti V. Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel). 2019;12(1):27. https://doi.org/10.3390/ph12010027.; Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017;136(11-12):1419–1429. https://doi.org/10.1007/s00439-017-1843-2.; Kita K, Oya H, Gennis RB, Ackrell BA, Kasahara M. Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of iron sulfur (Ip) subunit of liver mitochondria. Biochem Biophys Res Commun. 1990;166(1):101–108. https://doi.org/10.1016/0006-291x(90)91916-g.; Leckschat S, Ream-Robinson D, Scheffler IE. The gene for the iron sulfur protein of succinate dehydrogenase (SDH-IP) maps to human chromosome 1p35-36.1. Somat Cell Mol Genet. 1993;19(5):505–511. https://doi.org/10.1007/BF01233256.; Mascarello JT, Soderberg K, Scheffler IE. Assignment of a gene for succinate dehydrogenase to human chromosome 1 by somatic cell hybridization. Cytogenet Cell Genet. 1980;28(1-2):121–135. https://doi.org/10.1159/000131520.; Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14(15):2231–2239. https://doi.org/10.1093/hmg/ddi227.; Oostveen FG, Au HC, Meijer PJ, Scheffler IE. A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J Biol Chem. 1995;270(44):26104–26108. https://doi.org/10.1074/jbc.270.44.26104.; Голубев РВ, Смирнов АВ. Расширение представлений о механизмах действия сукцинатсодержащих диализирующих растворов. Нефрология. 2017;21(1):19–24. https://doi.org/10.24884/1561-6274-2017-21-1-19-24.; Young AL, Baysal BE, Deb A, Young WF Jr. Familial malignant catecholamine-secreting paraganglioma with prolonged survival associated with mutation in the succinate dehydrogenase B gene. J Clin Endocrinol Metab. 2002;87(9):4101–4105. https://doi.org/10.1210/jc.2002-020312.; Бельских ЭС, Урясьев ОМ, Звягина ВИ, Фалетрова СВ. Сукцинат и сукцинатдегидрогеназа моно-ядерных лейкоцитов крови как маркеры адаптации митохондрий к гипоксии у больных при обострении хронической обструктивной болезни легких. Российский медико-биологический вестник им. академика И.П. Павлова. 2020;28(1):13–20. https://doi.org/10.23888/PAVLOVJ202028113-20.; Валеев ВВ, Коваленко АЛ, Таликова ЕВ, Заплутанов ВА, Дельвиг-Каменская ТЮ. Биологические функции сукцината (обзор зарубежных экспериментальных исследований). Антибиотики и химиотерапия. 2015;60(9-10):33–37. Режим доступа: https://www.antibiotics-chemotherapy.ru/jour/article/view/620.; Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell. 2004;119(2):257–272. https://doi.org/10.1016/j.cell.2004.10.004.; Smigiel R, Sherman DL, Rydzanicz M, Walczak A, Mikolajkow D, Krolak-Olejnik B et al. Homozygous mutation in the Neurofascin gene affecting the glial isoform of Neurofascin causes severe neurodevelopment disorder with hypotonia, amimia and areflexia. Hum Mol Genet. 2018;27(21):3669–3674. https://doi.org/10.1093/hmg/ddy277.; Monfrini E, Straniero L, Bonato S, Monzio Compagnoni G, Bordoni A, Dilena R et al. Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy. Parkinsonism Relat Disord. 2019;63:66–72. https://doi.org/10.1016/j.parkreldis.2019.02.045.; Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 2002;34(4):521–533. https://doi.org/10.1016/s0896-6273(02)00682-7.; Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006;116(8):2290–2296. https://doi.org/10.1172/JCI25424.; Brun AC, Fan X, Björnsson JM, Humphries RK, Karlsson S. Enforced adenoviral vector-mediated expression of HOXB4 in human umbilical cord blood CD34+ cells promotes myeloid differentiation but not proliferation. Mol Ther. 2003;8(4):618–628. https://doi.org/10.1016/s1525-0016(03)00237-5.; Nagase T, Ishikawa K, Suyama M, Kikuno R, Miyajima N, Tanaka A et al. Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 1998;5(5):277–286. https://doi.org/10.1093/dnares/5.5.277.; Ткачук ЕА, Семинский ИЖ. Методы современной генетики. Байкальский медицинский журнал. 2023;2(1):60–71. https://doi.org/10.57256/2949-0715-2023-1-60-71.; Смирнихина СА, Лавров АВ. Генная терапия наследственных заболеваний с использованием технологии CRISPR/Cas9 in vivo. Медицинская генетика. 2016;15(9):3–11. Режим доступа: https://www.medgen-journal.ru/jour/article/view/167.; Айтбаев КА, Муркамилов ИТ, Муркамилова ЖА, Юсупов ФА. Генная терапия болезней человека: последние достижения и ближайшие перспективы развития. Архивъ внутренней медицины. 2022;12(5):363–369. https://doi.org/10.20514/2226-6704-2022-12-5-363-369.; Безбородова ОА, Немцова ЕР, Кармакова ТА, Венедиктова ЮБ, Панкратов АА, Алексеенко ИВ и др. Современные тенденции развития противоопухолевой генной и клеточной терапии. Research’n Practical Medicine Journal. 2019;6(S):65–66. Режим доступа: https://elibrary.ru/wvqjbo.; Schimke RN, Collins DL, Stolle CA. Paraganglioma, neuroblastoma, and a SDHB mutation: Resolution of a 30-year-old mystery. Am J Med Genet A. 2010;152A(6):1531–1535. https://doi.org/10.1002/ajmg.a.33384.; Саматошенков ИВ, Алексеева КВ, Журавлева МН. Сравнение эффективности стимулирования ангиогенеза в ишемизированных конечностях крыс при доставке комбинации генов VEGF и Ang прямым и клеточно-опосредованным способами. Креативная кардиология. 2019;13(3):250–262. https://doi.org/10.24022/1997-3187-2019-13-3-250-262.

  17. 17
    Academic Journal

    Contributors: The study reported in this publication was carried out as part of publicly funded research project No. 056-00052-23-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121021800098-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00052-23-00 на проведение прикладных научных исследований (номер государственного учета НИР 121021800098-4).

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 127-147 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 127-147 ; 2619-1156 ; 2221-996X

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/433/649; https://www.biopreparations.ru/jour/article/view/433/659; https://www.biopreparations.ru/jour/article/view/433/660; https://www.biopreparations.ru/jour/article/view/433/661; https://www.biopreparations.ru/jour/article/view/433/662; https://www.biopreparations.ru/jour/article/view/433/663; https://www.biopreparations.ru/jour/article/view/433/694; https://www.biopreparations.ru/jour/article/downloadSuppFile/433/655; Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672. https://doi.org/10.1126/science.aan4672; Солдатов АА, Авдеева ЖИ, Горенков ДВ, Хантимирова ЛМ, Гусева СГ, Меркулов ВА. Проблемные аспекты разработки и регистрации генотерапевтических препаратов. БИОпрепараты. Профилактика, диагностика, лечение. 2022;22(1):6–22. https://doi.org/10.30895/2221-996X-2022-22-1-6-22; Ravi B, Chan-Cortés MH, Sumner CJ. Gene-targeting therapeutics for neurological disease: lessons learned from spinal muscular atrophy. Annu Rev Med. 2021;72:1–14. https://doi.org/10.1146/annurev-med-070119-115459; Ямщикова НГ, Ставровская АВ, Иллариошкин СН. Некоторые аспекты развития нейродегенеративных заболеваний. Асимметрия. 2018;12(4):631–45. https://doi.org/10.18454/ASY.2018.12.4.030; Heemels MT. Neurodegenerative diseases. Nature. 2016;539(7628):179. https://doi.org/10.1038/539179a; Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101(5):839–62. https://doi.org/10.1016/j.neuron.2019.02.017; Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. https://doi.org/10.1038/s41573-019-0012-9; Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2019;68:31–53. https://doi.org/10.1016/j.preteyeres.2018.08.003; Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021;24(3):297–311. https://doi.org/10.1038/s41593-020-00778-1; Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578(7794):229–36. https://doi.org/10.1038/s41586-020-1978-5; Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet. 2000;1(2):91–9. https://doi.org/10.1038/35038533; Leone P, Shera D, McPhee SW, Francis JS, Kolodny EH, Bilaniuk LT, et al. Long-term follow-up after gene therapy for Canavan disease. Sci Transl Med. 2012;4(165):165ra163. https://doi.org/10.1126/scitranslmed.3003454; Bedbrook CN, Deverman BE, Gradinaru V. Viral strategies for targeting the central and peripheral nervous systems. Annu Rev Neurosci. 2018;41:323–48. https://doi.org/10.1146/annurev-neuro-080317-062048; Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR, Forsayeth J, Bankiewicz KS. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fl uid of nonhuman primates. Hum Gene Ther. 2013;24(5):526–32. https://doi.org/10.1089/hum.2013.005; Xiang C, Zhang Y, Guo W, Liang XJ. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharm Sin B. 2020;10(2):239–48. https://doi.org/10.1016/j.apsb.2019.11.003; Katz ML, Tecedor L, Chen Y, Williamson BG, Lysenko E, Wininger FA, et al. AAV gene transfer delays disease onset in a TPP1-defi cient canine model of the late infantile form of Batten disease. Sci Transl Med. 2015;7(313):313ra180. https://doi.org/10.1126/scitranslmed.aac6191; Federici T, Taub JS, Baum GR, Gray SJ, Grieger JC, Matthews KA, et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther. 2012;19(8):852–9. https://doi.org/10.1038/gt.2011.130; Sehara Y, Fujimoto KI, Ikeguchi K, Katakai Y, Ono F, Takino N, et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson’s disease. Hum Gene Ther Clin Dev. 2017;28(2):74–9. https://doi.org/10.1089/humc.2017.010; Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J Control Release. 2016;241:94–109. https://doi.org/10.1016/j.jconrel.2016.09.011; Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478–96. https://doi.org/10.1089/hum.2016.087; Van Dam D, De Deyn PP. Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov. 2006;5(11):956–70. https://doi.org/10.1038/nrd2075; Pype S, Moechars D, Dillen L, Mercken M. Characterization of amyloid β peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein. J Neurochem. 2003;84(3):602–9. https://doi.org/10.1046/j.1471-4159.2003.01556.x; Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci. 2014;109(2) 73–86. https://doi.org/10.1016/j.lfs.2014.05.017; Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifi cally elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specifi c γ secretase. Hum Mol Genet. 2004;13(2):159–70. https://doi.org/10.1093/hmg/ddh019; Jankowsky JL, Slunt HH, Gonzales V, Savonenko AV, Wen JC, Jenkins NA, et al. Persistent amyloidosis following suppression of Aβ production in a transgenic model of Alzheimer disease. PLoS Med. 2005;2(12):e355. https://doi.org/10.1371/journal.pmed.0020355; Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM-Y. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron. 2002;34(4):521–33. https://doi.org/10.1016/S0896-6273(02)00682-7; Gaj T, Ojala DS, Ekman FK, Byrne LC, Limsirichai P, Schaffer DV. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci Adv. 2017;3(12):eaar3952. https://doi.org/10.1126/sciadv.aar3952; Duan W, Guo M, Yi L, Liu Y, Li Z, Ma Y, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020;27(3-4):157–69. https://doi.org/10.1038/s41434-019-0116-1; Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos CMA, et al. Treatment of a mouse model of ALS by in vivo base editing. Mol Ther. 2020;28(4):1177–89. https://doi.org/10.1016/j.ymthe.2020.01.005; Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is suffi cient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506. https://doi.org/10.1016/s0092-8674(00)81369-0; Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor defi cits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids. 2019;17:829–39. https://doi.org/10.1016/j.omtn.2019.07.009; Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet. 2000;9(3):333–9. https://doi.org/10.1093/hmg/9.3.333; Passini MA, Bu J, Richards AM, Treleaven CM, Sullivan JA, O’Riordan CR, et al. Translational fi delity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum Gene Ther. 2014;25(7):619–30. https://doi.org/10.1089/hum.2014.011; Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther. 2013;21(2):282–90. https://doi.org/10.1038/mt.2012.261; Richardson RM, Gimenez F, Salegio EA, Su X, Bringas J, Berger MS, Bankiewicz KS. T2 imaging in monitoring of intraparenchymal real-time convection-enhanced delivery. Neurosurgery. 2011;69(1):154–63. https://doi.org/10.1227/NEU.0b013e318217217e; Miyanohara A, Kamizato K, Juhas S, Juhasova J, Navarro M, Marsala S, et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol Ther Methods Clin Dev. 2016;3:16046. https://doi.org/10.1038/mtm.2016.46; Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, et al. AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. Mol Ther. 2017;25(12):2727–42. https://doi.org/10.1016/j.ymthe.2017.08.004; Coune PG, Schneider BL, Aebischer P. Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med. 2012;2(4):a009431. https://doi.org/10.1101/cshperspect.a009431; Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, et al. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain. 2016;139(Pt3):953–70. https://doi.org/10.1093/brain/awv384; Challis RC, Kumar SR, Chan KY, Challis C, Beadle K, Jang MJ, et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc. 2019;14(2):379–414. https://doi.org/10.1038/s41596-018-0097-3; Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–9. https://doi.org/10.1038/nbt.3440; Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. 2009;17(7):1187–96. https://doi.org/10.1038/mt.2009.71; Xie C, Gong XM, Luo J, Li BL, Song BL. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58(3):512–8. https://doi.org/10.1194/jlr.M071274; Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 2015;17(Suppl_2):ii3–8. https://doi.org/10.1093/neuonc/nou354; Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother. 2009;9(10):1519–27. https://doi.org/10.1586/ern.09.99; Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017;28(11):988–1003. https://doi.org/10.1089/hum.2017.160; McFarthing K, Prakash N, Simuni T. Clinical trial highlights: 1. Gene therapy for Parkinson’s, 2. Phase 3 study in focus — Intec Pharma’s Accordion Pill, 3. Clinical trials resources. J Parkinson’s Dis. 2019;9(2):251–64. https://doi.org/10.3233/JPD-199001; Smith BK, Collins SW, Conlon TJ, Mah CS, Lawson LA, Martin AD, et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther. 2013;24(6):630–40. https://doi.org/10.1089/hum.2012.250; Rafi i MS, Tuszynski MH, Thomas RG, Barba D, Brewer JB, Rissman RA, et al. Adeno-associated viral vector (serotype 2)-nerve growth factor for patients with Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2018;75(7):834–41. https://doi.org/10.1001/jamaneurol.2018.0233; Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008;19(5):463–74. https://doi.org/10.1089/hum.2008.022; Fu H, Meadows AS, Pineda RJ, Kunkler KL, Truxal KV, McBride KL, et al. Differential prevalence of antibodies against adeno-associated virus in healthy children and patients with mucopolysaccharidosis III: perspective for AAV-mediated gene therapy. Hum Gene Ther Clin Dev. 2017;28(4):187–96. https://doi.org/10.1089/humc.2017.109; Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–98. https://doi.org/10.1089/hum.2018.015; Glanzman AM, Mazzone E, Main M, Pelliccioni M, Wood J, Swoboda KJ, et al. The Children’s Hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20(3):155–61. https://doi.org/10.1016/j.nmd.2009.11.014; Day JW, Mendell JR, Mercuri E, Finkel RS, Strauss KA, Kleyn A, et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Saf. 2021;44(10):1109–19. https://doi.org/10.1007/s40264-021-01107-6; Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–93. https://doi.org/10.1016/S1474-4422(21)00001-6; https://www.biopreparations.ru/jour/article/view/433

  18. 18
  19. 19
  20. 20
    Academic Journal

    Source: Medical Genetics; Том 21, № 6 (2022); 16-24 ; Медицинская генетика; Том 21, № 6 (2022); 16-24 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2183/1650; de Duve C. The lysosome turns fifty. Nat. Cell Biol. 2005;7(9):847-849. DOI:10.1038/ncb0905-847.; Wallings R.L., Humble S.W., Ward M.E., Wade-Martins R. Lysosomal Dysfunction at the Centre of Parkinson’s Disease and Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Trends Neurosci. 2019;42(12):899-912. DOI:10.1016/j.tins.2019.10.002.; Ballabio A., Bonifacino J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21(2):101-118. DOI:10.1038/s41580-019-0185-4.; Bellettato C.M., Scarpa M. Pathophysiology of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 2010;33(4):347-362. DOI:10.1007/s10545-010-9075-9.; Eckhardt M. Pathology and Current Treatment of Neurodegenerative Sphingolipidoses. NeuroMolecular Med. 2010;12(4):362-382. DOI:10.1007/s12017-010-8133-7.; Huizing M., Gahl W.A. Inherited disorders of lysosomal membrane transporters. Biochim. Biophys. Acta BBA - Biomembr. 2020;1862(12):183336. DOI:10.1016/j.bbamem.2020.183336.; Chung K.M., Hernández N., Sproul A.A., Yu W.H. Alzheimer’s disease and the autophagic-lysosomal system. Neurosci. Lett. 2019;697:49-58. DOI:10.1016/j.neulet.2018.05.017.; Senkevich K., Gan-Or Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics. Parkinsonism Relat. Disord. 2020;(73):60-71. DOI:10.1016/j.parkreldis.2019.11.015.; Van Acker Z.P., Bretou M., Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol. Neurodegener. 2019;14(1):20. DOI:10.1186/s13024-019-0323-7.; Fernández-Pajarín G., Sesar A., Ares-Pensado B., Castro A. Enfermedad de Parkinson por sendas mutaciones en 2 genes relacionados con la degradación por lisosomas. Neurología. 2020;35(8):611-612. DOI:10.1016/j.nrl.2019.09.001.; Nguyen M., Wong Y.C., Ysselstein D. et al. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson’s Disease. Trends Neurosci. 2019;42(2):140-149. DOI:10.1016/j.tins.2018.11.001.; Lloyd-Evans E., Haslett L.J. The lysosomal storage disease continuum with ageing-related neurodegenerative disease. Ageing Res. Rev. 2016;32:104-121. DOI:10.1016/j.arr.2016.07.005.; Djajadikerta A., Keshri S., Pavel M. et al. Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases. J. Mol. Biol. 2020;432(8):2799-2821. DOI:10.1016/j.jmb.2019.12.035.; Stirnemann J., Belmatoug N., Camou F. et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments.Int. J. Mol. Sci. 2017;18(2):441. DOI:10.3390/ijms18020441.; Dodge J.C. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front. Mol. Neurosci. 2017;10:356. DOI:10.3389/fnmol.2017.00356.; Parenti G., Medina D.L., Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol. Med. 2021;13(2): e12836. DOI:10.15252/emmm.202012836.; Platt F.M., d’Azzo A., Davidson B.L. et al. Lysosomal storage diseases. Nat. Rev. Dis. Primer. 2018;4(1):27. DOI:10.1038/s41572-018-0025-4.; Platt F.M., Boland B., van der Spoel A.C. Lysosomal storage disorders: The cellular impact of lysosomal dysfunction. J. Cell Biol. 2012;199(5):723-734. DOI:10.1083/jcb.201208152.; Martina J.A., Raben N., Puertollano R. SnapShot: Lysosomal Storage Diseases. Cell. 2020;180(3):602-602.e1. DOI:10.1016/j.cell.2020.01.017.; Boustany R.-M.N. Lysosomal storage diseases - the horizon expands. Nat. Rev. Neurol. 2013;9(10):583-598. DOI:10.1038/nrneurol.2013.163.; Rha A.K., Maguire A.S., Martin D.R. GM1 Gangliosidosis: Mechanisms and Management. Appl. Clin. Genet. 2021;14:209-233. DOI:10.2147/TACG.S206076.; Leal A.F., Benincore-Flórez E., Solano-Galarza D. et al. GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies.Int. J. Mol. Sci. 2020;21(17):6213. DOI:10.3390/ijms21176213.; Cariati I., Masuelli L., Bei R. et al. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment.Int. J. Mol. Sci. 2021;22(12):6600. DOI:10.3390/ijms22126600.; Kovacs G.G. Concepts and classification of neurodegenerative diseases. Handbook of Clinical Neurology. Elsevier, 2018;145:301-307. DOI:10.1016/B978-0-12-802395-2.00021-3.; Dugger B.N., Dickson D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017;9(7):a028035. DOI:10.1101/cshperspect.a028035.; Ross C.A., Poirier M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004;10(S7):S10-S17. DOI:10.1038/nm1066.; Navarro-Romero A., Montpeyó M., Martinez-Vicente M. The Emerging Role of the Lysosome in Parkinson’s Disease. Cells. 2020;9(11):2399. DOI:10.3390/cells9112399.; Oskarsson B., Gendron T.F., Staff N.P. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin. Proc. 2018;93(11):1617-1628. DOI:10.1016/j.mayocp.2018.04.007.; Rusmini P., Cortese K., Crippa V. et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy. 2019;15(4):631-651. DOI:10.1080/ 15548627.2018.1535292.