Εμφανίζονται 1 - 20 Αποτελέσματα από 711 για την αναζήτηση '"НЕВЫНАШИВАНИЕ БЕРЕМЕННОСТИ"', χρόνος αναζήτησης: 0,69δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: 1

    Πηγή: Russian Journal of Infection and Immunity; Vol 15, No 4 (2025); 673-680 ; Инфекция и иммунитет; Vol 15, No 4 (2025); 673-680 ; 2313-7398 ; 2220-7619

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Science Foundation grant No. 23-15-00341., Работа выполнена при поддержке гранта РНФ №23-15-00341.

    Πηγή: Medical Genetics; Том 23, № 12 (2024); 30-36 ; Медицинская генетика; Том 23, № 12 (2024); 30-36 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2584/1836; American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology. ACOG Practice Bulletin No. 200: Early Pregnancy Loss. Obstet Gynecol. 2018;132(5):e197-e207. doi:10.1097/AOG.0000000000002899; Essers R., Lebedev I.N., Kurg A., et al. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat Med. 2023;29(12):3233-3242. doi:10.1038/s41591-023-02645-5; Smolander J., Khan S., Singaravelu K., et al. Evaluation of tools for identifying large copy number variations from ultra-low-coverage whole-genome sequencing data. BMC Genomics. 2021;22(1):357. doi:10.1186/s12864-021-07686-z; Lund R.J., Nikula T., Rahkonen N., et al. High-throughput karyo- typing of human pluripotent stem cells. Stem Cell Res. 2012;9(3):192-195. doi:10.1016/j.scr.2012.06.008 8; Lund R.J., Närvä E., Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet. 2012;13(10):732-744. doi:10.1038/nrg3271; Kader T., Goode D.L., Wong S.Q., et al. Copy number analysis by low coverage whole genome sequencing using ultra low-input DNA from formalin-fixed paraffin embedded tumor tissue. Genome Med. 2016;8(1):121. doi:10.1186/s13073-016-0375-z; Chin S.F., Santonja A., Grzelak M., et al. Shallow whole genome se- quencing for robust copy number profiling of formalin-fixed paraf- fin-embedded breast cancers. Exp Mol Pathol. 2018;104(3):161-169. doi:10.1016/j.yexmp.2018.03.006; Benjamini Y., Speed T.P. Summarizing and correcting the GC con- tent bias in high-throughput sequencing. Nucleic Acids Res. 2012;40(10):e72. doi:10.1093/nar/gks001; Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-842. doi:10.1093/bioinformatics/btq033; Yakut S., Toru H.S., Çetin Z., et al. Chromosome abnormalities iden- tified in 457 spontaneous abortions and their histopathological find- ings. Turk Patoloji Derg. 2015;31(2):111-118. doi:10.5146/tjpath.2015.01303; Vlachadis N., Papadopoulou T., Vrachnis D., et al. Incidence and Types of Chromosomal Abnormalities in First Trimester Sponta - neous Miscarriages: a Greek Single-Center Prospective Study. Maedica (Bucur). 2023;18(1):35-41. doi:10.26574/maedica.2023.18.1.35; Zhou W., Dinh H.Q., Ramjan Z., et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Gen- et. 2018;50(4):591-602. doi:10.1038/s41588-018-0073-4; Tisato V., Silva J.A., Scarpellini F., et al. Epigenetic role of LINE-1 methylation and key genes in pregnancy maintenance. Sci Rep. 2024;14(1):3275. doi:10.1038/s41598-024-53737-2; Zhou Q., Xiong Y., Qu B., Bao A., Zhang Y. DNA Methylation and Recurrent Pregnancy Loss: A Mysterious Compass?. Front Immunol. 2021;12:738962. doi:10.3389/fimmu.2021.738962; Matsumoto Y., Shinjo K., Mase S., et al. Characteristic DNA meth- ylation profiles of chorionic villi in recurrent miscarriage. Sci Rep. 2022;12(1):11673. doi:10.1038/s41598-022-15656-y

  4. 4
    Academic Journal

    Πηγή: Medical science of Uzbekistan; No. 2 (2025): March-April; 149-154 ; Медицинская наука Узбекистана; № 2 (2025): Март-Апрель; 149-154 ; O`zbekiston tibbiyot ilmi; No. 2 (2025): Mart-Aprel; 149-154 ; 2181-3612

    Περιγραφή αρχείου: application/pdf

  5. 5
    Academic Journal

    Συνεισφορές: D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»

    Πηγή: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3193/2100; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14975; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14976; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14977; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14978; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14979; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14980; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14981; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14983; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14984; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/14985; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/15005; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3193/15195; Клинические рекомендации. Привычный выкидыш. https://cr.minzdrav.gov.ru/recomend/721_1 (Электронный ресурс) URL: https://cr.minzdrav.gov.ru/recomend/721_1; Сотникова Н.Ю., Фарзалиева А.В., Борзова Н.Ю., Воронин Д.Н., Крошкина Н.В. Характеристика дифференцировки моноцитов и экспрессии CD163 у женщин с угрожающим ранним выкидышем. Иммунология, 2022, Т. 43, № 6, С. 714–721. DOI:10.33029/0206-4952-2021-42-6-714-721; Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol., 2013, Vol. 93, no. 1, pp. 209-215. DOI:10.1189/jlb.0312145; Comins-Boo A., Valdeolivas L., Perez-Pla F., Cristobal I., Subhi-Issa N., Dominguez-Soto A., Pilar-Suarez L., Gasca-Escorial P., Calvo-Urrutia M., Fernandez-Arquero M., Herraiz M. A., Corbi, A., Sanchez-Ramon, S. Immunophenotyping of peripheral blood monocytes could help identify a baseline pro-inflammatory profile in women with recurrent reproductive failure. J. Reprod. Immunol., 2022, Vol. 154, pp. 103735. DOI:10.1016/j.jri.2022.103735; Dimitriadis E., Menkhorst E., Saito S., Kutteh W. H., Brosens, J. J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, Vol. 6, no. 1, p. 98. DOI:10.1038/s41572-020-00228-z; Faas M. M., Broekema M., Moes H., van der Schaaf G., Heineman M. J., de Vos P. Altered monocyte function in experimental preeclampsia in the rat. Am. J. Obstet. Gynecol., 2004, Vol. 191, no. 4, pp.1192-1198. DOI:10.1016/j.ajog.2004.03.041; Faas M. M., van Pampus M. G., Anninga Z. A., Salomons J., Westra I. M., Donker R. B., Aarnoudse J.G., de Vos P. Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro. J. Reprod. Immunol., 2010, Vol. 87, no. 1-2, pp. 28-38. • DOI:10.1016/j.jri.2010.07.005; Faas M.M., de Vos P. Maternal monocytes in pregnancy and preeclampsia in humans and in rats. J. Reprod. Immunol., 2017, Vol. 119, pp. 91-97. DOI:10.1016/j.jri.2016.06.009; Forstner D., Guettler J., Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. International Journal of Molecular Sciences, 2021, Vol. 22, no. 19, pp. e10732. DOI:10.3390/ijms221910732; Grandone E., Piazza G. Thrombophilia, inflammation, and recurrent pregnancy loss: a case-based review. Semin. Reprod. Med., 2021, Vol. 39, no. 01/02, pp. 62-68. DOI:10.1055/s-0041-1731827; Hellgren M. Hemostasis during normal pregnancy and puerperium. Semin. Thromb. Hemost., 2003, Vol. 29, no. 2, pp.125-130. DOI:10.1055/s-2003-38897; Jin M. Q., Huang B. Y., Lu D. Y., Huang J. Y., Ma L. Identification and verification of feature biomarkers associated with immune cells in recurrent pregnancy loss. Eur. Rev. Med. Pharmacol. Sci., 2024, Vol. 28, no. 2, pp. 556-570. DOI:10.26355/eurrev_202401_35053; Ledingham M. A, Thomson A. J., Jordan F., Young A.,Crawford M., Norman J. E. Cell adhesion molecule expression in the cervix and myometrium during pregnancy and parturition. Obstet. Gynecol., 2001, Vol. 97, no. 2, pp. 235-242. DOI:10.1016/s0029-7844(00)01126-1; Luo Y., Zou Y. Identification of novel biomarkers and immune infiltration features of recurrent pregnancy loss by machine learning. Sci. Rep. 2023, Vol. 13, no. 1, pp. 10571. DOI:10.1038/s41598-023-38046-4; Mantovani A., Biswas S.K., Galdiero M.R., Sica A., Locati M. Macrophage plasticity and polarization in tissue repair and remodeling. J. Pathol., 2013, Vol. 229, no. 2, pp. 176-185. • DOI:10.1002/path.4133; Mellembakken J. R., Aukrust P., Olafsen M. K.,Ueland T., Hestdal K., Videm V. Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension, 2002, Vol. 39, no. 1, pp. 155-160. DOI:10.1161/hy0102.100778; Nagamatsu T., Schust D.J. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod. Sci., 2010, Vol. 17, no. 3, pp. 209-218. • DOI:10.1177/1933719109349962; Ning F., Liu H., Lash G. E. The role of decidual macrophages during normal and pathological pregnancy. Am. J. Reprod. Immunol. 2016, Vol. 75, no. 3, pp. 298-309. DOI:10.1111/aji.12477; Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, Vol. 92, no.1, pp. e12883. DOI:10.1111/sji.12883; Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil. Steril., 2012, Vol. 98, no. 5, pp. 1103-1111. DOI:10.1016/j.fertnstert.2012.06.048; Rai R., Regan L. Recurrent miscarriage. Lancet, 2006, Vol. 368, no. 9535, pp. 601-611. DOI:10.1016/S0140-6736(06)69204-0; Sacks G.P., Studena K., Sargent I.L., Redman C.W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am. J. Obstet. Gynecol., 1998, Vol. 179, no. 1, pp. 80-86. • DOI:10.1016/s0002-9378(98)70254-6; True H., Blanton M., Sureshchandra S., Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunological Reviews, 2022, Vol. 308, no. 1, pp. 77-92. DOI:10.1111/imr.13080; van Nieuwenhoven A. L., Moes H., Heineman M. J., Santema J., Faas M. M. Cytokine production by monocytes, NK cells, and lymphocytes is different in preeclamptic patients as compared with normal pregnant women. Hypertens. Pregnancy, 2008, Vol. 27, no. 3, pp. 207-224. DOI:10.1080/10641950701885006; Yuan M, Jordan F., McInnes I. B., Harnett M. M., Norman J. E. Leukocytes are primed in peripheral blood for activation during term and preterm labour. Mol. Hum. Reprod., 2009, Vol. 15, no. 11, pp. 713-724. DOI:10.1093/molehr/gap054; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D. N., Leenen P. J., Liu Y. J., MacPherson G., Randolph G. J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J. M., Lutz M. B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, no. 16, pp. e74-e80 DOI:10.1182/blood-2010-02-258558; https://www.mimmun.ru/mimmun/article/view/3193

  6. 6
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 27, № 2 (2025); 423-428 ; Медицинская иммунология; Том 27, № 2 (2025); 423-428 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3203/2090; Гордеева Л.А., Воронина Е.Н., Поленок Е.Г., Мун С.А., Нерсесян С.Л., Оленникова Р.В., Филипенко М.Л., Глушков А.Н. Изучение связи полиморфизма гена HLA-G, внутриматочной инфекции и невынашивания беременности у женщин // Медицинская иммунология, 2021. Т. 23, № 2. С. 347-358. doi:10.15789/1563-0625-SOR-2155.; Сухих Г.Т., Ванько Л.В. Иммунные факторы в этиологии и патогенезе осложнений беременности // Акушерство и гинекология, 2012. № 1. С. 128-136.; Aldrich C.L., Stephenson M.D., Karrison T., Odem R.R., Branch D.W., Scott J.R., Schreiber J.R., Ober C. HLA-G genotypes and pregnancy outcome in couples with unexplained recurrent miscarriage. Mol. Hum. Reprod., 2001, Vol. 7, no. 12, pp. 1167-1172.; Arnaiz-Villena A., Juarez I., Suarez-Trujillo F., López-Nares A., Vaquero C., Palacio-Gruber J., Martin-Villa J.M. HLA-G: Function, polymorphisms and pathology. Int. J. Immunogenet., 2021, Vol. 48, no. 2, pp. 172-192.; Carlini F., Picard C., Garulli C., Piquemal D., Roubertoux P., Chiaroni J., Chanez P., Gras D., Di Cristofaro J. Bronchial epithelial cells from asthmatic patients display less functional HLA-G isoform expression. Front. Immunol., 2017, Vol. 8, 6. doi:10.3389/fimmu.2017.00006.; Castelli E.C., Mendes-Junior C.T., Deghaide N.H.S., de Albuquerque R.S., Muniz Y.C.N., Simões R.T., Carosella E.D., Moreau P., Donadi E.A. The genetic structure of 3’untranslated region of the HLA-G gene: polymorphisms and haplotypes. Genes Immun., 2010, Vol. 11, no. 2, pp. 134-141.; Cristofaro J.D., Reynaud-Gaubert M.,Carlini F., Roubertoux P., Loundou A., Basire A., Frassati C., Thomas P., Gomez C., Picard C. HLA-G*01:04~UTR3 Recipient Correlates With Lower Survival and Higher Frequency of Chronic Rejection After Lung Transplantation. Am. J. Transplant., 2015, Vol. 15, no. 9, pp. 2413-2420.; Di Cristofaro J., El Moujally D., Agnel A., Mazieres S., Cortey M., Basire A., Chiaroni J., Picard C. HLA-G haplotype structure shows good conservation between different populations and good correlation with high, normal and low soluble HLA-G expression. Hum. Immunol., 2013, Vol. 74, no. 2, pp. 203-206.; Donadi E.A., Castelli E.C., Arnaiz-Villena A., Roger M., Rey D., Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell. Mol. Life Sci., 2011, Vol. 68, no. 3, pp. 369-395.; Persson G., Melsted W.N., Nilsson L.L., Hviid T.V.F. HLA class Ib in pregnancy and pregnancy-related disorders. Immunogenetics, 2017, Vol. 69, no. 8-9, pp. 581-595.; Pirri A., Contieri F.C., Benvenutti R., Bicalho M.G. A study of HLA-G polymorphism and linkage disequilibrium in renal transplant patients and their donors. Transpl. Immunol., 2009, Vol. 20, no. 3, pp. 143-149.; Ribeyre C., Carlini F., René C., Jordier F., Picard C., Chiaroni J., Abi-Rached L., Gouret P., Marin G., Molinari N., Chanez P., Paganini J., Gras D., di Cristofaro J. HLA-G haplotypes are differentially associated with asthmatic features. Front. Immunol., 2018, Vol. 9, 278. doi:10.3389/fimmu.2018.00278.; Tan Z., Shon A.M., Ober C. Evidence of balancing selection at the HLA-G promoter region. Hum. Mol. Gene, 2005, Vol. 14, no. 23, pp. 3619-3628.; Vargas R.G., Sarturi P.R., Mattar S.B., Bompeixe E.P., Silva J.S., Pirri A., Bicalho M.G. Association of HLA-G alleles and 3’ UTR 14 bp haplotypes with recurrent miscarriage in Brazilian couples. Hum. Immunol., 2011, Vol. 72, no. 6, pp. 479-485.; https://www.mimmun.ru/mimmun/article/view/3203

  7. 7
    Academic Journal

    Συνεισφορές: Статья подготовлена в рамках выполнения ПНИ № 1022040700798-6-3.2.2-1-9 «Разработка лабораторных модулей иммунологического обследования пациенток с целью прогнозирования различных форм акушерской и репродуктивной патологии»

    Πηγή: Medical Immunology (Russia); Том 27, № 1 (2025); 35-44 ; Медицинская иммунология; Том 27, № 1 (2025); 35-44 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2893/2067; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12791; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12792; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12793; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12794; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12795; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12796; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12797; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12798; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12799; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12800; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12801; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12802; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12982; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12983; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/12984; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13029; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13030; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13031; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13032; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13033; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2893/13040; Аржанова О. Н., Сельков С. А., Савичева А. М., Комаров Е.А., Беспалова О.Н., Плужникова Т.А, Капустин Р.В., Корнюшина Е.А. Невынашивание беременности : профилактика и лечение : методически рекомендации 3-е изд. – Санкт-Петербург : Эко-Вектор, 2019. – 94 с.; Сельков С. А., Соколов Д. И., Чепанов С. В. Иммунорегуляторные эффекты иммуноглобулинов для внутривенного введения // Медицинская иммунология. - 2013. - № 1 (15). - C. 5–12.; Чепанов С.В., Соколов Д.И., Шляхтенко Т.Н., Капустин Р.В., Окорокова Л.А., Белякова К.Л., Сельков С.А. Экспериментальное обоснование эндотелиопротективного эффекта иммуноглобулинов для внутривенного введения при акушерской патологии // Акушерство и Гинекология. - 2016. - №5. - C. 82–89.; Привычный выкидыш. Клинические рекомендации ООО «Российское общество акушеров-гинекологов» (РОАГ). – Москва, 2021. – 56 с.; Andreoli L., Bertsias G. K., Agmon-Levin N., Brown S., Cervera, R., Costedoat-Chalumeau N., Doria, A., Fischer-Betz R., Forger F., Moraes-Fontes M. F., Khamashta M., King J., Lojacono, A., Marchiori F., Meroni P. L., Mosca, M., Motta M., Ostensen M., Pamfil C., Tincani A. EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Annals of the rheumatic diseases, 2017, № 3, no. 76, pp. 476–485.; Arachchillage D. R. J., Laffan M. Pathogenesis and management of antiphospholipid syndrome. British journal of haematology, 2017, Vol. 2, no. 178, pp. 181–195.; Bender Atik R., Christiansen O. B., Elson J., Kolte A. M., Lewis S., Middeldorp S., Mcheik S., Peramo B., Quenby S., Nielsen H. S., van der Hoorn M.-L., Vermeulen N., Goddijn M. ESHRE guideline: recurrent pregnancy loss: an update in 2022. Human Reproduction Open, 2022, no.1.; Capecchi M., Abbattista M., Ciavarella A., Uhr, M., Novembrino C., Martinelli I. Anticoagulant Therapy in Patients with Antiphospholipid Syndrome. Journal of clinical medicine, 2022, Vol. 23, no. 11, pp. 6954; Hoxha A., Tormene D., Campello E., Simioni P. Treatment of Refractory/High-Risk Pregnancies With Antiphospholipid Syndrome: A Systematic Review of the Literature. Frontiers in pharmacology, 2022, Vol.19, no. 13, pp. 849692; Kiserud T., Benachi A., Hecher K., Perez R. G., Carvalho J., Piaggio G., Platt L. D. P. The World Health Organization fetal growth charts: concept, findings, interpretation, and application. American journal of obstetrics and gynecology, 2018, Vol. 218, no. 2S, pp. S619–S629.; Latino J. O., Udry S., Aranda F. M., Perés Wingeyer S. D. A., Fernández Romero D. S., De Larrañaga G. F. Pregnancy failure in patients with obstetric antiphospholipid syndrome with conventional treatment: the influence of a triple positive antibody profile. Lupus, 2017, Vol.26, no. 9, pp. 983–988.; Miyakis S., Lockshin M. D., Atsumi T., Branch D. W., Brey R. L., Cervera R., Derkesen R. H. W. M., De Groot P. G., Koike T., Meroni P. L., Reber G., Shoenfeld Y., Tincani A., Vlachoyiannopoulos P. G., Krilis S. A. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). Journal of thrombosis and haemostasis : JTH, 2006, Vol.4, no. 2, pp. 295–306.; Mormile I., Granata F., Punziano A., de Paulis A., Rossi F. W. Immunosuppressive Treatment in Antiphospholipid Syndrome: Is It Worth It? Biomedicines, 2021, Vol.9, no. 2, pp. 1–21.; Papageorghiou A. T., Ohuma E. O., Altman D. G., Todros T., Ismail L. C., Lambert A., Jaffer Y. A., Bertino E., Gravett M. G., Purwar M., Noble J. A., Pang R., Victora C. G., Barros F. C., Carvalho M., Salomon L. J., Bhutta Z. A., Kennedy S. H., Villar, J. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet (London, England), 2014, Vol.384, no. 9946, pp. 869–879.; Stephenson M. D., Kutteh W. H., Purkiss S., Librach C., Schultz P., Houlihan E., Liao C. Intravenous immunoglobulin and idiopathic secondary recurrent miscarriage: a multicentered randomized placebo-controlled trial Human reproduction (Oxford, England), 2010, Vol.25, no. 9, pp. 2203–2209.; Tenti S., Cheleschi S., Guidelli G. M., Galeazzi M., Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmunity Reviews, 2016, Vol.15, no. 3, pp. 226–235.; Yang X., Meng T. Is there a Role of Intravenous Immunoglobulin in Immunologic Recurrent Pregnancy Loss? Journal of Immunology Research, 2020, Vol. 2020.; https://www.mimmun.ru/mimmun/article/view/2893

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Συνεισφορές: The study was supported by the grant of the Russian Science Foundation No. 23-15-00341.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 198-203 ; Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 198-203 ; 2500-3259 ; 10.18699/vjgb-24-15

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4090/1827; Blair J.D., Langlois S., Mcfadden D.E., Robinson W.P. Overlapping DNA methylation profile between placentas with trisomy 16 and early-onset preeclampsia. Placenta. 2014;35(3):216-222. DOI 10.1016/j.placenta.2014.01.001; Du G., Yu M., Xu Q., Huang Z., Huang X., Han L., Fan Y., Zhang Y., Wang R., Xu S., Han X., Fu G., Lv S., Qin Y., Wang X., Lu C., Xia Y. Hypomethylation of PRDM1 is associated with recurrent pregnancy loss. J. Cell. Mol. Med. 2020;24(12):7072-7077. DOI 10.1111/jcmm.15335; Fang Y., Wan C., Wen Y., Wu Z., Pan J., Zhong M., Zhong N. Autismassociated synaptic vesicle transcripts are differentially expressed in maternal plasma exosomes of physiopathologic pregnancies. J. Transl. Med. 2021;19(1):154. DOI 10.1186/s12967-021-02821-6; Grunblatt E., Mandel S., Jacob-Hirsch J., Zeligson S., Amariglo N., Rechavi G., Li J., Ravid R., Roggendorf W., Riederer P., Youdim M.B. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural Transm. (Vienna). 2004;111(12):1543-1573. DOI 10.1007/s00702-004-0212-1; Jauniaux E., Poston L., Burton G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum. Reprod. Update. 2006;12(6):747-755. DOI 10.1093/humupd/dml016; Jeong D.S., Kim M.H., Lee J.Y. Depletion of CTCF disrupts PSG gene expression in the human trophoblast cell line Swan 71. FEBS Open Bio. 2021;11(3):804-812. DOI 10.1002/2211-5463.13087; Jia R.Z., Zhang X., Hu P., Liu X.M., Hua X.D., Wang X., Ding H.J. Screening for differential methylation status in human placenta in preeclampsia using a CpG island plus promoter microarray. Int. J. Mol. Med. 2012;30(1):133-141. DOI 10.3892/ijmm. 2012.983; Lebedev I.N., Ostroverkhova N.V., Nikitina T.V., Sukhanova N.N., Nazarenko S.A. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur. J. Hum. Genet. 2004;12(7):513-520. DOI 10.1038/sj.ejhg.5201178; Lim J.H., Kang Y.J., Bak H.J., Kim M.S., Lee H.J., Kwak D.W., Han Y.J., Kim M.Y., Boo H., Kim S.Y., Ryu H.M. Epigenomewide DNA methylation profiling of preeclamptic placenta according to severe features. Clin. Epigenetics. 2020;12(1):128. DOI 10.1186/s13148-020-00918-1; Maioli E., Fortino V., Pacini A. Parathyroid hormone-related protein in preeclampsia: a linkage between maternal and fetal failures. Biol. Reprod. 2004;71(6):1779-1784. DOI 10.1095/biolreprod.104.030932; Mason C.W., Buhimschi I.A., Buhimschi C.S., Dong Y., Weiner C.P., Swaan P.W. ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab. Dispos. 2011;39(6):1000-1007. DOI 10.1124/dmd.111.038166; McMaster M.T., Zhou Y., Fisher S.J. Abnormal placentation and the syndrome of preeclampsia. Semin. Nephrol. 2004;24(6):540-547. DOI 10.1016/s0270-9295(04)00124-x; Nikitina T.V., Sazhenova E.A., Tolmacheva E.N., Sukhanova N.N., Kashevarova A.A., Skryabin N.A., Vasilyev S.A., Nem tseva T.N., Yuriev S.Y., Lebedev I.N. Comparative cytogenetic analysis of spontaneous abortions in recurrent and sporadic pregnancy losses. Biomed. Hub. 2016;1(1):1-11. DOI 10.1159/000446099; Paul S., Home P., Bhattacharya B., Ray S. GATA factors: Master regulators of gene expression in trophoblast progenitors. Placenta. 2017;60(Suppl. 1):S61-S66. DOI 10.1016/j.placenta.2017.05.005; Red-Horse K., Zhou Y., Genbacev O., Prakobphol A., Foulk R., Mcmas ter M., Fisher S.J. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Invest. 2004;114(6):744-754. DOI 10.1172/JCI22991; Sandor C., Robertson P., Lang C., Heger A., Booth H., Vowles J., Witty L., Bowden R., Hu M., Cowley S.A., Wade-Martins R., Webber C. Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. Hum. Mol. Genet. 2017;26(3): 552-566. DOI 10.1093/hmg/ddw412; Tolmacheva E.N., Kashevarova A.A., Skryabin N.A., Lebedev I.N. Epigenetic effects of trisomy 16 in human placenta. Mol. Bio l. 2013;47(3):373-381. DOI 10.1134/s0026893313030175; Tolmacheva E.N., Vasilyev S.A., Nikitina T.V., Lytkina E.S., Sazhenova E.A., Zhigalina D.I., Vasilyeva O.Y., Markov A.V., Demeneva V.V., Tashireva L.A., Kashevarova A.A., Lebedev I.N. Identification of differentially methylated genes in firsttrimester placentas with trisomy 16. Sci. Rep. 2022;12(1):1166. DOI 10.1038/s41598-021-04107-9; Vasilyev S.A., Timoshevsky V.A., Lebedev I.N. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239. Russ. J. Genet. 2010;46(11):1381-1385. DOI 10.1134/s1022795410110141; Vasilyev S.A., Tolmacheva E.N., Vasilyeva O.Y., Markov A.V., Zhigalina D.I., Zatula L.A., Lee V.A., Serdyukova E.S., Sazhenova E.A., Nikitina T.V., Kashevarova A.A., Lebedev I.N. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy. J. Assist. Reprod. Genet. 2021;38(1):139-149. DOI 10.1007/s10815-020-02003-1; Yeung K.R., Chiu C.L., Pidsley R., Makris A., Hennessy A., Lind J.M. DNA methylation profiles in preeclampsia and healthy control placentas. Am. J. Physiol. Heart Circ. Physiol. 2016; 310(10):H1295-H1303. DOI 10.1152/ajpheart.00958.2015; Zhang W., Li S., Lou J., Li H., Liu M., Dong N., Wu Q. Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling. J. Clin. Invest. 2021; 131(20):e151053. DOI 10.1172/JCI151053; https://vavilov.elpub.ru/jour/article/view/4090

  17. 17
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 73-79 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 73-79 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2007/1497; Colman R.W., Marder V.J., Clowes A.W. Hemostasis and thrombosis. Basic principles and clinical practice. Philadelphia, Pa.: Lippincott, 2006: 1827.; Buller H.R., Sohne M., Middeldorp S. Treatment of venous thromboembolism. J Thromb Haemost 2005; 3(8): 1554- 1560. DOI:10.1111/j.1538-7836.2005.01414.x; Wells P.S. Integrated strategies for the diagnosis of venous thromboembolism. J Thromb Haemost 2007; 5 Suppl 1: 41- 50. DOI:10.1111/j.1538-7836.2007.02493.x; Schellong S.M. Distal DVT: worth diagnosing? Yes. J Thromb Haemost 2007; 5 Suppl 1: 51-54. DOI:10.1111/j.1538-7836.2007.02490.x; Васильев С.А., Виноградов В.Л. Роль наследственности в развитии тромбозов. Тромбоз, гемостаз и реология 2007; 3: 32-40.; Khan S., Dickerman J.D. Hereditary thrombophilia. Thromb J 2006; 4: 15. DOI:10.1186/1477-9560-4-15; Васильев С.А., Виноградов В.Л., Смирнов А.Н., Погорельская Е.П., Маркова М.Л. Тромбозы и тромбофилии: классификация, диагностика, лечение, профилактика. Русский медицинский журнал 2013; 17: 896-901.; Bates S.M., Greer I.A., Pabinger I., Sofaer S., Hirsh J. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133(6 Suppl): 844S-886S. DOI:10.1378/chest.08-0761; Шмаков Р.Г., Кирющенков П.А., Пырегов А.В., Виноградова М.А., Баев О.Р., Кан Н.Е. и др. Краткий протокол: Исследование системы гемостаза во время беременности и после родов. Акушерство и гинекология 2015; 4: 1-2.; Краснопольский В.И., Петрухин В.А., Мельников А.П. Ведение беременных с тромбофилией. Российский вестник акушера-гинеколога 2013; 13(4): 79-81.; Jordan F.L., Nandorff A. The familial tendency in thrombo-embolic disease. Acta Med Scand 1956; 156(4): 267-275. DOI:10.1111/j.0954-6820.1956.tb00084.x; Revel-Vilk S., Chan A., Bauman M., Massicotte P. Prothrombotic conditions in an unselected cohort of children with venous thromboembolic disease. J Thromb Haemost 2003; 1(5): 915-921. DOI:10.1046/j.1538-7836.2003.00158.x; van Ommen C.H., Heijboer H., Büller H.R., Hirasing R.A., Heijmans H.S., Peters M. Venous thromboembolism in childhood: a prospective two-year registry in The Netherlands. J Pediatr 2001; 139(5): 676-681. DOI:10.1067/ mpd.2001.118192; Albisetti M., Moeller A., Waldvogel K., Bernet-Buettiker V., Cannizzaro V., Anagnostopoulos A. et al. Congenital prothrombotic disorders in children with peripheral venous and arterial thromboses. Acta Haematol 2007; 117(3): 149-155. DOI:10.1159/000097462; Revel-Vilk S., Kenet G. Thrombophilia in children with venous thromboembolic disease. Thromb Res 2006; 118(1): 59-65. DOI:10.1016/j.thromres.2005.05.026; Ehrenforth S., Junker R., Koch H.G., Kreuz W., Münchow N., Scharrer I., Nowak-Göttl U. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. Childhood Thrombophilia Study Group. Eur J Pediatr 1999; 158 Suppl 3: S97-104. DOI:10.1007/ pl00014359; Жданова Л.В. Генетически детерминированные тромбофилии в детском возрасте. Вестник БГУ. Медицина и фармация 2015; 12: 114-122.; Момот А.П., Николаева М.Г. Тромбофилии в акушерско-гинекологической практике. Гепаринопрофилактика. Медицинский Совет 2017; 13: 71-78. DOI:10.21518/2079-701X-2017-13-71-78; Hale S.A., Schonberg A., Badger G.J., Bernstein I.M. Relationship between prepregnancy and early pregnancy uterine blood flow and resistance index. Reprod Sci 2009; 16(11): 1091- 1096. DOI:10.1177/1933719109341843; Walfish M., Neuman A., Wlody D. Maternal haemorrhage. Br J Anaesth 2009; 103 Suppl 1: i47-56. DOI:10.1093/bja/aep303; Бицадзе В.О., Макацария А.Д., Хизроева Д.Х., Макацария Н.А., Яшенина Е.В., Казакова Л.А. Тромбофилия как важнейшее звено патогенеза осложнений беременности. Практическая медицина 2012; 5: 22-29.; Momot A.P., Semenova N.A., Belozerov D.E., Trukhina D.A., Kudinova I.Y. The Dynamics of the hemostatic Parameters in Physiological Pregnancy and After Delivery. J Hematol Blood Transfus Disord 2016; 3: 005. DOI:10.24966/HBTD2999/100005; Mahmutbegović E., Marjanović D., Medjedović E., Mahmutbegović N., Dogan S., Valjevac A. et al. Prevalence of F5 1691G>A, F2 20210G>A, and MTHFR 677C>T polymorphisms in Bosnian women with pregnancy loss. Bosn J Basic Med Sci 2017; 17(4): 309-314. DOI:10.17305/ bjbms.2017.1954; Weng Z., Li X., Li Y., Lin J., Peng F., Niu W. The association of four common polymorphisms from four candidate genes (COX-1, COX-2, ITGA2B, ITGA2) with aspirin insensitivity: a meta-analysis. PLoS One 2013; 8(11): e78093. DOI:10.1371/journal.pone.0078093; Adorno-Cruz V., Liu H. Regulation and functions of integrin α2 in cell adhesion and disease. Genes Dis 2018; 6(1): 16-24. DOI:10.1016/j.gendis.2018.12.003; Alsulaim A.Y., Azam F., Sebastian T., Mahdi Hassan F., AbdulAzeez S., Borgio J.F., Alzahrani F.M. The association between two genetic polymorphisms in ITGB3 and increase risk of venous thromboembolism in cancer patients in Eastern Province of Saudi Arabia. Saudi J Biol Sci 2022; 29(1): 183-189. DOI:10.1016/j.sjbs.2021.08.073; Gunathilake K.M., Sirisena U.N., Nisansala P.K., Goonasekera H.W., Jayasekara R.W., Dissanayake V.H. The Prevalence of the Prothrombin (F2) 20210G>A Mutation in a Cohort of Sri Lankan Patients with Thromboembolic Disorders. Indian J Hematol Blood Transfus 2015; 31(3): 356-361. DOI:10.1007/s12288-014-0452-7

  18. 18
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 18, No 4 (2024); 475-491 ; Акушерство, Гинекология и Репродукция; Vol 18, No 4 (2024); 475-491 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2170/1247; Решетняк Т.М. Антифосфолипидный синдром: диагностика и клинические проявления (лекция). Научно-практическая ревматология. 2014;52(1):56-71. https://doi.org/10.14412/1995-4484-2014-56-71.; Макацария А.Д., Бицадзе В.О., Хизроева Д.Х. и др. Патогенетическое значение антифосфолипидных антител. Практическая медицина. 2012;(5):9-21.; Miyakis S., Lockshin M.D., Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306. https://doi.org/10.1111/j.1538-7836.2006.01753.x.; Cervera R., Khamashta M.A., Shoenfeld Y. et al. Morbidity and mortality in the antiphospholipid syndrome during a 5-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis. 2009;68(9):1428-32. https://doi.org/10.1136/ard.2008.093179.; Costedoat-Chalumeau N., Guettrot-Imbert G., Leguern V. et al. Pregnancy and antiphospholipid syndrome. La Rev Med Interne. 2012;33(4):209-16. (In French). https://doi.org/10.1016/j.revmed.2012.01.003.; Branch D.W., Khamashta M.A. Antiphospholipid syndrome: obstetric diagnosis, management, and controversies. Obstet Gynecol. 2003;101(6):1333-44. https://doi.org/10.1016/s0029-7844(03)00363-6.; Сидельникова В.М. Подготовка и ведение беременности у женщин с привычным невынашиванием: методические пособия и клинические протоколы. М.: МЕДпресс-информ, 2011. 224 с.; Шаповалова Е.А. Привычное невынашивание беременности при наличии циркулирующих антифосфолипидных антител (клиника, диагностика, лечение): Автореф. дис. канд. мед. наук. СПб, 2001.; Branch D.W., Silver R.M., Porter T.F. Obstetric antiphospholipid syndrome: current uncertainties should guide our way. Lupus. 2010;19(4):446-52. https://doi.org/10.1177/0961203310361490.; Ernest J.M., Marshburn P.B., Kutteh W.H. Obstetric antiphospholipid syndrome: an update on pathophysiology and management. Semin Reprod Med. 2011;29(6):522-39. https://doi.org/10.1055/s-0031-1293206.; Kultech W.H., Rote N.S., Silver R. Antiphospholipid antibodies and reproduction: the anti phospholipid antibodiy syndrome. Am J Reprod Immunol. 1999;41(2):133-52. https://doi.org/10.1111/j.1600-0897.1999.tb00087.x.; Kim E., Do T., Peacock K., Takundwa P.T. Recommended therapeutic INR range for patients with antiphospholipid syndrome on warfarin anticoagulation: is moderate-intensity (INR 2.0-3.0) or high-intensity (INR 3.1-4.0) better for reducing risk of recurrent thromboembolic events? Cureus. 2016;8(9):765-70. https://doi.org/10.7759/cureus.765.; Khamashta M., Taraborelli M., Sciascia S., Tincani A. Antiphospholipid syndrome. Best Prac Res Clin Rheumatol. 2016;30(1):133-48. https://doi.org/10.1016/J.BERH.2016.04.002.; Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. 752 c.; Sher G., Matzner W., Feinman M. et al. The selective use of heparin/ aspirin therapy, alone or in combination with intravenous immunoglobulin G, in the management of antiphospholipid antibody-positive women undergoing in vitro fertilization. Am J Reprod Immunol. 1998;40(2):74-82. https://doi.org/10.1111/j.1600-0897.1998.tb00394.x.; Di Simone N., Di Nicuolo F., D'Ippolito S. et al. Antiphospholipid antibodies affect human endometrial angiogenesis. Biol Reprod. 2010;83(2):212-19. https://doi.org/10.1095/biolreprod.110.083410.; Di Simone N., Castellani R., Caliandro D., Caruso A. Antiphospholid antibodies regulate the expression of trophoblast cell adhesion molecules. Fertil Steril. 2002;77(4):805-11. https://doi.org/10.1016/s0015-0282(01)03258-7.; D'Ippolito S., Meroni P.L., Koike T. et al. Obstetric antiphospholipid syndrome: a recent classification for an old defined disorder. Autoimmun Rev. 2014;13(9):901-8. https://doi.org/10.1016/j.autrev.2014.05.004.; Макацария А.Д., Бицадзе В.О., Смирнова Л.М. Тромбогеморрагические осложнения в акушерско-гинекологической практике. М.: МИА, 2011. 1050 c.; Микаелян А.Г., Марей М.В., Булатова Ю.С. и др. Исследование взаимосвязи состава микровезикул крови беременных с последующими плацента-ассоциированными осложнениями. Доктор.Ру. 2022;21(5):6-12. https://doi.org/10.31550/1727-2378-2022-21-5-6-12.; Минаева Е.А., Шмаков Р.Г. Факторы риска и профилактика плацента-ассоциированных заболеваний. Гинекология. 22021;23(3):236-40. https://doi.org/10.26442/20795696.2021.3.200960.; Lockshin M.D., Druzin M.L., Qamar T. Prednisone does not prevent recurrent fetal death in women with antiphospholipid antibody. Am J Obstet Gynecol. 11989;160(2):439-43. https://doi.org/10.1016/0002-9378(89)90468-7.; Carreras L.O., Perez G.N., Vega H.R., Casavilla F. Lupus anticoagulant and recurrent fetal loss: successful treatment with gammaglobulin. Lancet. 1988;332(8607):393-94. https://doi.org/10.1016/S0140-6736(88)92858-9.; Nigro G., Adler S.P., La Torre R., Best A.M. Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med. 2005;353(13):1350-62. https://doi.org/10.1542/peds.2006-0900KKKK.; Кривонос М.И., Зайнулина М.С., Чепанов С.В. и др. Клинико-иммунологические аспекты ведения женщин с неудачами ВРТ. Журнал акушерства и женских болезней. 2014;5(63):89-95. https://doi.org/10.17816/JOWD63589-95.; Alijotas-Reig J. Treatment of refractory obstetric antiphospholipid syndrome: The state of the art and new trends in the therapeutic management. Lupus. 2013;22(1):6-17. https://doi.org/10.1177/0961203312465782.; Ruffatti A., Favaro M., Hoxha A. et al. Apheresis and intravenous immunoglobulins used in addition to conventional therapy to treat high-risk pregnant antiphospholipid antibody syndrome patients. A prospective study. J Reprod Immunol. 2016;115:14-9. https://doi.org/10.1016/j.jri.2016.03.004.; Watanabe N., Yamaguchi K., Motomura K. et al. Combination therapy with anticoagulants, corticosteroids and intravenous immunoglobulin for women with severe obstetric antiphospholipid syndrome. Clin Exp Rheumatol. 2014;32(2):299-300. https://doi.org/10.1086/660146.; Tenti S., Cheleschi S., Guidelli G.M. et al. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. 2016;15(3):226-35. https://doi.org/10.1016/j.autrev.2015.11.009.; Сельков С.А., Соколов Д.И., Чепанов С.В. Иммунорегуляторные эффекты иммуноглобулинов для внутривенного введения. Медицинская иммунология. 2013;15(1):5-12.; Velikova T., Sekulovski M., Bogdanova S. et al. Intravenous immunoglobulins as immunomodulators in autoimmune diseases and reproductive medicine. Antibodies. 2023;1(12):1-24. https://doi.org/10.3390/antib12010020.; Carp H.J.A., Asherson R.A., Shoenfeld Y. Intravenous immunoglobulin in pregnancies complicated by the antiphospholipid syndrome: what is its role? J Clin Rheumatol. 2001;7(5):291-94. https://doi.org/10.1097/00124743-200110000-000074.; Valensise H., Vaquero E., De Carolis C. et al. Normal fetal growth in women with antiphospholipid syndrome treated with high-dose intravenous immunoglobulin (IVIG). Prenat Diagn. 1995;15(6):509-17. https://doi.org/10.1002/pd.1970150603.; Clark A.L., Branch D.W., Silver R.M. et al. Pregnancy complicated by the antiphospholipid syndrome: Outcomes with intravenous immunoglobulin therapy. Obstet Gynecol. 11999;93(3):437-41. https://doi.org/10.1016/S0029-7844(98)00437-2.; Marzusch K., Dietl J., Klein R. et al. Recurrent first trimester spontaneous abortion associated with antiphospholipid antibodies: A pilot study of treatment with intravenous immunoglobulin. Acta Obstet Gynecol Scand. 1996;75(10):922-26. https://doi.org/10.3109/00016349609055029.; Branch D.W., Peaceman A.M., Druzin M. et al. A multicenter , placebo-controlled pilot study of intravenous immune globulin treatment of antiphospholipid syndrome during pregnancy Am J Obstet Gynecol. 2000;182(1):122-27. https://doi.org/10.1016/S0002-9378(00)70500-X.; Vaquero E., Lazzarin N., Valensise H. et al. Pregnancy outcome in recurrent spontaneous abortion associated with antiphospholipid antibodies: A comparative study of intravenous immunoglobulin versus prednisone plus low-dose aspirin. Am J Reprod Immunol. 2001;45(3):174-79. https://doi.org/10.1111/j.8755-8920.2001.450309.x.; Diejomaoh M.F., Al-Azemi M.M., Bandar A. et al. A favorable outcome of pregnancies in women with primary and secondary recurrent pregnancy loss associated with antiphospholipid syndrome. Arch Gynecol Obstet. 2002;266(2):61-6. https://doi.org/10.1007/s004040100179.; Jeremie K., Pervulov M., Gojnie M. et al. Comparison of two therapeutic protocols in patients with antiphospholipid antibodies and recurrent miscariages. VojnosanitPregl. 2005;62(6):435-39. https://doi.org/10.2298/vsp0506435j.; Triolo G., Ferrante A., Ciccia F. et al. Randomized study of subcutaneous low molecular weight heparin plus aspirin versus intravenous immunoglobulin in the treatment of recurrent fetal loss associated with antiphospholipid antibodies. Arthritis Rheum. 2003;48(3):728-31. https://doi.org/10.1002/art.10957.; Dendrinos S., Sakkas E., Makrakis E. Low-molecular-weight heparin versus intravenous immunoglobulin for recurrent abortion associated with antiphospholipid antibody syndrome. Int J Gynecol Obstet. 2009;104(3):223-25. https://doi.org/10.1016/j.ijgo.2008.11.010.; Xiao J., Xiong J., Zhu F., He L. Effect of prednisone, aspirin, low molecular weight heparin and intravenous immunoglobulin on outcome of pregnancy in women with antiphospholipid syndrome. Exp Ther Med. 2013;5(139):287-91. https://doi.org/10.3892/etm.2012.743.; Heilmann L., Schorch M., Hahn T. et al. Pregnancy outcome in women with antiphospholipid antibodies: Report on a retrospective study. Semin Thromb Hemost. 2008;34(8):794-802. https://doi.org/10.1055/s-0029-114526.; https://www.gynecology.su/jour/article/view/2170

  19. 19
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 15, № 1 (2024); 82-93 ; Медицинский вестник Юга России; Том 15, № 1 (2024); 82-93 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2024-15-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1892/1010; ESHRE «Recurrent pregnancy loss». 2019.; Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98(5):1103-1111. https://doi.org/10.1016/j.fertnstert.2012.06.048; The investigation and treatment of couples with recurrent first-trimester and second-trimester miscarriage. RCOG Green-top guideline. 2011;(17):1-18.; Российское общество акушеров-гинекологов. Клинические рекомендации «Привычный выкидыш». М.; 2022.; Russian society of obstetricians and gynaecologists. Clinical guideline «Recurrent pregnancy loss». Мoscow; 2022. (In Russ.); van Dijk MM, Kolte AM, Limpens J, Kirk E, Quenby S, et al. Recurrent pregnancy loss: diagnostic workup after two or three pregnancy losses? A systematic review of the literature and meta-analysis. Hum Reprod Update. 2020;26(3):356-367. https://doi.org/10.1093/humupd/dmz048; Magnus MC, Wilcox AJ, Morken NH, Weinberg CR, Håberg SE. Role of maternal age and pregnancy history in risk of miscarriage: prospective register based study. BMJ. 2019;364:l869. https://doi.org/10.1136/bmj.l869; Rasmark Roepke E, Matthiesen L, Rylance R, Christiansen OB. Is the incidence of recurrent pregnancy loss increasing? A retrospective register-based study in Sweden. Acta Obstet Gynecol Scand. 2017;96(11):1365-1372. https://doi.org/10.1111/aogs.13210; Quenby S, Gallos ID, Dhillon-Smith RK, Podesek M, Stephenson MD, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet. 2021;397(10285):1658-1667. https://doi.org/10.1016/S0140-6736(21)00682-6; Lund M, Kamper-Jørgensen M, Nielsen HS, Lidegaard Ø, Andersen AM, Christiansen OB. Prognosis for live birth in women with recurrent miscarriage: what is the best measure of success? Obstet Gynecol. 2012;119(1):37-43. https://doi.org/10.1097/AOG.0b013e31823c0413; Nybo Andersen AM, Wohlfahrt J, Christens P, Olsen J, Melbye M. Maternal age and fetal loss: population based register linkage study. BMJ. 2000;320(7251):1708-1712. https://doi.org/10.1136/bmj.320.7251.1708; van den Boogaard E, Cohn DM, Korevaar JC, Dawood F, Vissenberg R, et al. Number and sequence of preceding miscarriages and maternal age for the prediction of antiphospholipid syndrome in women with recurrent miscarriage. Fertil Steril. 2013;99(1):188-192. https://doi.org/10.1016/j.fertnstert.2012.09.002; Dimitriadis E, Menkhorst E, Saito S, Kutteh WH, Brosens JJ. Recurrent pregnancy loss. Nat Rev Dis Primers. 2020;6(1):98. https://doi.org/10.1038/s41572-020-00228-z; Leng T, Li X, Zhang H. Levothyroxine treatment for subclinical hypothyroidism improves the rate of live births in pregnant women with recurrent pregnancy loss: a randomized clinical trial. Gynecol Endocrinol. 2022;38(6):488-494. https://doi.org/10.1080/09513590.2022.2063831; van Dijk MM, Vissenberg R, Fliers E, van der Post JAM, van der Hoorn MP, et al. Levothyroxine in euthyroid thyroid peroxidase antibody positive women with recurrent pregnancy loss (T4LIFE trial): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2022;10(5):322-329. https://doi.org/10.1016/S2213-8587(22)00045-6; Tise CG, Byers HM. Genetics of recurrent pregnancy loss: a review. Curr Opin Obstet Gynecol. 2021;33(2):106-111. https://doi.org/10.1097/GCO.0000000000000695; Smits MAJ, van Maarle M, Hamer G, Mastenbroek S, Goddijn M, van Wely M. Cytogenetic testing of pregnancy loss tissue: a meta-analysis. Reprod Biomed Online. 2020;40(6):867-879. https://doi.org/10.1016/j.rbmo.2020.02.001; Maddirevula S, Awartani K, Coskun S, AlNaim LF, Ibrahim N, et al. A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet. 2020;139(5):605-613. https://doi.org/10.1007/s00439-020-02143-5; Li S, Zheng PS, Ma HM, Feng Q, Zhang YR, et al. Systematic review of subsequent pregnancy outcomes in couples with parental abnormal chromosomal karyotypes and recurrent pregnancy loss. Fertil Steril. 2022;118(5):906-914. https://doi.org/10.1016/j.fertnstert.2022.08.008; Deshmukh H, Way SS. Immunological Basis for Recurrent Fetal Loss and Pregnancy Complications. Annu Rev Pathol. 2019;14:185-210. https://doi.org/10.1146/annurev-pathmechdis-012418-012743; Gleicher N, Kushnir VA, Barad DH. Redirecting reproductive immunology research toward pregnancy as a period of temporary immune tolerance. J Assist Reprod Genet. 2017;34(4):425-430. https://doi.org/10.1007/s10815-017-0874-x; Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int J Mol Sci. 2019;20(21):5332. https://doi.org/10.3390/ijms20215332; Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front Immunol. 2020;11:2025. https://doi.org/10.3389/fimmu.2020.02025; Jeve YB, Davies W. Evidence-based management of recurrent miscarriages. J Hum Reprod Sci. 2014;7(3):159-169. https://doi.org/10.4103/0974-1208.142475; Wang NF, Kolte AM, Larsen EC, Nielsen HS, Christiansen OB. Immunologic Abnormalities, Treatments, and Recurrent Pregnancy Loss: What Is Real and What Is Not? Clin Obstet Gynecol. 2016;59(3):509-523. https://doi.org/10.1097/GRF.0000000000000215; Ewington LJ, Tewary S, Brosens JJ. New insights into the mechanisms underlying recurrent pregnancy loss. J Obstet Gynaecol Res. 2019;45(2):258-265. https://doi.org/10.1111/jog.13837; Makieva S, Giacomini E, Ottolina J, Sanchez AM, Papaleo E, Viganò P. Inside the Endometrial Cell Signaling Subway: Mind the Gap(s). Int J Mol Sci. 2018;19(9):2477. https://doi.org/10.3390/ijms19092477; Chen P, Zhou L, Chen J, Lu Y, Cao C, et al. The Immune Atlas of Human Deciduas With Unexplained Recurrent Pregnancy Loss. Front Immunol. 2021;12:689019. https://doi.org/10.3389/fimmu.2021.689019; Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev. 2005;26(1):44-62. https://doi.org/10.1210/er.2003-0021; Tang AW, Alfirevic Z, Turner MA, Drury JA, Small R, Quenby S. A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum Reprod. 2013;28(7):1743-1752. https://doi.org/10.1093/humrep/det117; Kuon RJ, Weber M, Heger J, Santillán I, Vomstein K, et al. Uterine natural killer cells in patients with idiopathic recurrent miscarriage. Am J Reprod Immunol. 2017;78(4). https://doi.org/10.1111/aji.12721; El-Azzamy H, Dambaeva SV, Katukurundage D, Salazar Garcia MD, Skariah A, et al. Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses. Am J Reprod Immunol. 2018;80(4):e13024. https://doi.org/10.1111/aji.13024; Gong H, Chen Y, Xu J, Xie X, Yu D, et al. The regulation of ovary and conceptus on the uterine natural killer cells during early pregnancy. Reprod Biol Endocrinol. 2017;15(1):73. https://doi.org/10.1186/s12958-017-0290-1; Giuliani E, Parkin KL, Lessey BA, Young SL, Fazleabas AT. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262-269. https://doi.org/10.1111/aji.12259; Wang W, Zhao Y, Zhou X, Sung N, Chen L, et al. Dynamic changes in regulatory T cells during normal pregnancy, recurrent pregnancy loss, and gestational diabetes. J Reprod Immunol. 2022;150:103492. https://doi.org/10.1016/j.jri.2022.103492; Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17(8):469-482. https://doi.org/10.1038/nri.2017.64; Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851-905. https://doi.org/10.1210/er.2014-1045; Salker MS, Nautiyal J, Steel JH, Webster Z, Sućurović S, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One. 2012;7(12):e52252. https://doi.org/10.1371/journal.pone.0052252; Macklon NS, Brosens JJ. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91(4):98. https://doi.org/10.1095/biolreprod.114.122846; Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5(4):e10258. https://doi.org/10.1371/journal.pone.0010258; Lucas ES, Dyer NP, Murakami K, Lee YH, Chan YW, et al. Loss of Endometrial Plasticity in Recurrent Pregnancy Loss. Stem Cells. 2016;34(2):346-356. https://doi.org/10.1002/stem.2222; Liu Y, Chen X, Huang J, Wang CC, Yu MY, et al. Comparison of the prevalence of chronic endometritis as determined by means of different diagnostic methods in women with and without reproductive failure. Fertil Steril. 2018;109(5):832-839. Erratum in: Fertil Steril. 2019;111(2):411. PMID: 29778382. https://doi.org/10.1016/j.fertnstert.2018.01.022; Лызикова Ю.А., Осипкина О.В., Зятьков А.А., Рубаник Н.Н. Результаты идентификации микроорганизмов в полости матки с помощью метода секвенирования фрагмента гена 16S РРНК. Проблемы здоровья и экологии. 2018;(4):24-30.; Reschini M, Benaglia L, Ceriotti F, Borroni R, Ferrari S, et al. Endometrial microbiome: sampling, assessment, and possible impact on embryo implantation. Sci Rep. 2022;12(1):8467. https://doi.org/10.1038/s41598-022-12095-7; Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215(6):684-703. https://doi.org/10.1016/j.ajog.2016.09.075; Червинец Ю.В., Червинец В.М., Стольникова И.И., Досова С.Ю. Особенности микробиоты влагалища при привычном невынашивании беременности. Тверской медицинский журнал. 2021;(2):33-43.; Peuranpää P, Holster T, Saqib S, Kalliala I, Tiitinen A, et al. Female reproductive tract microbiota and recurrent pregnancy loss: a nested case-control study. Reprod Biomed Online. 2022;45(5):1021-1031. https://doi.org/10.1016/j.rbmo.2022.06.008; Ефремова Н.В., Румянцева З.С., Резниченко Н.А. Анализ микробиологических предикторов невынашивания беременности. Вопросы устойчивого развития общества. 2022;(3):838-842.; Shi Y, Yamada H, Sasagawa Y, Tanimura K, Deguchi M. Uterine endometrium microbiota and pregnancy outcome in women with recurrent pregnancy loss. J Reprod Immunol. 2022;152:103653. https://doi.org/10.1016/j.jri.2022.103653; Salama SA, Kamel MW, Diaz-Arrastia CR, Xu X, Veenstra TD, et al. Effect of tumor necrosis factor-alpha on estrogen metabolism and endometrial cells: potential physiological and pathological relevance. J Clin Endocrinol Metab. 2009;94(1):285-293. https://doi.org/10.1210/jc.2008-1389; Cicinelli E, Resta L, Nicoletti R, Zappimbulso V, Tartagni M, Saliani N. Endometrial micropolyps at fluid hysteroscopy suggest the existence of chronic endometritis. Hum Reprod. 2005;20(5):1386-1389. https://doi.org/10.1093/humrep/deh779; Траль Т.Г., Хобец В.В., Толибова Г.Х., Коган И.Ю. Структурно-функциональные и молекулярные механизмы трансформации эндометрия при привычном невынашивании беременности. Уральский медицинский журнал. 2022;21(5):18-25.; Общероссийская общественная организация Ассоциация ревматологов России. Федеральные клинические рекомендации по лечению антифосфолипидного синдрома. М.: 2013.; Russian public organization «Association of Rheumatologists of Russia». Federal clinical guidelines for the treatment of antiphospholipid syndrome. Мoscow; 2013.; Alijotas-Reig J, Esteve-Valverde E, Anunciación-Llunell A, Marques-Soares J, Pardos-Gea J, Miró-Mur F. Pathogenesis, Diagnosis and Management of Obstetric Antiphospholipid Syndrome: A Comprehensive Review. J Clin Med. 2022;11(3):675. https://doi.org/10.3390/jcm11030675; Sjöberg V, Sandström O, Hedberg M, Hammarström S, Hernell O, Hammarström ML. Intestinal T-cell responses in celiac disease – impact of celiac disease associated bacteria. PLoS One. 2013;8(1):e53414. https://doi.org/10.1371/journal.pone.0053414; Toth B, Würfel W, Bohlmann M, Zschocke J, Rudnik-Schöneborn S, et al. Recurrent Miscarriage: Diagnostic and Therapeutic Procedures. Guideline of the DGGG, OEGGG and SGGG (S2k-Level, AWMF Registry Number 015/050). Geburtshilfe Frauenheilkd. 2018;78(4):364-381. https://doi.org/10.1055/a-0586-4568; Masucci L, D'Ippolito S, De Maio F, Quaranta G, Mazzarella R, et al. Celiac Disease Predisposition and Genital Tract Microbiota in Women Affected by Recurrent Pregnancy Loss. Nutrients. 2023;15(1):221. https://doi.org/10.3390/nu15010221; Mierendorf SM, Shmerling RH. Antinuclear antibody testing. Hospital Med Clin. 2012;1(3):e370-e377. https://doi.org/10.1016/j.ehmc.2011.11.001; Chen S, Yang G, Wu P, Sun Y, Dai F, et al. Antinuclear antibodies positivity is a risk factor of recurrent pregnancy loss: A meta-analysis. Semin Arthritis Rheum. 2020;50(4):534-543. https://doi.org/10.1016/j.semarthrit.2020.03.016; Cavalcante MB, Cavalcante CTMB, Sarno M, da Silva ACB, Barini R. Antinuclear antibodies and recurrent miscarriage: Systematic review and meta-analysis. Am J Reprod Immunol. 2020;83(3):e13215. https://doi.org/10.1111/aji.13215; Yu W, Bao S. Association of male factors with recurrent pregnancy loss. J Reprod Immunol. 2022;154:103758. https://doi.org/10.1016/j.jri.2022.103758; Klimczak AM, Patel DP, Hotaling JM, Scott RT Jr. Role of the sperm, oocyte, and embryo in recurrent pregnancy loss. Fertil Steril. 2021;115(3):533-537. https://doi.org/10.1016/j.fertnstert.2020.12.005; Lepine S, McDowell S, Searle LM, Kroon B, Glujovsky D, Yazdani A. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst Rev. 2019;7(7):CD010461. https://doi.org/10.1002/14651858.CD010461.pub3; du Fossé NA, Lashley EELO, van Beelen E, Meuleman T, le Cessie S, et al. Identification of distinct seminal plasma cytokine profiles associated with male age and lifestyle characteristics in unexplained recurrent pregnancy loss. J Reprod Immunol. 2021;147:103349. https://doi.org/10.1016/j.jri.2021.103349; Mohanty G, Jena SR, Nayak J, Kar S, Samanta L. Quantitative proteomics decodes clusterin as a critical regulator of paternal factors responsible for impaired compensatory metabolic reprogramming in recurrent pregnancy loss. Andrologia. 2020;52(2):e13498. https://doi.org/10.1111/and.13498; Гамидов С.И., Шатылко Т.В., Попова А.Ю., Гасанов Н.Г., Гамидов Р.С. Оксидативный стресс сперматозоидов: клиническое значение и коррекция. Медицинский Совет. 2021;(3):19-27.; Al-Sheikh YA, Ghneim HK, Alharbi AF, Alshebly MM, Aljaser FS, Aboul-Soud MAM. Molecular and biochemical investigations of key antioxidant/oxidant molecules in Saudi patients with recurrent miscarriage. Exp Ther Med. 2019;18(6):4450-4460. https://doi.org/10.3892/etm.2019.8082; Zussman R, Xu LY, Damani T, Groom KM, Chen Q, et al. Antiphospholipid antibodies can specifically target placental mitochondria and induce ROS production. J Autoimmun. 2020;111:102437. https://doi.org/10.1016/j.jaut.2020.102437; Nocella C, Bartimoccia S, Cammisotto V, D'Amico A, Pastori D, et al. Oxidative Stress in the Pathogenesis of Antiphospholipid Syndrome: Implications for the Atherothrombotic Process. Antioxidants (Basel). 2021;10(11):1790. https://doi.org/10.3390/antiox10111790; https://www.medicalherald.ru/jour/article/view/1892

  20. 20
    Academic Journal

    Συνεισφορές: The study was supported by the Russian Science Foundation grant No. 23-15-00341., Работа выполнена при поддержке гранта Российского научного фонда № 23-15-00341.

    Πηγή: Medical Genetics; Том 23, № 10 (2024); 50-54 ; Медицинская генетика; Том 23, № 10 (2024); 50-54 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2563/1825; Quenby S., Gallos I.D., Dhillon-Smith R.K. et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. The Lancet. 2021; 10285: 1658-1667. doi:10.1016/S0140-6736(21)00682-6.; Coomarasamy A., Dhillon-Smith R.K., Papadopoulou A. et al. Recurrent miscarriage: evidence to accelerate action. The Lancet. 2021; 10285: 1675-1682. doi:10.1016/S0140-6736(21)00681-4; Devall A. J., Coomarasamy A. Sporadic pregnancy loss and recurrent miscarriage Best Practice & Research Clinical Obstetrics & Gynaecology. 2020; 69: 30-39. doi:10.1016/j.bpobgyn.2020.09.002; Feldberg D. Epigenetic aspects of human reproduction and early pregnancy. Sex, Gender, and Epigenetics. Academic Press. 2023; 237-243. doi:10.1016/B978-0-12-823937-7.00018-3; Tisato V., Silva J.A., Scarpellini F. et al. Epigenetic role of LINE-1 methylation and key genes in pregnancy maintenance. Scientific Reports. 2024; 1: 3275. doi:10.1038/s41598-024-53737-2; Lou C., Goodier J. L., Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reproductive Biology and Endocrinology. 2020; 18: 6. doi:10.1186/s12958-020-0564-x; Vasilyev S.A., Tolmacheva E.N., Vasilyeva O.Y. et al. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy. J Assist Reprod Genet. 2021; 38(1): 139–149. doi:10815-020-02003-1.; Lebedev I.N., Ostroverkhova N.V., Nikitina T.V. et al. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur. J. Hum. Genet. 2004; 12:513–520. doi:10.1038/sj.ejhg.5201178; Vasilyev S.A., Timoshevsky V.A., Lebedev I.N. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239. Russ. J. Genet. 2010; 46:1381–1385. doi:10.1134/S1022795410110141; Vasilyev S.A., Markov A.V., Vasilyeva O.Yu. et al. Method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter. MethodsX. 2021;8, 101445. doi:10.1016/j.mex.2021.101445; Lim J.H., Kang Y.J., Lee B.Y. et al. Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clin Epigenet. 2019; 11(180). doi:10.1186/s13148-019-0756-4; Lim J.H., Kim S.Y., Han J.Y et al. Comprehensive investigation of DNA methylation and gene expression in trisomy 21 placenta. Placenta. 2016; 42:17-24. doi:10.1016/j.placenta.2016.03.012.; Tolmacheva E.N., Vasilyev S.A., Nikitina T.V. et al. Identification of differentially methylated genes in first-trimester placentas with trisomy 16. Sci Rep. 2022; 12(1):1166. doi:10.1038/s41598-021-04107-9.; Lou C., Qiang R., Wu H. et al. Expression of LINE-1 retrotransposon in early human spontaneous abortion tissues. Medicine (Baltimore). 2022; 101(49):e31964. doi:10.1097/MD.0000000000031964.; Tisato V., Silva J.A., Scarpellini F. et al. Epigenetic role of LINE-1 methylation and key genes in pregnancy maintenance. Sci Rep. 2024; 14(1):3275. doi:10.1038/s41598-024-53737-2.; Malki S., van der Heijden G.W., O’Donnell K.A., et al. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell. 2014; 29(5):521-533. doi:10.1016/j.devcel.2014.04.027.; Yuan P., Guo Q., Guo H. et al. The methylome of a human polar body reflects that of its sibling oocyte and its aberrance may indicate poor embryo development. Hum Reprod. 2021; 36(2):318-330. doi:10.1093/humrep/deaa292