Showing 1 - 6 results of 6 for search '"НАРУШЕНИЕ НЕРВНО-МЫШЕЧНОЙ ПЕРЕДАЧИ"', query time: 0.49s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022300127-0), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026- 24-01 на проведение прикладных научных исследований (номер государственного учета НИР 124022300127-0)

    Source: Safety and Risk of Pharmacotherapy; Том 12, № 3 (2024); 299-308 ; Безопасность и риск фармакотерапии; Том 12, № 3 (2024); 299-308 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2024-12-3

    File Description: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/453/1223; https://www.risksafety.ru/jour/article/downloadSuppFile/453/575; https://www.risksafety.ru/jour/article/downloadSuppFile/453/576; https://www.risksafety.ru/jour/article/downloadSuppFile/453/577; Никифоров ВВ. Ботулизм. СПб: Эко-Вектор; 2024. EDN: NDPUMZ; Eser F, Hasanoğlu İ, Kayaaslan B, Kaya Kalem A, Bilen Ş, Orhan G, Güner R. Iatrogenic botulism cases after gastric and axillary application of botulinum toxin and review of literature. J Infect Dev Ctries. 2024;18(3):480–7. https://doi.org/10.3855/jidc.18868; Rasetti-Escargueil C, Lemichez E, Popoff MR. Public health risk associated with botulism as foodborne zoonoses. Toxins (Basel). 2019;12(1):17. https://doi.org/10.3390/toxins12010017; Lonati D, Schicchi A, Crevani M, Buscaglia E, Scaravaggi G, Maida F, et al. Foodborne botulism: clinical diagnosis and medical treatment. Toxins (Basel). 2020;12(8):509. https://doi.org/10.3390/toxins12080509; Poulain B, Popoff MR. Why are botulinum neurotoxin-producing bacteria so diverse and botulinum neurotoxins so toxic? Toxins (Basel). 2019;11(1):34. https://doi.org/10.3390/toxins11010034; Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S. Role of metals in the biological activity of Clostridium botulinum neurotoxins. Biochemistry. 2004;43(8):2209–16. https://doi.org/10.1021/bi035844k; Chen S, Barbieri JT. Association of botulinum neurotoxin serotype. A light chain with plasma membrane-bound SNAP25. J Biol Chem. 2011;286(17):15067–72. https://doi.org/10.1074/jbc.M111.224493; Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence. 2023;14(1):2205251. https://doi.org/10.1080/21505594.2023.2205251; Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct. 2024;15(12):6274–88. https://doi.org/10.1039/d4fo00529e; Matsumura T. Mechanism of intestinal absorption of botulinum neurotoxin complex. Jpn J Bacteriol. 2019;74(3):167–75. https://doi.org/10.3412/jsb.74.167; Amatsu S, Fujinaga Y. Botulinum hemagglutinin: critical protein for adhesion and absorption of neurotoxin complex in host intestine. Methods Mol Biol. 2020;2132:183–90. https://doi.org/10.1007/978-1-0716-0430-4_19; Lee K, Zhong X, Gu S, Kruel AM, Dorner MB, Perry K, et al. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science. 2014;344(6190):1405–10. https://doi.org/10.1126/science.1253823; Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 2017;69(2):200–35. https://doi.org/10.1124/pr.116.012658; Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botu linum neurotoxins. Toxicon. 2020;178:20–32. https://doi.org/10.1016/j.toxicon.2020.02.006; Yamamoto H, Ida T, Tsutsuki H, Mori M, Matsumoto T, Kohda T, et al. Specificity of botulinum protease for human VAMP family proteins. Microbiol Immunol. 2012;56(4):245–53. https://doi.org/10.1111/j.1348-0421.2012.00434.x; Connan C, Popoff MR. Two-component systems and toxinogenesis regulation in Clostridium botulinum. Res Microbiol. 2015;166(4):332–43. https://doi.org/10.1016/j.resmic.2014.12.012; Han J, Pluhackova K, Böckmann RA. The multifaceted role of snare proteins in membrane fusion. Front Physiol. 2017;8:5. https://doi.org/10.3389/fphys.2017.00005; Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol. 2024;25(2):101–18. https://doi.org/10.1038/s41580-023-00668-x; Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic vesicle glycoprotein 2A: features and functions. Front Neurosci. 2022;16:864514. https://doi.org/10.3389/fnins.2022.864514; Pirazzini M, Azarnia Tehran D, Leka O, Zanetti G, Rossetto O, Montecucco C. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Bio chim Biophys Acta. 2016;1858(3):467–74. https://doi.org/10.1016/j.bbamem.2015.08.014; Păuna AM, Crăciun MD, Sîrbu A, Popescu R, Enciu BG, Chivu CD, et al. Botulism cases in romania-an overview of 14-year national surveillance data. Biomedicines. 2024;12(5):1058. https://doi.org/10.3390/biomedicines12051058; Reznik AV. The pharmacology of botulinum toxin type A. In: Sabuncuoglu S, ed. Botulinum toxin — recent topics and applications. Intech Open; 2022. https://doi.org/10.5772/intechopen.101315; Marchand-Pauvert V, Aymard C, Giboin LS, Dominici F, Rossi A, Mazzocchio R. Beyond muscular effects: depression of spinal recurrent inhibition after botulinum neurotoxin A. J Physiol. 2013;591(4):1017–29. https://doi.org/10.1113/jphysiol.2012.239178; Harvey RR, Cooper R, Bennett S, Richardson M, Duke D, Stoughton C, et al. Outbreak of foodborne botulism in an immigrant community: overcoming delayed disease recognition, ambiguous epidemiologic links, and cultural barriers to identify the cause. Clin Infect Dis. 2017;66( suppl_1):82–4. https://doi.org/10.1093/cid/cix817; Ni SA, Brady MF. Botulism Antitoxin. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.; Yu PA, Lin NH, Mahon BE, Sobel J, Yu Y, Mody RK, et al. Safety and improved clinical outcomes in patients treated with new equine-derived heptavalent botulinum antitoxin. Clin Infect Dis. 2017;66(suppl_1):57–64. https://doi.org/10.1093/cid/cix816; Chalk CH, Benstead TJ, Pound JD, Keezer MR. Me dical treatment for botulism. Cochrane Database Syst Rev. 2019;4(4):CD008123. https://doi.org/10.1002/14651858.CD008123.pub4; Chatham-Stephens K, Fleck-Derderian S, Johnson SD, Sobel J, Rao AK, Meaney-Delman D. Clinical features of foodborne and wound botulism: a syste matic review of the literature, 1932–2015. Clin Infect Dis. 2017;66(suppl_1):11–6. https://doi.org/10.1093/cid/cix811; Rao AK, Sobel J, Chatham-Stephens K, Luquez C. Clinical guidelines for diagnosis and treatment of botulism, 2021. MMWR Recomm Rep. 2021;70(2):1–30. https://doi.org/10.15585/mmwr.rr7002a1; Benedetto AV. The cosmetic uses of Botulinum toxin type A. Int J Dermatol. 1999;38:641–55. https://doi.org/10.1046/j.1365-4362.1999.00722.x; Толмачева ВА. Постинсультная спастичность, индивидуализированный подход к лечению. Неврология, нейропсихиатрия, психосоматика. 2016;8(4):71–6. https://doi.org/10.14412/2074-2711-2016-4-71-76; O’Horo JC, Harper EP, El Rafei A, Ali R, DeSimone DC, Sakusic A, et al. Efficacy of antitoxin therapy in treating patients with foodborne botulism: a systematic review and meta-analysis of cases, 1923–2016. Clin Infect Dis. 2017;66(suppl_1):43–56. https://doi.org/10.1093/cid/cix815; Никифоров ВВ, Томилин ЮН, Давыдов АВ, Зимин ПЕ, Алейникова ОИ. Случай тяжелого течения ботулизма: 127 дней искусственной вентиляции легких. Эпидемиология и инфекционные болезни. 2013;18(6):49–57. https://doi.org/10.17816/EID40793; Lonati D, Flore L, Vecchio S, Giampreti A, Petrolini VM, Anniballi F, et al. Clinical management of foodborne botulism poisoning in emergency setting: an Italian case series. Clin Toxicol. 2015;53:338.; https://www.risksafety.ru/jour/article/view/453

  2. 2
    Academic Journal

    Source: Neuromuscular Diseases; № 2 (2013); 6-19 ; Нервно-мышечные болезни; № 2 (2013); 6-19 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2013-0-2

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/44/40; Бухарин О.В., Литвин В.Ю. Патогенные бактерии в природных экосистемах. Екатеринбург, 1997. 128 с.; Руководство по инфекционным болезням. Под ред. Ю.В. Лобзина. СПб., 2000. 932 с.; Антонов Н.С. Химическое оружие на рубеже двух столетий. М., 1994. 174 с.; Никифоров В.Н., Никифоров В.В. Ботулизм. Л., 1985. 200 с.; Супотницкий М.В. Микроорганизмы, токсины и эпидемии. М., 2000. 376 с.; Покровский В.И., Авербах М.М., Литвинов В.И. Приобретенный иммунитет и инфекционный процесс. М.: Медицина, 1979. 280 с.; Александров В.Н., Емельянов В.И. Отравляющие вещества. М.: Воениздат, 1990. 271 с.; Chalk C., Benstead T.J., Keezer M. Medical treatment for botulism. Cochrane Database Syst Rev 2011;(3):CD008123. doi:10.1002/14651858. CD008123.pub 2. Review; Dolly J.O., Lawrence G.W., Meng J. et al. Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol 2009;9:326–35.; Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 2010;79:591–617.; Lacy D.B., Tepp W., Cohen A.C. et al. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 1998;5(10):898–902.; Stenmark P., Dupuy J., Imamura A. et al. Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 2008;4(8):e1000129.; Arnon S.S., Schechter R., Inglesby T.V. et al. Working Group on Civilian Biodefense. Botulinum toxin as a biological weapon. Medical and public health management. [Consensus statement] JAMA 2001;285(8):1059–70.; Aoki K.R., Smith L.A., Atassi M.Z. Mode of action of botulinum neurotoxins: current vaccination strategies and molecular immune recognition. Crit Rev Immunol 2010;30(2):167–87.; Lobet Y., Cieplak W.Jr., Smith S.G., Keith J.M. Effects of mutations on enzyme activity and immunoreactivity of the S1 subunit of pertussis toxin. Infect Immun 1989;57(11):3660–2.; Dong M., Yeh F., Tepp W.H. et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006;312(5773):540–1.; Dong M., Richards D.A., Goodnough M.C. et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 2003;162:1293–303.; Stenmark P., Dong M., Dupuy J. et al. Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol2010;397:1287–97.; Zhang P., Ray R., Singh B.R. et al. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacology 2009;9:12.; Sutton R.B., Fasshauer D., Jahn R., Brunger A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998;395:347–53.; Dolly J.O., Black J., Williams R.S., Melling J. Acceptors for botulinum neurotoxin reside on motor nerve erminals and mediate its internalization. Nature 1984; 307:457–60.; Meng J., Ovsepian S.V., Wang J. et al. Activation of TRPV1 mediates calcitonin generelated peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 2009;29:4981–92.; Kumaran D., Eswaramoorthy S., Furey W. et al. Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 2009;386:233–45.; De Paiva A., Meunier F.A., Molgo J. et al. Functional repair of motor endplates after botulinum neurotoxin type A poisoning. Proc Natl Acad Sci USA 1999;96(6):3200–5.; Aoki K.R., Guyer B. Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. Eur J Neurol 2001;8(Suppl 5):21–9.; Aoki K.R. Botulinum toxin: a successful therapeutic protein. Curr Med Chem 2004;11:3085–92.; Filippi G.M., Errico P., Santarelli R. et al. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 1993;113:400–4.; Urban P.P., Rolke R. Effects of botulinum toxin type A on vibration induced facilitation of motor evoked potentials in spasmodic torticollis. J Neurol Neurosurg Psychiatry 2004;75:1541–6.; Welch M.J., Purkiss J.R., Foster K.A. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 2000; 38:245–58.; Antonucci F., Rossi C., Gianfranceschi L. et al. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 2008;28(14):3689–96.; Allam N., Fonte-Boa P.M., Tomaz C.A., Brasil-Neto J.P. Lack of effect of botulinum toxin on cortical excitability in patients with cranial dystonia. Clin Neuropharmacol 2005;28:1–5.; Bockowski L., Okurowska-Zawada B., Sobaniec W. et al. Cortical somatosensory evoked potentials and spasticity assessment after botulinum toxin type A injection in children with cerebral palsy. Adv Med Sci 2007;52(Suppl 1):171–5.; Blood A.J., Tuch D.S., Makris N. et al. White matter abnormalities in dystonia normalize after botulinum toxin treatment. Neuroreport 2006;17:1251–5.; Dressler D., Benecke R. Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 2003;49:34–8.; Caleo M., Schiavo G. General effects of tetanus and botulinum neurotoxins. Toxicon 2009;54:593–9.; Moreno-Lopez B., de la Cruz R.R., Pastor A.M., Delgado-Garcia J.M. Botulinum neurotoxin alters the discharge characteristics of abducens motorneurons in the alert cat. J Neurophysiol 1994;72(4):2041–4.; Moreno-Lopez B., de la Cruz R.R., Pastor A.M., Delgado-Garcia J.M. Effects of botulinum neurotoxin type A on abducens motorneurons in the cat: alterations of the discharge pattern. Neuroscience 1997;81(2):437–55.; Restani L., Giribaldi F., Manich M. et al. Botulinum neurotoxins a and e undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 2012;8(12):e1003087.; Akaike N., Shin M.C., Wakita M. et al. Transynaptic inhibition of spinal transmission by A2 botulinum toxin. J Physiol 2013;591(Pt 4):1031–43.; Byrnes M.L., Thickbroom G.W., Wilson S.A. et al. The corticomotor representation of upper limb muscles in writer's cramp and changes following botulinum toxin injection. Brain 1998;12 (Pt 5):977–88.; Gilio F., Curra A., Lorenzano C. et al. Effects of botulinum toxin A on intracortical inhibition in patients with dystonia. Ann Neurol 2000;48:20–6.; Shin M.C., Wakita M., Xie D.J. et al. Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J Pharmacol Sci 2012;118(1):33–42.; Marinelli S., Vacca V., Ricordy R. et al. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS One 2012;7(10):e47977.; Dolimbek B.Z., Steward L.E., Aoki K.R., Atassi M.Z. Immune recogntion of botulinum neurotoxin B: antibity-binding regions of the heavy chain of the toxin. Mol Immunol 2008;45:910–24.; Dressler D. Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov Disord 2004;19(Suppl 8):92–100.; Dressler D., Hallett M. Immunological aspects of Botox, Dysport and Myobloc/ NeuroBloc. Eur J Neurol 2006;13(Suppl 1):11–5.; Jankovic J., Vuong K.D., Ashan J. Comparison of efficacy of immunogenicity of original versus current botulinum toxin in cervical dystonia. Neurology 2003;60:1186–8.; Yablon S.A., Brashear A., Gordon M.F. et al. Formation of neutralizing antibodies in patients receiving botulinum toxin type A for treatment of poststroke spasticity: a pooleddata analysis of three clinical trials. Clin Ther 2007;29(4):683–90.; Jankovic J., Hunter C., Dolimbek B.Z. et al. Clinico-immunologic aspects of botulinum toxin type B treatment of cervical dystonia. Neurology 2006;67:2233–5.; Atassi M.Z., Dolimbeck B.Z., Jankovic J. et al. Molecular recognition of botulinum neurotoxin B heavy chain by human antibodies from cervical dystonia patients that develop immunoresistance to toxin treatment. Mol Immunol 2008;45:3878–88.; Brin M.F., Comella C.L., Jankovic J. et al. Long-term treatment with botulinum toxin type A in cervical dystonia has low immunogenicity by mouse protection assay. Mov Disord 2008;23:1353–60.; Wang J., Meng J., Lawrence G.W. et al. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 2008;283:16993–7002.; Band P.A., Blair S., Neubert T.A. et al. Recombinant derivatives of botulism neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr Purif 2010;71:62–73.; Muraro L., Tosatto S., Motterlini L. et al. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 2009;380:76–80.; Chen S., Barbieri J.T. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci USA 2009;106:9180–4.; Meng J., Wang J., Lawrence G., Dolly J.O. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 2007;120:2864–74.; Pier C.L., Tepp W.H., Bradshaw M. et al. Recombinant holotoxoid vaccine against botulism. Infect Immun 2008;76(1):437–42.; Lai H., Feng M., Roxas-Duncan V. et al. Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition. Arch Biochem Biophys 2009;491:75–84.; Roxas-Duncan V., Enyedy I., Montgomery V.A. et al. Identification and biochemical characterization of smallmolecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob Agents Chemother 2009;53:3478–86.; Webb R.P., Smith T.J., Wright P. et al. Production of catalytically inactive BoNT/ A1 holoprotein and comparison with BoNT/ A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 2009;27:4490–7.; Smith L.A. Botulism and vaccines for its prevention. Vaccine 2009;27(Suppl 4):D33–D39.; Далин М.В., Фиш Н.Г. Токсины микроорганизмов. М., 1977. 104 с.; Езепчук Ю.В. Патогенность как функция биомолекул. М.: Медицина, 1985. 240 с.; Koshy J.C., Sharabi S.E., Feldman E.M. et al. Effect of dietary zinc and phytase supplementation on botulinum toxin treatments. J Drugs Dermatol 2012;11(4):507–12.; https://nmb.abvpress.ru/jour/article/view/44

  3. 3
  4. 4
  5. 5
  6. 6