Εμφανίζονται 1 - 20 Αποτελέσματα από 72 για την αναζήτηση '"Монте-Карло моделирование"', χρόνος αναζήτησης: 1,13δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: This work was nancially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement № 075-15-2021-1343 dated October 4, 2021).

    Πηγή: Biomedical Photonics; Том 13, № 4 (2024); 4-12 ; 2413-9432

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/676/473; Vasevi F., MacKinnon N., Farkas D. L. et al. Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics // Neurophotonics. – 2016. – Vol. 4. – Vol 1. – P. 011010. doi:10.1117/1.NPh.4.1.011010.; Goryaynov S. A., Okhlopkov V. A., Golbin D. A. et al. Fluorescence Diagnosis in Neurooncology: Retrospective Analysis of 653 Cases // Frontiers in Oncology. – 2019. – Vol. 9. – P. 830. doi:10.3389/fonc.2019.00830.; Goryaynov S. A., Buklina S. B., Khapov I. V. et al. 5-ALA-guided tumor resection during awake speech mapping in gliomas located in eloquent speech areas: Single-center experience // Frontiers in Oncology. – 2022. – Vol. 12. – P. 940951. doi:10.3389/fonc.2022.940951.; Rynda A. Yu., Olyushin V. E., Rostovtsev D. M. et al. Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma // Biomedical Photonics. – 2021. – Vol. 10. – № 4. – P. 35–43. doi:10.24931/2413-9432-2021-10-4-35-43.; Rynda A. Yu., Olyushin V. E., Rostovtsev D. M. et al. Results of microsurgical resection of glioblastomas under endoscopic and fluorescent control // Biomedical Photonics. – 2024. – Vol. 13. – № 3. – P. 20–30. doi:10.24931/2413-9432-2024-13-3-20-30.; Udeneev A. M., Kalyagina N. A., Reps V. F. et al. Photo and spectral fluorescence analysis of the spinal cord injury area in animal models // Biomedical Photonics. – 2023. – Vol. 12. – № 3. – P. 15–20. doi:10.24931/2413-9432-2023-12-3-16-20.; Liu Y.-X., Yang Y.-S. Using Diаffuse Reflectance Spectroscopy to Classify Tumor Tissue in Upper Gastrointestinal Cancers // JAMA Surgery. – 2023. – Vol. 158. – № 7. – P. 772. doi:10.1001/jamasurg.2022.8430.; Baltussen E. J. M., Brouwer De Koning S. G., Sanders J. et al. Using Diffuse Reflectance Spectroscopy to Distinguish Tumor Tissue From Fibrosis in Rectal Cancer Patients as a Guide to Surgery // Lasers in Surgery and Medicine. – 2020. – Vol. 52. – № 7. – P. 604–611. doi:10.1002/lsm.23196.; Grosenick D., Wabnitz H., Macdonald R. Diffuse near-infrared imaging of tissue with picosecond time resolution // Biomedical Engineering / Biomedizinische Technik. – 2018. – Vol. 63. – № 5. – P. 511–518. doi:10.1515/bmt-2017-0067.; Rejmstad P., Johansson J. D., Haj-Hosseini N. et al. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy // Journal of Biophotonics. – 2017. – Vol. 10. – № 3. – P. 446–455. doi:10.1002/jbio.201500334.; Skyrman S., Burström G., Lai M. et al. Diffuse reflectance spectroscopy sensor to differentiate between glial tumor and healthy brain tissue: a proof-of-concept study // Biomedical Optics Express. – 2022. – Vol. 13. – № 12. – P. 6470. doi:10.1364/BOE.474344.; Li K., Wu Q., Feng S. et al. In situ detection of human glioma based on tissue optical properties using diffuse reflectance spectroscopy // Journal of Biophotonics. – 2023. – Vol. 16. – № 11. – P. e202300195. doi:10.1002/jbio.202300195.; Potapov A. A., Goriainov S. A., Loshchenov V. B. et al. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas // Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. – 2013. – Vol. 77. – № 2. – P. 3–10.; Romanishkin I., Savelieva T., Kosyrkova A. et al. Differentiation of glioblastoma tissues using spontaneous Raman scattering with dimensionality reduction and data classification // Frontiers in Oncology. – 2022. – Vol. 12. – P. 944210. doi:10.3389/fonc.2022.944210.; Ospanov A., Romanishkin I., Savelieva T. et al. Optical Differentiation of Brain Tumors Based on Raman Spectroscopy and Cluster Analysis Methods // International Journal of Molecular Sciences. – 2023. – Vol. 24. – № 19. – P. 14432. doi:10.3390/ijms241914432.; Romanishkin I. D., Savelieva T. A., Ospanov A. et al. Classification of intracranial tumors based on optical-spectral analysis // Biomedical Photonics. – 2023. – Vol. 12. – № 3. – P. 4–10. doi:10.24931/2413-9432-2023-12-3-4-10.; Stratonnikov A. A., Meerovich G. A., Ryabova A. V. et al. Application of backward diffuse reflection spectroscopy for monitoring the state of tissues in photodynamic therapy // Quantum Electronics. – 2006. – Vol. 36. – № 12. – P. 1103–1110. doi:10.1070/QE2006v036n12ABEH013331.; Pominova D. V., Ryabova A. V., Skobeltsin A. S. et al. Spectroscopic study of methylene blue in vivo: effects on tissue oxygenation and tumor metabolism // Biomedical Photonics. – 2023. – Vol. 12. – № 1. – P. 4–13. doi:10.24931/2413-9432-2023-12-1-4-13.; Jacques S. L., Pogue B. W. Tutorial on diffuse light transport // Journal of Biomedical Optics. – 2008. – Vol. 13. – № 4. – P. 041302. doi:10.1117/1.2967535.; Bohren C. F., Huffman D. R. Absorption and Scattering of Light by Small Particles / C. F. Bohren, D. R. Huffman, 1., Wiley, 1998. doi:10.1002/9783527618156.; Wang L., Jacques S. L., Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues // Computer Methods and Programs in Biomedicine. – 1995. – Vol. 47. – № 2. – P. 131–146. doi:10.1016/0169-2607(95)01640-F.; Evolution of the Molecular Biology of Brain Tumors and the Therapeutic Implications ed. T. Lichtor, InTech, 2013. doi:10.5772/50198.; Giese A., Bjerkvig R., Berens M. E. et al. Cost of Migration: Invasion of Malignant Gliomas and Implications for Treatment // Journal of Clinical Oncology. – 2003. – Vol. 21. – № 8. – P. 1624–1636. doi:10.1200/JCO.2003.05.063.; Wang S., Meng M., Zhang X. et al. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest // Oncology Letters. – 2018. doi:10.3892/ol.2018.8232.; Brunberg J. A., Chenevert T. L., McKeever P. E. et al. In vivo MR determination of water diffusion coeffcients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres // AJNR. American journal of neuroradiology. – 1995. – Vol. 16. – № 2. – P. 361–371.; Sinha S., Bastin M. E., Whittle I. R. et al. Diffusion tensor MR imaging of high-grade cerebral gliomas, AJNR. American journal of neuroradiology, 2002, vol. 23(4), pp. 520–527.; Johansen-Berg H., Behrens T. E. J. Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy / H. Johansen-Berg, T. E. J. Behrens, 1st ed ed., Amsterdam Boston: Elsevier/Academic Press, 2009.; Basic neurochemistry: principles of molecular, cellular, and medical neurobiology ed. S. T. Brady, G. J. Siegel, R. W. Albers et al., 8th ed ed., Amsterdam: Academic Press, 2012. 1 c.; Le Bihan D., Mangin J., Poupon C. et al. Diffusion tensor imaging: Concepts and applications, Journal of Magnetic Resonance Imaging, 2001, vol. 13(4), pp. 534–546. doi:10.1002/jmri.1076.; Lu S., Ahn D., Johnson G. et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors, AJNR. American journal of neuroradiology, 2003, vol. 24(5), pp. 937–941.; Goebell E., Paustenbach S., Vaeterlein O. et al. Low-Grade and Anaplastic Gliomas: Differences in Architecture Evaluated with Diffusion-Tensor MR Imaging, Radiology, 2006, vol. 239(1), pp. 217–222. doi:10.1148/radiol.2383050059.; Cotter D., Mackay D., Landau S. et al. Reduced Glial Cell Density and Neuronal Size in the Anterior Cingulate Cortex in Major Depressive Disorder, Archives of General Psychiatry, 2001, vol. 58(6), pp. 545. doi:10.1001/archpsyc.58.6.545.; Spacek J. Atlas of Ultrastructural Neurocytology at SynapseWeb [Website]. URL: https://synapseweb.clm.utexas.edu/atlas (accessed: 18.11.2024).; Cruz-Sánchez F. F., Ferreres J. C., Figols J. et al. Prognostic analysis of astrocytic gliomas correlating histological parameters with the proliferating cell nuclear antigen labelling index (PCNA-LI), Histology and Histopathology, 1997, vol. 12(1), pp. 43–49.; Nafe R., Schlote W. Densitometric Analysis of Tumor Cell Nuclei in lowgrade and high-grade Astrocytomas, Electronic Journal of Pathology and Histology, 2002, vol. 8(3).; Candolfi M., Curtin J. F., Nichols W. S. et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological chara-cterization and tumor progression, Journal of Neuro-Oncology, 2007, vol. 85(2), pp. 133–148. doi:10.1007/s11060-007-9400-9.; Nafe R., Herminghaus S., Pilatus U. et al. Morphology of proliferating and non-proliferating tumor cell nuclei in glioblastomas correlates with preoperative data from proton-MR-spectroscopy, Neuropathology, 2004, vol. 24(3), pp. 172–182. doi:10.1111/j.1440-1789.2004.00547.x.; Schiffer Astrocytic Tumors I Berlin/Heidelberg: Springer-Verlag, 2006.p. 27–58. doi:10.1007/1-4020-3998-0_5.; Sarkar C., Jain A., Suri V. Current concepts in the pathology and genetics of gliomas, Indian Journal of Cancer, 2009, vol. 46(2), pp. 108. doi:10.4103/0019-509X.49148.; Pysh J. J., Khan T. Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: An electron microscopic study, Brain Research, 1972, vol. 36(1), pp. 1–18. doi:10.1016/0006-8993(72)90762-7.; Beauvoit B., Evans S. M., Jenkins T. W. et al. Correlation Between the Light Scattering and the Mitochondrial Content of Normal Tissues and Transplantable Rodent Tumors, Analytical Biochemistry, 1995, vol. 226(1), pp. 167–174. doi:10.1006/abio.1995.1205.; Beauvoit B., Kitai T., Chance B. Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach, Biophysical Journal, 1994, vol. 67(6), pp. 2501–2510. doi:10.1016/S0006-3495(94)80740-4.; Beauvoit B., Chance B. Time-Resolved Spectroscopy of mitochondria, cells and tissues under normal and pathological conditions, Molecular and Cellular Biochemistry, 1998, vol. 184(1/2), pp. 445–455. doi:10.1023/A:1006855716742.; Schmitt J. M., Kumar G. Turbulent nature of refractive-index variations in biological tissue, Optics Letters, 1996, vol. 21(16), pp. 1310. doi:10.1364/OL.21.001310.

  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 56, № 1 (2020); 84-91 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 56, № 1 (2020); 84-91 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2020-56-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/507/421; Adams J. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nuclear Physics A, 2005, vol. 757, pp. 102–183.; Blume C. Open questions in the understanding of strangeness production in HIC – Experiment perspective. Proceedings for the Strange Quark Matter 2017 conference. Utrecht, Netherlands, 2017. https://doi.org/10.1051/epjconf/201817103001; Biswarup P. Charmonium production in p-Pb collisions with ALICE at the LHC. European Physical Society Conference on High Energy Physics, Italy, 5–12 July 2017. Venice, 2017. https://doi.org/10.22323/1.314.0182; Shuryak E. Strongly coupled quark-gluon plasma in heavy ion collisions. Reviews of Modern Physics, 2017, vol. 89, no. 3, pp. 61. https://doi.org/10.1103/RevModPhys.89.035001; Koch, P., Muller. B., Rafelski J. From strangeness enchancement to quark gluon plasma discovery. International Journal of Modern Physics A, 2017, vol. 32, no. 31, pp. 1730024. https://doi.org/10.1142/S0217751X17300241; Xian Nian Wang, Gyulassy M. HIJING 1.0: A Monte-Carlo Program for Parton Parton and Particle Production in High Energy Hadronic and Nuclear Collisions. Computer Physics Communications, 1994, vol. 83, no. 2–3, pp. 307–331. https://doi.org/10.1016/0010-4655(94)90057-4; Baier R., Dokshitzer Yu. L., Mueller A. H., Piegne S., Schiff D. Radiative energy loss of high energy quarks and gluons in a finite volume quark-gluon plasma. Nuclear Physics B, 1997, vol. 483, no. 1–2, pp. 291–320, https://doi.org/10.1016/S0550-3213(96)00553-6; Shuryak E. V. Theory of Hadronic Plasma. Journal of Experimental and Theoretical Physics, 1978, vol. 74, pp. 408–420.; Bass S. A., Gyulassy M., Stoecker H., Greiner W. Signatures of Quark-Gluon-Plasma formation in high energy heavyion collisions: A critical review. Journal of Physics G: Nuclear and Particle Physics, 1999, vol. 25, no. 3, pp. R1–R57. https://doi.org/10.1088/0954-3899/25/3/013.; Fukushima K., Hatsuda T. The Phase Diagram of dense QCD. Reports on Progress in Physics, 2010, vol. 74, no. 1, pp. 014001. https://doi.org/10.1088/0034-4885/74/1/014001; Lancu E. QCD in heavy ion collisions. 2012. Available at: https://arxiv.org/abs/1205.0579v1; Cleymans J., Oeschler H., Redlich K., Wheaton S. Comprasion of Chemical Freeze-out Criteria in Heavy Ion Collisions. Physical Review C, 2006, vol. 73 no. 3, 15 p. https://doi.org/10.1103/PhysRevC.73.034905; Mohanty A. K., Shukla P., Gleiser M. Pre-transitional effects in rapidly expanding quark gluon plasmas. Physical Review C, 2002, vol. 65, no. 3, 7 p. https://doi.org/10.1103/PhysRevC.65.034908; Luo X., Xu N. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC: An Overview. Nuclear Science and Techniques, 2017, vol. 28, no. 8, 42 p. https://doi.org/10.1007/s41365-017-0257-0; Baier R., Schiff D., Zakharov B. G. Energy loss in perturbative QCD. Annual Review of Nuclear and Particle Science, 2000, vol. 50, no. 1, pp. 37–69. https://doi.org/10.1146/annurev.nucl.50.1.37; Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang, Subrata Pal. A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions. Physical Review C, 2005, vol. 72, no. 6, 33 p. https://doi.org/10.1103/PhysRevC.72.064901; Heiselberg H. Event-by-event physics in relativistic heavy ion collisions. Physics Reports, 2001, vol. 351, no. 3, pp. 161–194. https://doi.org/10.1016/S0370-1573(00)00140-X; https://vestifm.belnauka.by/jour/article/view/507

  9. 9
  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Συνεισφορές: Universidad del País Vasco, Eusko Jaurlaritza, Ministerio de Economía y Competitividad (España), Tomsk State University, Saint Petersburg State University, Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]

    Πηγή: Digital.CSIC. Repositorio Institucional del CSIC
    instname
    Digital.CSIC: Repositorio Institucional del CSIC
    Consejo Superior de Investigaciones Científicas (CSIC)
    Physical Review B. 2016. Vol. 93, № 20. P. 205416-1-205416-21

    Περιγραφή αρχείου: application/pdf