-
1Academic Journal
Συγγραφείς: I. D. Romanishkin, T. A. Savelieva, A. Ospanov, N. A. Kalyagina, A. A. Krivetskaya, A. M. Udeneev, K. G. Linkov, S. A. Goryajnov, S. V. Shugay, G. V. Pavlova, I. N. Pronin, V. B. Loschenov, И. Д. Романишкин, Т. А. Савельева, А. Оспанов, Н. А. Калягина, А. А. Кривецкая, А. М. Уденеев, К. Г. Линьков, С. А. Горяйнов, С. В. Шугай, Г. В. Павлова, И. Н. Пронин, В. Б. Лощенов
Συνεισφορές: This work was nancially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement № 075-15-2021-1343 dated October 4, 2021).
Πηγή: Biomedical Photonics; Том 13, № 4 (2024); 4-12 ; 2413-9432
Θεματικοί όροι: Монте-Карло моделирование, optical spectroscopy, scattering, mathematical modeling, Monte Carlo simulation, оптическая спектроскопия, рассеяние, математическое моделирование
Περιγραφή αρχείου: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/676/473; Vasevi F., MacKinnon N., Farkas D. L. et al. Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics // Neurophotonics. – 2016. – Vol. 4. – Vol 1. – P. 011010. doi:10.1117/1.NPh.4.1.011010.; Goryaynov S. A., Okhlopkov V. A., Golbin D. A. et al. Fluorescence Diagnosis in Neurooncology: Retrospective Analysis of 653 Cases // Frontiers in Oncology. – 2019. – Vol. 9. – P. 830. doi:10.3389/fonc.2019.00830.; Goryaynov S. A., Buklina S. B., Khapov I. V. et al. 5-ALA-guided tumor resection during awake speech mapping in gliomas located in eloquent speech areas: Single-center experience // Frontiers in Oncology. – 2022. – Vol. 12. – P. 940951. doi:10.3389/fonc.2022.940951.; Rynda A. Yu., Olyushin V. E., Rostovtsev D. M. et al. Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma // Biomedical Photonics. – 2021. – Vol. 10. – № 4. – P. 35–43. doi:10.24931/2413-9432-2021-10-4-35-43.; Rynda A. Yu., Olyushin V. E., Rostovtsev D. M. et al. Results of microsurgical resection of glioblastomas under endoscopic and fluorescent control // Biomedical Photonics. – 2024. – Vol. 13. – № 3. – P. 20–30. doi:10.24931/2413-9432-2024-13-3-20-30.; Udeneev A. M., Kalyagina N. A., Reps V. F. et al. Photo and spectral fluorescence analysis of the spinal cord injury area in animal models // Biomedical Photonics. – 2023. – Vol. 12. – № 3. – P. 15–20. doi:10.24931/2413-9432-2023-12-3-16-20.; Liu Y.-X., Yang Y.-S. Using Diаffuse Reflectance Spectroscopy to Classify Tumor Tissue in Upper Gastrointestinal Cancers // JAMA Surgery. – 2023. – Vol. 158. – № 7. – P. 772. doi:10.1001/jamasurg.2022.8430.; Baltussen E. J. M., Brouwer De Koning S. G., Sanders J. et al. Using Diffuse Reflectance Spectroscopy to Distinguish Tumor Tissue From Fibrosis in Rectal Cancer Patients as a Guide to Surgery // Lasers in Surgery and Medicine. – 2020. – Vol. 52. – № 7. – P. 604–611. doi:10.1002/lsm.23196.; Grosenick D., Wabnitz H., Macdonald R. Diffuse near-infrared imaging of tissue with picosecond time resolution // Biomedical Engineering / Biomedizinische Technik. – 2018. – Vol. 63. – № 5. – P. 511–518. doi:10.1515/bmt-2017-0067.; Rejmstad P., Johansson J. D., Haj-Hosseini N. et al. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy // Journal of Biophotonics. – 2017. – Vol. 10. – № 3. – P. 446–455. doi:10.1002/jbio.201500334.; Skyrman S., Burström G., Lai M. et al. Diffuse reflectance spectroscopy sensor to differentiate between glial tumor and healthy brain tissue: a proof-of-concept study // Biomedical Optics Express. – 2022. – Vol. 13. – № 12. – P. 6470. doi:10.1364/BOE.474344.; Li K., Wu Q., Feng S. et al. In situ detection of human glioma based on tissue optical properties using diffuse reflectance spectroscopy // Journal of Biophotonics. – 2023. – Vol. 16. – № 11. – P. e202300195. doi:10.1002/jbio.202300195.; Potapov A. A., Goriainov S. A., Loshchenov V. B. et al. Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas // Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. – 2013. – Vol. 77. – № 2. – P. 3–10.; Romanishkin I., Savelieva T., Kosyrkova A. et al. Differentiation of glioblastoma tissues using spontaneous Raman scattering with dimensionality reduction and data classification // Frontiers in Oncology. – 2022. – Vol. 12. – P. 944210. doi:10.3389/fonc.2022.944210.; Ospanov A., Romanishkin I., Savelieva T. et al. Optical Differentiation of Brain Tumors Based on Raman Spectroscopy and Cluster Analysis Methods // International Journal of Molecular Sciences. – 2023. – Vol. 24. – № 19. – P. 14432. doi:10.3390/ijms241914432.; Romanishkin I. D., Savelieva T. A., Ospanov A. et al. Classification of intracranial tumors based on optical-spectral analysis // Biomedical Photonics. – 2023. – Vol. 12. – № 3. – P. 4–10. doi:10.24931/2413-9432-2023-12-3-4-10.; Stratonnikov A. A., Meerovich G. A., Ryabova A. V. et al. Application of backward diffuse reflection spectroscopy for monitoring the state of tissues in photodynamic therapy // Quantum Electronics. – 2006. – Vol. 36. – № 12. – P. 1103–1110. doi:10.1070/QE2006v036n12ABEH013331.; Pominova D. V., Ryabova A. V., Skobeltsin A. S. et al. Spectroscopic study of methylene blue in vivo: effects on tissue oxygenation and tumor metabolism // Biomedical Photonics. – 2023. – Vol. 12. – № 1. – P. 4–13. doi:10.24931/2413-9432-2023-12-1-4-13.; Jacques S. L., Pogue B. W. Tutorial on diffuse light transport // Journal of Biomedical Optics. – 2008. – Vol. 13. – № 4. – P. 041302. doi:10.1117/1.2967535.; Bohren C. F., Huffman D. R. Absorption and Scattering of Light by Small Particles / C. F. Bohren, D. R. Huffman, 1., Wiley, 1998. doi:10.1002/9783527618156.; Wang L., Jacques S. L., Zheng L. MCML—Monte Carlo modeling of light transport in multi-layered tissues // Computer Methods and Programs in Biomedicine. – 1995. – Vol. 47. – № 2. – P. 131–146. doi:10.1016/0169-2607(95)01640-F.; Evolution of the Molecular Biology of Brain Tumors and the Therapeutic Implications ed. T. Lichtor, InTech, 2013. doi:10.5772/50198.; Giese A., Bjerkvig R., Berens M. E. et al. Cost of Migration: Invasion of Malignant Gliomas and Implications for Treatment // Journal of Clinical Oncology. – 2003. – Vol. 21. – № 8. – P. 1624–1636. doi:10.1200/JCO.2003.05.063.; Wang S., Meng M., Zhang X. et al. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest // Oncology Letters. – 2018. doi:10.3892/ol.2018.8232.; Brunberg J. A., Chenevert T. L., McKeever P. E. et al. In vivo MR determination of water diffusion coeffcients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres // AJNR. American journal of neuroradiology. – 1995. – Vol. 16. – № 2. – P. 361–371.; Sinha S., Bastin M. E., Whittle I. R. et al. Diffusion tensor MR imaging of high-grade cerebral gliomas, AJNR. American journal of neuroradiology, 2002, vol. 23(4), pp. 520–527.; Johansen-Berg H., Behrens T. E. J. Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy / H. Johansen-Berg, T. E. J. Behrens, 1st ed ed., Amsterdam Boston: Elsevier/Academic Press, 2009.; Basic neurochemistry: principles of molecular, cellular, and medical neurobiology ed. S. T. Brady, G. J. Siegel, R. W. Albers et al., 8th ed ed., Amsterdam: Academic Press, 2012. 1 c.; Le Bihan D., Mangin J., Poupon C. et al. Diffusion tensor imaging: Concepts and applications, Journal of Magnetic Resonance Imaging, 2001, vol. 13(4), pp. 534–546. doi:10.1002/jmri.1076.; Lu S., Ahn D., Johnson G. et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors, AJNR. American journal of neuroradiology, 2003, vol. 24(5), pp. 937–941.; Goebell E., Paustenbach S., Vaeterlein O. et al. Low-Grade and Anaplastic Gliomas: Differences in Architecture Evaluated with Diffusion-Tensor MR Imaging, Radiology, 2006, vol. 239(1), pp. 217–222. doi:10.1148/radiol.2383050059.; Cotter D., Mackay D., Landau S. et al. Reduced Glial Cell Density and Neuronal Size in the Anterior Cingulate Cortex in Major Depressive Disorder, Archives of General Psychiatry, 2001, vol. 58(6), pp. 545. doi:10.1001/archpsyc.58.6.545.; Spacek J. Atlas of Ultrastructural Neurocytology at SynapseWeb [Website]. URL: https://synapseweb.clm.utexas.edu/atlas (accessed: 18.11.2024).; Cruz-Sánchez F. F., Ferreres J. C., Figols J. et al. Prognostic analysis of astrocytic gliomas correlating histological parameters with the proliferating cell nuclear antigen labelling index (PCNA-LI), Histology and Histopathology, 1997, vol. 12(1), pp. 43–49.; Nafe R., Schlote W. Densitometric Analysis of Tumor Cell Nuclei in lowgrade and high-grade Astrocytomas, Electronic Journal of Pathology and Histology, 2002, vol. 8(3).; Candolfi M., Curtin J. F., Nichols W. S. et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological chara-cterization and tumor progression, Journal of Neuro-Oncology, 2007, vol. 85(2), pp. 133–148. doi:10.1007/s11060-007-9400-9.; Nafe R., Herminghaus S., Pilatus U. et al. Morphology of proliferating and non-proliferating tumor cell nuclei in glioblastomas correlates with preoperative data from proton-MR-spectroscopy, Neuropathology, 2004, vol. 24(3), pp. 172–182. doi:10.1111/j.1440-1789.2004.00547.x.; Schiffer Astrocytic Tumors I Berlin/Heidelberg: Springer-Verlag, 2006.p. 27–58. doi:10.1007/1-4020-3998-0_5.; Sarkar C., Jain A., Suri V. Current concepts in the pathology and genetics of gliomas, Indian Journal of Cancer, 2009, vol. 46(2), pp. 108. doi:10.4103/0019-509X.49148.; Pysh J. J., Khan T. Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: An electron microscopic study, Brain Research, 1972, vol. 36(1), pp. 1–18. doi:10.1016/0006-8993(72)90762-7.; Beauvoit B., Evans S. M., Jenkins T. W. et al. Correlation Between the Light Scattering and the Mitochondrial Content of Normal Tissues and Transplantable Rodent Tumors, Analytical Biochemistry, 1995, vol. 226(1), pp. 167–174. doi:10.1006/abio.1995.1205.; Beauvoit B., Kitai T., Chance B. Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach, Biophysical Journal, 1994, vol. 67(6), pp. 2501–2510. doi:10.1016/S0006-3495(94)80740-4.; Beauvoit B., Chance B. Time-Resolved Spectroscopy of mitochondria, cells and tissues under normal and pathological conditions, Molecular and Cellular Biochemistry, 1998, vol. 184(1/2), pp. 445–455. doi:10.1023/A:1006855716742.; Schmitt J. M., Kumar G. Turbulent nature of refractive-index variations in biological tissue, Optics Letters, 1996, vol. 21(16), pp. 1310. doi:10.1364/OL.21.001310.
-
2Academic Journal
Πηγή: Прикладная физика и математика.
Θεματικοί όροι: ДЕТЕКТОР, MONTE CARLO SIMULATION, THERMAL AND COLD NEUTRONS, АЛЬТЕРНАТИВЫ 3НЕ, BORON CARBIDE, РЕГИСТРАЦИЯ НЕЙТРОНОВ, ТЕПЛОВЫЕ И ХОЛОДНЫЕ НЕЙТРОНЫ, ALTERNATIVES 3HE, МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ, КАРБИД БОРА, DETECTOR, NEUTRON REGISTRATION
-
3Academic Journal
Συγγραφείς: Ajib, H. H.
Θεματικοί όροι: оценка неопределенности, финансовые прогнозы, investment projects, прогнозирование, метод Монте Карло, uncertainty assessment, financial projections, инвестиционные проекты, forecasting, моделирование, Monte Carlo simulation, Монте Карло моделирование
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/46589
-
4Academic Journal
Συγγραφείς: Bezuglyi, M., Bezuglaya, N., Kostuk, S.
Πηγή: Приборы и методы измерений, Vol 9, Iss 1, Pp 56-65 (2018)
Θεματικοί όροι: Эллипсоидальный рефлектор, photometry, Лазер, Монте-Карло моделирование, Laser, Ellipsoidal reflector, Monte-Carlo simulation, 02 engineering and technology, Фотометрия, Engineering (General). Civil engineering (General), Human skin, 01 natural sciences, ellipsoidal reflector, laser, Photometry, Кожа человека, 0103 physical sciences, 0202 electrical engineering, electronic engineering, information engineering, human skin, TA1-2040, monte-carlo simulation
Σύνδεσμος πρόσβασης: https://pimi.bntu.by/jour/article/download/368/319
https://doaj.org/article/dc4fdd36c11a45f081f35cf52b1327c3
https://cyberleninka.ru/article/n/influence-of-laser-beam-profile-on-light-scattering-by-human-skin-during-photometry-by-ellipsoidal-reflectors/pdf
https://pimi.bntu.by/jour/article/view/368
https://rep.bntu.by/handle/data/38817
https://pimi.bntu.by/jour/article/download/368/319
https://cyberleninka.ru/article/n/influence-of-laser-beam-profile-on-light-scattering-by-human-skin-during-photometry-by-ellipsoidal-reflectors
https://rep.bntu.by/handle/data/38817 -
5Academic Journal
Συγγραφείς: Arkadiy Khrushchinskiy, Viktor Minenko, Kirill Verenich, Semen Kuten, Kristina Makarevich
Πηγή: Вестник Университета гражданской защиты МЧС Беларуси, Vol 1, Iss 3, Pp 299-305 (2017)
Θεματικοί όροι: тормозное излучение, доза облучения, HD49-49.5, лучевая терапия, 05 social sciences, медицинский ускоритель электронов, Crisis management. Emergency management. Inflation, 0509 other social sciences, монте-карло моделирование, нейтроны, 0505 law
Σύνδεσμος πρόσβασης: https://journals.ucp.by/index.php/jcp/article/download/81/35
https://doaj.org/article/0eb565bdaa3b47d5af6e6bee5f67e362
https://journals.ucp.by/index.php/jcp/article/view/81
https://cyberleninka.ru/article/n/otsenka-dozimetricheskih-harakteristik-neytronnogo-izlucheniya-generiruemogo-meditsinskim-lineynym-uskoritelem-elektronov
https://journals.ucp.by/index.php/jcp/article/download/81/35
https://cyberleninka.ru/article/n/otsenka-dozimetricheskih-harakteristik-neytronnogo-izlucheniya-generiruemogo-meditsinskim-lineynym-uskoritelem-elektronov/pdf -
6Academic Journal
Συγγραφείς: Konev, Victor V., Vorobeychikov, Sergey E.
Πηγή: Sequential Analysis. 2017. Vol. 36, № 1. P. 55-75
Θεματικοί όροι: линейные параметры, стохастические модели, Монте-Карло моделирование, пороговая авторегрессия, 0101 mathematics, 01 natural sciences
-
7Academic Journal
Συγγραφείς: D. I. Komar, S. A. Kutsen
Πηγή: Приборы и методы измерений, Vol 8, Iss 1, Pp 23-31 (2017)
Θεματικοί όροι: Монте-Карло моделирование, Теневой конус - метод, Radionuclide neutron source, radionuclide neutron source, collimator, Источник нейтронов - радионуклидный, Fields of neutron radiation, monte carlo simulation, fields of neutron radiation, Engineering (General). Civil engineering (General), 7. Clean energy, 13. Climate action, Shadow cone method, Нейтронное излучение - поле, shadow cone method, TA1-2040, Monte Carlo simulation
Σύνδεσμος πρόσβασης: https://pimi.bntu.by/jour/article/download/284/274
https://doaj.org/article/336527eaf9d74845b53a155e6b7bf1dd
https://core.ac.uk/display/87469819
https://pimi.bntu.by/jour/article/view/284
https://pimi.bntu.by/jour/article/download/284/274
https://cyberleninka.ru/article/n/vliyanie-rasseyannogo-neytronnogo-izlucheniya-na-metrologicheskie-harakteristiki-poverochnoy-ustanovki-neytronnogo-izlucheniya-upn/pdf
https://cyberleninka.ru/article/n/vliyanie-rasseyannogo-neytronnogo-izlucheniya-na-metrologicheskie-harakteristiki-poverochnoy-ustanovki-neytronnogo-izlucheniya-upn
https://rep.bntu.by/handle/data/28447 -
8Academic Journal
Συγγραφείς: Yu. A. Rusak, L. F. Babichev, Ю. А. Русак, Л. Ф. Бабичев
Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 56, № 1 (2020); 84-91 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 56, № 1 (2020); 84-91 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2020-56-1
Θεματικοί όροι: фазовые переходы, Monte-Carlo simulation, heavy ion collisions, fluctuations, quark-gluon plasma, HIJING, phase transitions, Монте-Карло моделирование, тяжелые ионы, столкновения, флуктуации, кварк-глюонная плазма
Περιγραφή αρχείου: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/507/421; Adams J. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nuclear Physics A, 2005, vol. 757, pp. 102–183.; Blume C. Open questions in the understanding of strangeness production in HIC – Experiment perspective. Proceedings for the Strange Quark Matter 2017 conference. Utrecht, Netherlands, 2017. https://doi.org/10.1051/epjconf/201817103001; Biswarup P. Charmonium production in p-Pb collisions with ALICE at the LHC. European Physical Society Conference on High Energy Physics, Italy, 5–12 July 2017. Venice, 2017. https://doi.org/10.22323/1.314.0182; Shuryak E. Strongly coupled quark-gluon plasma in heavy ion collisions. Reviews of Modern Physics, 2017, vol. 89, no. 3, pp. 61. https://doi.org/10.1103/RevModPhys.89.035001; Koch, P., Muller. B., Rafelski J. From strangeness enchancement to quark gluon plasma discovery. International Journal of Modern Physics A, 2017, vol. 32, no. 31, pp. 1730024. https://doi.org/10.1142/S0217751X17300241; Xian Nian Wang, Gyulassy M. HIJING 1.0: A Monte-Carlo Program for Parton Parton and Particle Production in High Energy Hadronic and Nuclear Collisions. Computer Physics Communications, 1994, vol. 83, no. 2–3, pp. 307–331. https://doi.org/10.1016/0010-4655(94)90057-4; Baier R., Dokshitzer Yu. L., Mueller A. H., Piegne S., Schiff D. Radiative energy loss of high energy quarks and gluons in a finite volume quark-gluon plasma. Nuclear Physics B, 1997, vol. 483, no. 1–2, pp. 291–320, https://doi.org/10.1016/S0550-3213(96)00553-6; Shuryak E. V. Theory of Hadronic Plasma. Journal of Experimental and Theoretical Physics, 1978, vol. 74, pp. 408–420.; Bass S. A., Gyulassy M., Stoecker H., Greiner W. Signatures of Quark-Gluon-Plasma formation in high energy heavyion collisions: A critical review. Journal of Physics G: Nuclear and Particle Physics, 1999, vol. 25, no. 3, pp. R1–R57. https://doi.org/10.1088/0954-3899/25/3/013.; Fukushima K., Hatsuda T. The Phase Diagram of dense QCD. Reports on Progress in Physics, 2010, vol. 74, no. 1, pp. 014001. https://doi.org/10.1088/0034-4885/74/1/014001; Lancu E. QCD in heavy ion collisions. 2012. Available at: https://arxiv.org/abs/1205.0579v1; Cleymans J., Oeschler H., Redlich K., Wheaton S. Comprasion of Chemical Freeze-out Criteria in Heavy Ion Collisions. Physical Review C, 2006, vol. 73 no. 3, 15 p. https://doi.org/10.1103/PhysRevC.73.034905; Mohanty A. K., Shukla P., Gleiser M. Pre-transitional effects in rapidly expanding quark gluon plasmas. Physical Review C, 2002, vol. 65, no. 3, 7 p. https://doi.org/10.1103/PhysRevC.65.034908; Luo X., Xu N. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC: An Overview. Nuclear Science and Techniques, 2017, vol. 28, no. 8, 42 p. https://doi.org/10.1007/s41365-017-0257-0; Baier R., Schiff D., Zakharov B. G. Energy loss in perturbative QCD. Annual Review of Nuclear and Particle Science, 2000, vol. 50, no. 1, pp. 37–69. https://doi.org/10.1146/annurev.nucl.50.1.37; Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang, Subrata Pal. A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions. Physical Review C, 2005, vol. 72, no. 6, 33 p. https://doi.org/10.1103/PhysRevC.72.064901; Heiselberg H. Event-by-event physics in relativistic heavy ion collisions. Physics Reports, 2001, vol. 351, no. 3, pp. 161–194. https://doi.org/10.1016/S0370-1573(00)00140-X; https://vestifm.belnauka.by/jour/article/view/507
-
9Academic Journal
Συγγραφείς: A. I. Zhukouski, A. O. Nichyparchuk, A. A. Khrutchinsky, S. A. Kutsen
Πηγή: Приборы и методы измерений, Vol 7, Iss 2, Pp 219-226 (2016)
Θεματικοί όροι: Имитант, Монте-Карло моделирование, Стандартный образец, gamma radiation, standard sample, Сцинтилляционный спектрометр, Гамма-излучение, spectrometer, TA1-2040, Engineering (General). Civil engineering (General), 7. Clean energy, imitator, monte-carlo simulation
Σύνδεσμος πρόσβασης: https://pimi.bntu.by/jour/article/download/260/261
https://doaj.org/article/97afea7fed7e406aad9e4a341b9bf320
https://pimi.bntu.by/jour/article/download/260/261
http://pimi.bntu.by/jour/article/view/260
https://core.ac.uk/display/87469859
https://cyberleninka.ru/article/n/imitatsiya-obemnyh-mer-aktivnosti-metallov
https://pimi.bntu.by/jour/article/view/260
https://rep.bntu.by/handle/data/24846
https://rep.bntu.by/handle/data/24846 -
10Academic Journal
Συγγραφείς: BORZDOV A.V., BORZDOV V.M., DOROZHKIN N.N.
Πηγή: Приборы и методы измерений, Vol 7, Iss 2, Pp 161-168 (2016)
Θεματικοί όροι: КНИ-МОП-ТРАНЗИСТОР,МОДЕЛИРОВАНИЕ МЕТОДОМ МОНТЕ-КАРЛО,УДАРНАЯ ИОНИЗАЦИЯ, Метод Монте-Карло - моделирование, КНИ-МОП-транзистор, monte carlo simulation, soi mosfet, impact ionization, TA1-2040, Engineering (General). Civil engineering (General), 7. Clean energy, Ударная ионизация
Περιγραφή αρχείου: text/html
Σύνδεσμος πρόσβασης: https://pimi.bntu.by/jour/article/download/253/254
https://doaj.org/article/dca9b4f801d4458cb134affc1b535212
https://cyberleninka.ru/article/n/numerical-simulation-of-electric-characteristics-of-deep-submicron-silicon-on-insulator-mos-transistor
https://pimi.bntu.by/jour/article/download/253/254
https://rep.bntu.by/handle/data/24839
https://core.ac.uk/display/87469846
https://pimi.bntu.by/jour/article/view/253
https://rep.bntu.by/handle/data/24839
http://cyberleninka.ru/article/n/numerical-simulation-of-electric-characteristics-of-deep-submicron-silicon-on-insulator-mos-transistor
http://cyberleninka.ru/article_covers/16883627.png -
11Academic Journal
Θεματικοί όροι: решеточные модели, трехмерные модели твердотельных электролитов, Монте-Карло моделирование, метод Монте-Карло, твердые электролиты
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/33309
-
12Academic Journal
Θεματικοί όροι: решеточные модели, трехмерные модели твердотельных электролитов, Монте-Карло моделирование, метод Монте-Карло, твердые электролиты
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://openrepository.ru/article?id=457889
-
13Report
Συγγραφείς: Чумаков, Даниил Камбарбекович
Συνεισφορές: Варлачев, Валерий Александрович
Θεματικοί όροι: гамма-спектрометрия, сцинтилляционный детектор, Монте-Карло моделирование, эффективность регистрации, ИДМ-40, аппаратурный спектр, gamma spectrometry, scintillation detectors, Monte-Carlo simulation, registration efficiency, Geant4, instrumental spectrum, IDM-40, 14.03.02, 621.384.664:539.128
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/60954
-
14Academic Journal
Πηγή: Вестник рентгенологии и радиологии, Vol 98, Iss 4 (2017)
Θεματικοί όροι: исторический обзор, дозиметрическое планирование, монте-карло моделирование, радионуклидная терапия, Medical physics. Medical radiology. Nuclear medicine, R895-920
Περιγραφή αρχείου: electronic resource
Relation: https://www.russianradiology.ru/jour/article/view/151; https://doaj.org/toc/0042-4676; https://doaj.org/toc/2619-0478
Σύνδεσμος πρόσβασης: https://doaj.org/article/347882da03734ce28336e4a88d86edac
-
15Academic Journal
Πηγή: Вестник рентгенологии и радиологии, Vol 98, Iss 4 (2017)
Θεματικοί όροι: исторический обзор, дозиметрическое планирование, монте-карло моделирование, радионуклидная терапия, Medical physics. Medical radiology. Nuclear medicine, R895-920
Relation: https://www.russianradiology.ru/jour/article/view/151; https://doaj.org/toc/0042-4676; https://doaj.org/toc/2619-0478; https://doaj.org/article/347882da03734ce28336e4a88d86edac
Διαθεσιμότητα: https://doaj.org/article/347882da03734ce28336e4a88d86edac
-
16Academic Journal
Συγγραφείς: КОМАР Д.И., КУТЕНЬ С.А.
Θεματικοί όροι: МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ,РАДИОНУКЛИДНЫЙ ИСТОЧНИК НЕЙТРОНОВ,ПОЛЕ НЕЙТРОННОГО ИЗЛУЧЕНИЯ,КОЛЛИМАТОР,МЕТОД ТЕНЕВОГО КОНУСА
Περιγραφή αρχείου: text/html
-
17Academic Journal
Συγγραφείς: Ya. G. Groda
Πηγή: Condensed Matter Physics, Vol 25, Iss 1, p 13501 (2022)
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, Statistical Mechanics (cond-mat.stat-mech), Монте-Карло моделирование, Physics, QC1-999, квазихимическое приближение, FOS: Physical sciences, monte carlo simulation, two-level lattice, Condensed Matter - Soft Condensed Matter, diagram approximation, диаграммное приближение, решеточная жидкость, 03 medical and health sciences, lattice fluid, Soft Condensed Matter (cond-mat.soft), двухуровневая решетка, quasi-chemical approximation, Monte Carlo simulation, Condensed Matter - Statistical Mechanics
Περιγραφή αρχείου: application/pdf
-
18Academic Journal
Συγγραφείς: Tatarinov, V. V., Finkelshtein, А. L., Kravtsova, R. G., Pavlova, L. А.
Θεματικοί όροι: MONTE CARLO SIMULATION OF ELECTRON TRACK, X-RAY ELECTRON PROBE MICROANALYSIS, SULPHIDE MINERALS, МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ ТРАЕКТОРИЙ ЭЛЕКТРОНОВ, GOLD INCLUSIONS, ПРОБНОСТЬ ЗОЛОТА, РЕНТГЕНОСПЕКТРАЛЬНЫЙ ЭЛЕКТРОННО-ЗОНДОВЫЙ МИКРОАНАЛИЗ, СУЛЬФИДНЫЕ МИНЕРАЛЫ
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/56810
-
19Academic Journal
Πηγή: Приборы и методы измерений.
Θεματικοί όροι: МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ,РАДИОНУКЛИДНЫЙ ИСТОЧНИК НЕЙТРОНОВ,ПОЛЕ НЕЙТРОННОГО ИЗЛУЧЕНИЯ,КОЛЛИМАТОР,МЕТОД ТЕНЕВОГО КОНУСА, 7. Clean energy
Περιγραφή αρχείου: text/html
-
20Academic Journal
Συγγραφείς: Gosalvez, Miguel A., Ferrando, Nestor, Ryabishchenkova, Anastasiya G., Ayuela, Andres, Echenique, Pedro Miguel, Chulkov, Evgueni V., Otrokov, Mikhail M.
Συνεισφορές: Universidad del País Vasco, Eusko Jaurlaritza, Ministerio de Economía y Competitividad (España), Tomsk State University, Saint Petersburg State University, Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Πηγή: Digital.CSIC. Repositorio Institucional del CSIC
instname
Digital.CSIC: Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
Physical Review B. 2016. Vol. 93, № 20. P. 205416-1-205416-21Θεματικοί όροι: энергетические ландшафты, Монте-Карло моделирование, поверхностная диффузия, 0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://digital.csic.es/bitstream/10261/246161/1/lowhop.pdf
http://hdl.handle.net/10261/246161
https://digital.csic.es/bitstream/10261/246161/1/lowhop.pdf
https://digital.csic.es/handle/10261/246161
https://link.aps.org/doi/10.1103/PhysRevB.93.205416
https://pureportal.spbu.ru/ru/publications/low-coverage-surface-diffusion-in-complex-periodic-energy-landsca-2
http://ui.adsabs.harvard.edu/abs/2016PhRvB..93t5416G/abstract
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000553911