Showing 1 - 20 results of 116 for search '"Микрокристаллическая целлюлоза"', query time: 0.76s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: A.A. Olkhov thanks Plekhanov Russian University of Economics for financial support., А.А. Ольхов благодарит ФГБОУ ВО «РЭУ им. Г.В. Плеханова» за финансовую поддержку.

    Source: Fine Chemical Technologies; Vol 20, No 2 (2025); 146-155 ; Тонкие химические технологии; Vol 20, No 2 (2025); 146-155 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2237/2114; https://www.finechem-mirea.ru/jour/article/view/2237/2115; Chamas A., Moon H., Zheng J., Qiu Y., Tabassum T., Jang J.H., Abu-Omar M., Scott S.L., Suh S. Degradation Rates of Plastics in the Environment. ACS Sustainable Chem. Eng. 2020;8(9):3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635; Wang Y., Feng G., Lin N., Lan H., Li Q., Yao D., Tang J. A review of degradation and life prediction of polyethylene. Appl. Sci. 2023;13(5):3045. https://doi.org/10.3390/app13053045; Ali S.S., Elsamahy T., Al-Tohamy R., Zhu D., Mahmoud Y.A.G., Koutra E., Metwally M.A., Kornaros M., Sun J. Plastic wastes biodegradation: Mechanisms, challenges and future prospect. Sci. Total Environ. 2021;780:146590. https://doi.org/10.1016/j.scitotenv.2021.146590; Tiago G.A.O., Mariquito A., Martins-Dias S., Marques A.С. The problem of polyethylene waste – recent attempts for its mitigation. Sci. Total Environ. 2023;892:164629. https://doi.org/10.1016/j.scitotenv.2023.164629; Kantelberg R., Achenbach T., Kirch A., Reineke S. In-plane oxygen diffusion measurements in polymer films using timeresolved imaging of programmable luminescent tags. Sci. Rep. 2024;14(1):5826. https://doi.org/10.1038/s41598-024-56237-5; Полимерные пленки; пер. с англ.; под ред. Г.Е. Заикова. СПб.: Профессия; 2010. 352 с.; Exama A., Arul J., Lencki R.W., Lee L.Z., Toupin C. Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. J. Food Sci. 1993;58(6):1365–1370. https://doi.org/10.1111/j.1365-2621.1993.tb06184.x; Ahvenainen R. Active and inteligente packaging: An introduction. In: Ahvenainen R. (Ed.). Novel Food Packaging Technology. Cambridge: Published in CRC Press, Boca, Raton, Boston, New York, Washinton, DC and Published by Woodhead Publishing, Ltd.; 2003. P. 5–21. http://doi.org/10.1533/9781855737020.1.5; Yasuda H., Clark H.G., Stannett V. Permeability. In: Encyclopedia Polymer Science and Technology. 1969;9:794–807.; Khaliq M.H., Gomes R., Fernandes C., Nóbrega J., Carneiro O.S., Ferrás L.L. On the use of high viscosity polymers in the fused filament fabrication process. Rapid Prototyping J. 2017;23(4):727. https://doi.org/10.1108/rpj-02-2016-0027; Козлов П.В., Брагинский Г.И. Химия и технология полимерных пленок. М.: Искусство; 1965. 624 с.; Барашков Н.Н. Полимерные композиты: получение, свойства, применение. М.: Наука; 1984. 129 с.; Blanchard R., Ogunsona E.O., Hojabr S., Berry R., Mekonnen T.H. Synergistic cross-linking and reinforcing enhancement of rubber latex with cellulose nanocrystals for glove applications. ACS Appl. Polym. Mater. 2020;2(2): 887–898. https://doi.org/10.1021/acsapm.9b01117; Varghese S.A., Pulikkalparambil H., Rangappa S.M., Siengchin S., Parameswaranpillai J. Novel biodegradable polymer films based on poly(3-hydroxybutyrate-co-3- hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packaging and Shelf Life. 2020;25(5):100538. https://doi.org/10.1016/j.fpsl.2020.100538; Бордюгова С.С., Белянская Е.В., Зайцева А.А., Пащенко О.А., Коновалова О.В. Показатели газопроницаемости биодеградируемых пленок на основе желатина. Научный вестник Луганского государственного аграрного университета. 2021;4(13):84–90.; Kuzmin A., Ashori A., Pantyukhov P., Zhou Y., Guan L., Hu C. Mechanical, thermal, and water absorption properties of HDPE/ barley straw composites incorporating waste rubber. Sci. Rep. 2024;14:25232. https://doi.org/10.1038/s41598-024-76337-6; Kristine V.A. Polysaccharides for biodegradable packaging materials: past, present, and future (Brief Review). Polymers. 2023;15(2):451. https://doi.org/10.3390/polym15020451; Schneider M., Finimundi N., Podzorova M., Pantyukhov P., Poletto M. Assessment of morphological, physical, thermal, and thermal conductivity properties of polypropylene/ lignosulfonate blends. Materials. 2021;14(3):543. https://doi.org/10.3390/ma14030543; Shelenkov P.G., Pantyukhov P.V., Aleshinskaya S.V., Maltsev A.A., Abushakhmanova Z.R., Popov A.A., Saavedra-Arias J.J., Poletto M. Thermal stability of highly filled cellulosic biocomposites based on ethylene-vinyl acetate copolymer. Polymers. 2024;16(15):2103. https://doi.org/10.3390/polym16152103; Пантюхов П.В., Хватов А.В., Монахова Т.В., Попов А.А., Колесникова Н.Н. Деструкция материалов на основе ПЭВД и природных наполнителей. Пластические массы. 2012;2:40–42. https://www.elibrary.ru/item.asp?id=17743233; Шабарин А.А., Шабарин А.А., Водяков В.Н., Кузьмин А.М. Биоразлагаемые композиционные материалы на основе полиолефинов и пивной дробины. Вестник Технологического университета. 2016;19(17):67–70.; Луканина Ю.К., Пантюхов П.В., Хватов А.В., Королева А.В., Колесникова Н.Н., Лихачев А.Н., Попов А.А. Биоповреждение материалов на основе полиэтилена и древесной муки. Все материалы. Энциклопедический справочник. 2014;1:2–7.; Роговина С.З., Ломакин С.М., Алексанян К.В., Прут Э.В. Структура, свойства и термическая деструкция биоразлагаемых смесей на основе целлюлозы и этилцеллюлозы с синтетическими полимерами. Химическая физика. 2012;31(6):54–62.; Shelenkov P.G., Pantyukhov P.V., Poletto M., Popov A.A. Influence of vinyl acetate content and melt flow index of ethylenevinyl acetate copolymer on physico-mechanical and physicochemical properties of highly filled biocomposites. Polymers. 2023;15(12):2639. https://doi.org/10.3390/polym15122639; Shelenkov P.G., Pantyukhov P.V., Popov A.A. Mechanical properties of superconcentrates based on ethylene-vinyl acetate copolymer and microcrystalline cellulose. Mater. Sci. Forum. 2020;992:306–310. https://doi.org/10.4028/www.scientific.net/MSF.992.306; Shelenkov P.G., Pantyukhov P.V., Popov A.A. Highly filled biocomposites based on ethylene-vinyl acetate copolymer and wood flour. IOP Conf. Ser.: Mater. Sci. Eng. 2018;369(1):012043. https://doi.org/10.1088/1757-899X/369/1/012043; Pantyukhov P., Zykova A., Popov A. Ethylene-octene copolymer-wood flour/oil flax straw biocomposites: Effect of filler type and content on mechanical properties. Polym. Eng. Sci. 2017;57(7):756–763. https://doi.org/10.1002/pen.24626; Sorz J., Hietz P. Gas diffusion through wood: implications for oxygen supply. Trees. 2006;20:34–41. https://doi.org/10.1007/s00468-005-0010-x; Alamo-Sanza del M., Cárcel L.M., Nevares I. Characterization of the oxygen transmission rate of oak wood species used in cooperage. J. Agric. Food Chem. 2017;65(3):648–655. https://doi.org/10.1021/acs.jafc.6b05188; Zykova A.K., Pantyukhov P.V., Kolesnikova N.N., Monakhova T.V., Popov A.A. Influence of filler particle size on physical properties and biodegradation of biocomposites based on low-density polyethylene and lignocellulosic fillers. J. Polym. Environ. 2018;26:1343–1354. https://doi.org/10.1007/s10924-017-1039-9.

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Eastern-European Journal of Enterprise Technologies; Том 2, № 11 (104) (2020): Technology and Equipment of Food Production; 33-38
    Восточно-Европейский журнал передовых технологий; Том 2, № 11 (104) (2020): Технологии и оборудование пищевых производств; 33-38
    Східно-Європейський журнал передових технологій; Том 2, № 11 (104) (2020): Технології та обладнання харчових виробництв; 33-38

    File Description: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20