Εμφανίζονται 1 - 20 Αποτελέσματα από 46 για την αναζήτηση '"Магнитно-резонансная спектроскопия"', χρόνος αναζήτησης: 0,70δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συγγραφείς: Rudenko, D.I., Pozdnyakov, A.V., Suslov, V.M.

    Πηγή: INTERNATIONAL NEUROLOGICAL JOURNAL; № 2.88 (2017); 84-92
    МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; № 2.88 (2017); 84-92
    МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; № 2.88 (2017); 84-92

    Περιγραφή αρχείου: application/pdf

  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: Project No. 21-15-00209) for financial support of this work, as well as the Ministry of Science and Higher Education of the Russian Federation for access to equipment., Авторы благодарят Российский научный фонд (Проект № 21-15-00209) за финансовую поддержку этой работы, а также Министерство науки и высшего образования РФ за доступ к оборудованию.

    Πηγή: Translational Medicine; Том 9, № 4 (2022); 20-32 ; Трансляционная медицина; Том 9, № 4 (2022); 20-32 ; 2410-5155 ; 2311-4495

    Περιγραφή αρχείου: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/733/477; Taylor M, Bhagwagar Z, Cowen PJ et al. GABA and mood disorders. Psychol Med. 2003; 33(3):387-393. DOI:10.1017/s0033291702006876; Sanacora G, Zarate CA, Krystal JH et al. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov. 2008; 7(5):426-437. DOI:10.1038/nrd2462; Sanacora G. Cortical inhibition, gammaaminobutyric acid, and major depression: there is plenty of smoke but is there fire? Biol Psychiatry. 2010; 67(5):397- 398. DOI:10.1016/j.biopsych.2010.01.003; Yüksel C, Öngür D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 2010; 68(9):785-794. DOI:10.1016/j.biopsych.2010.06.016; Sanacora G, Mason GF, Rothman DL et al. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 1999; 56(11):1043-1047. DOI:10.1001/archpsyc.56.11.1043; Hasler G, van der Veen JW, Tumonis T et al. Reduced prefrontal glutamate/glutamine and gammaaminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007; 64(2):193-200. DOI:10.1001/archpsyc.64.2.193; Semenova NA, Menshchikov PE, Manzhurtsev AV, et al. Dynamics of intravital concentration of amino acid metabolites in human brain in post-traumatic period. Proceedings of the Academy of Sciences. 2019; 484(2):238– 242. In Russian [Семенова Н.А., Меньщиков П.Е., Манжурцев А.В. и др. Динамика прижизненной концентрации метаболитов аминокислот в головном мозге человека в посттравматическом периоде. Доклады Академии наук. 2019; 484(2):238–242]. DOI:10.31857/S0869-56524842238-242; Perfilova VN, Borodkina LE. Participation of gamma-amino-butyric-ergic system in the regulation of cerebral blood flow. Bulletin of the russian military medical academy. 2014; 1(45):203-211. In Russian [Перфилова В.Н., Бородкина Л.Е. Участие гамма-аминомаслянокислотно-ергической системы в регуляции мозгового кровообращения. Вестник Российской Военно-медицинской академии. 2014; 1(45):203-211].; Semenova NA, Manzhurtsev AV, Menshchikov PE et al. Magnetic resonance spectroscopy: non-invasive studies of human brain metabolism in normal and pathological conditions. Progress in physiological science. 2019; 50(1):58–74. In Russian [Семенова Н.А., Манжурцев А.В., Меньщиков П.Е. и др. Магнитно-резонансная спектроскопия: неинвазивные исследования метаболизма мозга человека в норме и патологии. Успехи физиологических наук. 2019; 50(1):58–74]. DOI:10.1134/S0301179819010107; Menshchikov PE, Semenova NA, Akhadov TA et al. An increase in cerebral γ-amino butyric acid concentration in children with mild traumatic brain injury in the acute phase: 1h mrs study. Biophysics 2017;62(6):1221–1231. In Russian [Меньщиков П.Е., Семенова Н.А., Ахадов Т.А. и др. Рост церебральной концентрации γ-аминомасляной кислоты у детей с легкой черепно-мозговой травмой в остром периоде по данным протонной магнитно-резонансной спектроскопии. Биофизика. 2017;62(6):1221–1231].; Near J, Andersson J, Maron E et al. Unedited in vivo detection and quantification of γ-aminobutyric acid in the occipital cortex using short-TE MRS at 3 T. NMR Biomed. 2013; 26(11):1353-1362. DOI:10.1002/nbm.2960; Bell CC. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders. JAMA: The Journal of the American Medical Association. 1994; 272(10):828. DOI:10.1001/JAMA.1994.03520100096046; Godlewska BR, Near J, Cowen PJ. Neurochemistry of major depression: a study using magnetic resonance spectroscopy. Psychopharmacology (Berl). 2015; 232(3):501-507. DOI:10.1007/s00213-014-3687-y; Harvey BH, Joubert C, du Preez JL et al. Effect of chronic N-acetyl cysteine administration on oxidative status in the presence and absence of induced oxidative stress in rat striatum. Neurochem Res. 2008; 33(3):508-517. DOI:10.1007/s11064-007-9466-y; Altamura C, Maes M, Dai J et al. Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol. 1995; 5 Suppl:71-75. DOI:10.1016/0924-977x(95)00033-l; Shungu DC. N-acetylcysteine for the treatment of glutathione deficiency and oxidative stress in schizophrenia. Biol Psychiatry. 2012; 71(11):937-938. DOI:10.1016/j.biopsych.2012.03.025; Godlewska BR, Yip SW, Near J et al. Cortical glutathione levels in young people with bipolar disorder: a pilot study using magnetic resonance spectroscopy. Psychopharmacology (Berl). 2014; 231(2):327-332. DOI:10.1007/s00213-013-3244-0; Lagopoulos J, Hermens DF, Tobias-Webb J et al. In vivo glutathione levels in young persons with bipolar disorder: a magnetic resonance spectroscopy study. J Psychiatr Res. 2013; 47(3):412-417. DOI:10.1016/j.jpsychires.2012.12.006; Gawryluk JR, Mazerolle EL, Brewer KD et al. Investigation of fMRI activation in the internal capsule. BMC Neurosci. 2011; 12:56. DOI:10.1186/1471-2202-12-56; Sanacora G, Gueorguieva R, Epperson CN et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004; 61(7):705-713. DOI:10.1001/archpsyc.61.7.705; Walter H, Berger M, Schnell K. Neuropsychotherapy: conceptual, empirical and neuroethical issues. Eur Arch Psychiatry Clin Neurosci. 2009; 259 Suppl 2:S173-182. DOI:10.1007/s00406-009-0058-5; Murrough JW, Mao X, Collins KA et al. Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder. NMR Biomed. 2010; 23(6):643-650. DOI:10.1002/nbm.1512; Price RB, Shungu DC, Mao X et al. Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry. 2009; 65(9):792-800. DOI:10.1016/j.biopsych.2008.10.025; Lecrux C, Hamel E. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B Biol Sci. 2016; 371(1705):20150350. DOI:10.1098/rstb.2015.0350; Arrubla J, Farrher E, Strippelmann J et al. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J Neurosci Res. 2017; 95(9):1796-1808. DOI:10.1002/jnr.24010; Duncan NW, Wiebking C, Northoff G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci Biobehav Rev. 2014; 47:36-52. DOI:10.1016/j.neubiorev.2014.07.016; Enzi B, Duncan NW, Kaufmann J et al. Glutamate modulates resting state activity in the perigenual anterior cingulate cortex — a combined fMRI-MRS study. Neuroscience. 2012; 227:102-109. DOI:10.1016/j.neuroscience.2012.09.039; Levar N, van Leeuwen JMC, Puts NAJ et al. GABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans. Front Hum Neurosci. 2017; 11:202. DOI:10.3389/fnhum.2017.00202; Wiebking C, Duncan NW, Tiret B et al. GABA in the insula — a predictor of the neural response to interoceptive awareness. Neuroimage. 2014; 86:10-18. DOI:10.1016/j.neuroimage.2013.04.042; Wiebking C, Bauer A, de Greck M et al. Abnormal body perception and neural activity in the insula in depression: an fMRI study of the depressed “material me”. World J Biol Psychiatry. 2010; 11(3):538-549. DOI:10.3109/15622970903563794; Koush Y, Rothman DL, Behar KL et al. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab. 2022; 42(6):911-934. DOI:10.1177/0271678X221076570; Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012; 379(9820):1045-1055. DOI:10.1016/S0140-6736(11)60602-8.; Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999; 45(9):1085-1098. DOI:10.1016/s0006-3223(99)00041-4; Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A. 1998; 95(22):13290-13295. DOI:10.1073/pnas.95.22.13290; Bowley MP, Drevets WC, Ongür D et al. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry. 2002; 52(5):404-412. DOI:10.1016/s0006-3223(02)01404-x; Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull. 2001; 55(5):585-595. DOI:10.1016/s0361-9230(01)00527-5; Cotter D, Mackay D, Landau S et al. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001; 58(6):545-553. DOI:10.1001/archpsyc.58.6.545; Cotter D, Mackay D, Chana G et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex. 2002; 12(4):386-394. DOI:10.1093/cercor/12.4.386; Uranova N, Orlovskaya D, Vikhreva O et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull. 2001; 55(5):597-610. DOI:10.1016/s0361-9230(01)00528-7; Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002; 8(6):562-573. DOI:10.1177/1073858402238515; Benes FM, Todtenkopf MS, Logiotatos P et al. Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat. 2000; 20(3-4):259-269. DOI:10.1016/s0891-0618(00)00105-8; Zarate CA Jr, Du J, Quiroz J et al. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci. 2003; 1003:273-291. DOI:10.1196/annals.1300.017; Skolnick, Phil. Beyond monoamine-based therapies: clues to new approaches. The Journal of clinical psychiatry. 2002; 63(2):19-23.; Hepsomali P, Groeger JA, Nishihira J et al. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front Neurosci. 2020; 14:923. DOI:10.3389/fnins.2020.00923; https://transmed.almazovcentre.ru/jour/article/view/733

  4. 4
    Academic Journal

    Πηγή: Almanac of Clinical Medicine; Vol 49, No 1 (2021); 49-55 ; Альманах клинической медицины; Vol 49, No 1 (2021); 49-55 ; 2587-9294 ; 2072-0505

    Περιγραφή αρχείου: application/pdf

  5. 5
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; Том 12, № 2 (2021); 36-40 ; Лучевая диагностика и терапия; Том 12, № 2 (2021); 36-40 ; 2079-5343

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/620/482; Мухин К.Ю. Когнитивная эпилептиформная дезинтеграция: дефиниция, диагностика, терапия // Русский журнал детской неврологии. 2012. Т. 7, № 1. С. 3– 20.; Parker A., Ferrie C., Keevil S., Newbold M., Cox T., Maisey M., Robinson R. Neuroimaging and spectroscopy in children with epileptic encephalopathies // Archives of Disease in Childhood. 1998. Vol. 79, No. 1. Р. 39–43. doi:10.1136/adc.79.1.39.; Cendes F., Knowlton R., Novotny E., Min L., Antel S., Sawrie S., Laxer K., Arnold D. Magnetic Resonance Spectroscopy in Epilepsy: Clinical Issues // Epilepsia. 2002. Vol. 43. Р. 32–39. doi:10.1046/j.1528-1157.2002.043s1032.x.; Cavazos J.E., Cross D.J. The role of synaptic reorganization in mesial temporal lobe epilepsy // Epilepsy Behavior. 2006. Vol. 8, No. 3. Р. 483–493. doi:10.1016/j.yebeh.2006.01.011.; Oz G., Alger J.R., Barker P.B., Bartha R., Bizzi A., Boesch C., Bolan P.J., Brindle K.M., Cudalbu C., Dinçer A., Dydak U., Emir U.E., Frahm J., González R.G., Gruber S., Gruetter R., Gupta R.K., Heerschap A., Henning A., Hetherington H.P., Howe F.A., Hüppi P.S., Hurd R.E., Kantarci K., Klomp D.W., Kreis R., Kruiskamp M.J., Leach M.O., Lin A.P., Luijten P.R., Marjańska M., Maudsley A.A., Meyerhoff D.J., Mountford C.E., Nelson S.J., Pamir M.N., Pan J.W., Peet A.C., Poptani H., Posse S., Pouwels P.J., Ratai E.M., Ross B.D., Scheenen T.W., Schuster C., Smith I.C., Soher B.J., Tkáč I., Vigneron D.B., Kauppinen R.A. MRS Consensus Group. Clinical proton MR spectroscopy in central nervous system disorders // Radiology. 2014. Vol. 270, No. 3. Р. 658–679. doi:10.1148/radiol.13130531.; Morgane P.J., Galler J.R., Mokler D.J. A review of systems and networks of the limbic forebrain/limbic midbrain // Progress in Neurobiology. 2005. Vol. 75, No. 2. Р. 143–160. doi:10.1016/j.pneurobio.2005.01.001.; Critchley H.D., Simmons A., Daly E.M., Russell A., van Amelsvoort T., Robertson D.M., Glover A., Murphy D.G. Prefrontal and medial temporal correlates of repetitive violence to self and others // Biological Psychiatry. 2000. Vol. 47, No. 10. Р. 928–934; doi:10.1016/s0006-3223(00)00231-6.

  6. 6
  7. 7
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; Том 11, № 2 (2020); 66-75 ; Лучевая диагностика и терапия; Том 11, № 2 (2020); 66-75 ; 2079-5343 ; 10.22328/2079-5343-2020-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/527/416; Baron-Cohen S., Scott F.J., Allison C., Williams J., Bolton P., Matthews F.E., Brayne C. Prevalence of autism-spectrum conditions: UK school-based population study // The British Journal of Psychiatry. 2009. Vol. 194 (6). Р. 500–509. DOI:10.1192/bjp.bp.108.059345.; Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework // Clin. Pharmacol. Ther. 2001. Vol. 69. Р. 89–95. DOI:10.1067/mcp.2001.113989.; Geier D.A., Kern J.K., Geier M.R. A Comparison of the Autism Treatment Evaluation Checklist (ATEC) and the Childhood Autism Rating Scale (CARS) for the Quantitative Evaluation of Autism // Journal of mental health research in intellectual disabilities. 2013. Vol. 6 (4). Р. 255–267. DOI:10.1080/19315864.2012.681340.; Aman M.G., Tasse M.J., Rojahn J., Hammer D. The Nisonger CBRF: A child behavior rating form for children with developmental disabilities // Research in Developmental Disabilities. 1996. Vol. 1 7(1). Р. 41–57. DOI:10.1016/0891-4222(95)00039-9.; Хоменко Ю.Г., Богдан А.А., Катаева Г.В., Чернышёва Е.М. Иcпользование мультивоксельной магнитно-резонансной спектроскопии при обследовании больных с когнитивными расстройствами // Вестник СПбГУ. Сер. 4. Т. 3 (61). 2016. Вып. 1. С. 82–88.; Баймеева Н.В., Мирошниченко И.И. N-ацетиласпартат — биомаркер психических и неврологических нарушений // Журнал неврологии и психиатрии им. С.С.Корсакова. 2015. Т. 115 (8). С. 94–98.; Fujii E., Mori K., Miyazaki M., Hashimoto T., Harada M., Kagami S. Function of the frontal lobe in autistic individuals: a proton magnetic resonance spectroscopic study // J. Med. Invest. 2010. Vol. 57. Р. 35–44. DOI:10.2152/jmi.57.35.; Hardan A.Y., Fung L.K., Frazier T., Berquist S.W., Minshew N.J., Keshavan M.S., Stanley J.A. A proton spectroscopy study of white matter in children with autism // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016. Vol. 66. Р. 48–53. DOI:10.1016/j.pnpbp.2015.11.005.; Kubas B., Kułak W., Sobaniec W., Tarasow E., Lebkowska U., Walecki J. Metabolite alterations in autistic children: a 1H MR spectroscopy study // Adv. Med. Sci. 2012. Vol. 57. Р. 152–156. DOI:10.2478/v10039-012-0014-x.; Chugani D.C., Sundram B.S., Behen M., Lee M.L., Moore G.J. Evidence of altered energy metabolism in autistic children // Prog.; Neuropsychopharmacol. Biol. Psychiatry. 1999 Vol. 23. Р. 635–641. DOI:10.1016/s0278-5846(99)00022-6; Ford T.C., Crewther D.P. A Comprehensive Review of the 1H-MRS Metabolite Spectrum in Autism Spectrum Disorder // Front. Mol. Neurosci. 2016. Vol. 9. Р. 14. DOI:10.3389/fnmol.2016.00014.; Endo T., Shioiri T., Kitamura H., Kimura T., Endo S., Masuzawa N., Someya T. Altered chemical metabolites in the amygdala-hippocampus region contribute to autistic symptoms of autism spectrum disorders // Biol. Psychiatry. 2007. Vol. 62 (9). Р. 1030–1037. DOI:10.1016/j.biopsych.2007.05.015.; Vasconcelos M.M., Brito A.R., Domingues R.C., Hygino Da Cruz Jr L.C., Gasparetto E.L., Werner Jr J., Sevalho Gonçalves J.P. Proton magnetic resonance spectroscopy in school-aged autistic children // J. Neuroimaging. 2008. Vol. 18 (3). Р. 288–295. DOI:10.1111/j.1552–6569.2007.00200.x.; Lam K.S., Aman M.G., Arnold L.E. Neurochemical correlates of autistic disorder: a review of the literature // Res. Dev. Disabil. 2006. Vol. 27 (3). Р. 254–289. DOI:10.1016/j.ridd.2005.03.003.; Luo Y., Kim E.H., Flask C.A., Clark H.A. Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging // ACS Nano. 2018. Vol. 12(6), P. 5761–5773. DOI:10.1021/acsnano.8b01640.; Berman K.F., Ostrem J.L., Randolph C., Gold J., Goldberg T.E., Coppola R., Carson R.E., Herscovitch P., Weinberger D.R. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study // Neuropsychologia. 1995. Vol. 33 (8). Р. 1027–1046. DOI:10.1016/0028-3932(95)00035-2.; Ozonoff S., Pennington B.F., Rogers S.J. Executive function deficits in highfunctioning autistic individuals: relationship to theory of mind // J. Child Psychol. Psychiatry. 1991. Vol. 32 (7). Р. 1081–1105. DOI:10.1111/j.1469-7610.1991.tb00351.x.; Patel T., Blyth JC., Griffiths G., Kelly D., Talcott J.B. Moderate relationships between NAA and cognitive ability in healthy adults: implications for cognitive spectroscopy // Front Hum. Neurosci. 2014. Vol. 8. Р. 39. DOI:10.3389/fnhum.2014.00039.; Jung R.E., Brooks W.M., Yeo R.A., Chiulli S.J., Weers D.C., Sibbitt W.L. Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain // Proc. Biol. Sci. 1999. Vol. 266. Р. 1375–1379. DOI:10.1098/rspb.1999.0790.; Yeo R.A., Hill D., Campbell R., Vigil J., Brooks W.M. Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation // Dev. Neuropsychol. 2000. Vol. 17 (2). Р. 143–159. DOI:10.1207/S15326942DN1702_01.; Margari L., Giacomo A., Craig F., Palumbi R., Peschechera A., Margari M., Picardi F., Caldarola M., Maghenzani M.A., Dicuonzo F. Frontal lobe metabolic alterations in autism spectrum disorder: a 1H-magnetic resonance spectroscopy study // Neuropsychiatr. Dis. Treat. 2018. Jul. 20. Vol. 14. Р. 1871–1876. DOI:10.2147/NDT.S165375.

  8. 8
  9. 9
    Academic Journal

    Συνεισφορές: Нет

    Πηγή: Translational Medicine; Том 6, № 1 (2019); 17-26 ; Трансляционная медицина; Том 6, № 1 (2019); 17-26 ; 2410-5155 ; 2311-4495 ; 10.18705/2311-4495-2019-6-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/448/327; Kaprin AD, Starinskiy VV, Petrova GV. The State of Oncological Care to Population in Russia in 2017. M-: Gertcen MNIOI. 2018. p.236. In Russian. [Каприн А.Д., Старинский В.В., Петрова Г.В., Состояние онкологической помощи населению России в 2017 году. М.:МНИОИ им П. А. Герцена — филиала ФГБУ «НМИЦ радиологии» Минздрава России, 2018. с. 236].; Braunschweig T, Lewandrowski A, Smeets D et al. Squamous Cell Carcinoma of the Head and Neck: New Avenues of Treatment? Head and Neck Tumors. 2013;3:4– 10. In Russian [Брауншвейг Т., Левандровски А., Смеетс Д. и др. Плоскоклеточный рак головы и шеи: новые перспективы лечения? Опухоли головы и шеи. 2013;3:4–10].; Brennan JA, Boyle JO, Koch WM et al. Association Between Cigarette Smoking and Mutation of the p53 Gene in Squamous-cell Carcinoma of the Head and Neck. N Engl J Med. 1995;332(11):712–717; Denaro N, Merlano MC, Russi EG. Follow-up in Head and Neck Cancer: Do More Does It Mean Do Better? A Systematic Review and Our Proposal Based on Our Experience. Clin Exp Otorhinolaryngol. 2016;9(4):287–297.; Quintero K, Giraldo GA, Uribe ML et al. Human Papillomavirus Types in Cases of Squamous Cell Carcinoma of Head and Neck in Colombia. Braz J Otorhinolaryngol. 2013;79(3):375–381.; Curado MP, Boyle P. Epidemiology of Head and Neck Squamous Cell Carcinoma Not Related to Tobacco or Alcohol. Curr Opin Oncol. 2013;25(3):229–234.; Van Monsjou HS, van Velthuysen ML, van den Brekel MW et al. Human Papillomavirus Status in Young Patients with Head and Neck Squamous Cell Carcinoma. Int J Cancer. 2012;130(8):1806–1812.; Smeets D, Ertmer K, Braunschweig T et al. HPV in Squamous Epithelial Lesions of the Head and Neck: Different Affection of Different Tumors. Tumors of the Head and Neck. 2011;1:61–65. In Russian [Смеетс Д., Эртмер К., Брауншвейг Т. и др. Роль вируса папилломы человека (ВПЧ) при различных локализациях плоскоклеточного рака головы и шеи. Опухоли головы и шеи. 2011;1:61–65].; Thomas J, Primeaux T. Is p16 Immunohistochemistry a More Cost-effective Method for Identification of Human Papilloma Virus-associated Head and Neck Squamous Cell Carcinoma? Ann Diagn Pathol. 2012;16(2):91–99.; Dai YL, King AD. State of the Art MRI in Head and Neck Cancer. Clin Radiol. 2018;73(1):45–59.; Korostyshevskaya AM, Savelov AA, Tsydenova DV et al. Quantitative Analysis of Perinatal Brain Maturation Using Deffusion-weighted MRI. Bulletin of Novosib State Univ. Series: Biology, Clinical Medicine= Vestn. Novosib. gos. un-ta. Serija: Biologija, klinicheskaja medicina. 2015;13(4):27–32. In Russian [Коростышевская А. М., Савелов А. А., Цыденова Д. В. и др. Количественный анализ структурной зрелости головного мозга плода, по данным диффузионно-взвешенной МРТ. Вестн. Новосиб. гос. ун-та. Серия: Биология, клиническая медицина. 2015;13(4):27–32].; Ahn SJ, Choi SH, Kim YJ et al. Histogram Analysis of Apparent Diffusion Coefficient Map of Standard and High B-value Diffusion MR Imaging in Head and Neck Squamous Cell Carcinoma: a Correlation Study with Histological Grade. Acad Radiol. 2012;19(10):1233–1240.; Hwang I, Choi SH, Kim YJ et al. Differentiation of Recurrent Tumor and Posttreatment Canges in Head and Neck Squamous Cell Carcinoma: Application of High B-value Diffusion-weighted Imaging. AJNR Am J Neuroradiol. 2013;34(12):2343–2348.; Yun TJ, Kim JH, Kim KH et al. Head and Neck Squamous Cell Carcinoma: Differentiation of Histologic Grade with Standard- and High-b-value Diffusion-weighted MRI. Head Neck. 2013;35(5):626–631.; Ryoo I, Kim JH, Choi SH et al. Squamous Cell Carcinoma of the Head and Neck: Comparison of Diffusionweighted MRI at B-values of 1,000 and 2,000 s/mm(2) to Predict Response to Induction Chemotherapy. Magn Reson Med Sci. 2015;14(4):337–345.; Acampora A, Manzo G, Fenza G et al. High B-value Diffusion MRI to Differentiate Recurrent Tumors from Posttreatment Changes in Head and Neck Squamous Cell Carcinoma: a Single Center Prospective Study. Biomed Res Int. 2016;2016:2865169.; Wang J, Takashima S, Takayama F et al. Head and Neck Lesions: Characterization with Diffusion-weighted Echo-planar MR Imaging. Radiology. 2001;220(3):621–630.; Thoeny HC, De Keyzer F, King AD. Diffusionweighted MR Imaging in the Head and Neck. Radiology. 2012;263(1):19–32.; Abdel Razek AA, Nada N. Role of Diffusionweighted MRI in Differentiation of Masticator Space Malignancy from Infection. Dentomaxillofac Radiol. 2013;42(4):20120183.; Koc O, Paksoy Y, Erayman I et al. Role of Diffusion Weighted MR in the Discrimination Diagnosis of the Cystic and/or Necrotic Head and Neck Lesions. Eur J Radiol. 2007;62(2):205–213.; Kato H, Kanematsu M, Kato Z et al. Necrotic Cervical Nodes: Usefulness of Diffusion-weighted MR Imaging in the Differentiation of Suppurative Lymphadenitis from Malignancy. Eur J Radiol. 2013;82(1):e28–35.; Zhang Y, Chen J, Shen J et al. Apparent Diffusion Coefficient Values of Necrotic and Solid Portion of Lymph Nodes: Differential Diagnostic Value in Cervical Lymphadenopathy. Clin Radiol. 2013;68(3):224–231.; King AD, Yeung DK, Ahuja AT et al. Salivary Gland Tumors at In Vivo Proton MR Spectroscopy. Radiology. 2005;237(2):563–569.; Salama AA, El-Barbary AH, Mlees MA et al. Value of Apparent Diffusion Coefficient and Magnetic Resonance Spectroscopy in the Identification of Various Pathological Subtypes of Parotid Gland Tumors. Egypt J Radiol Nucl Med. 2015;46(1):45–52.; Chen L, Xu J, Bao J et al. Diffusion-weighted MRI in Differentiating Malignant from Benign Thyroid Nodules: a Meta-analysis. BMJ Open. 2016;6(1):e008413.; Holzapfel K, Duetsch S, Fauser C et al. Value of Diffusion-weighted MR Imaging in the Differentiation Between Benign and Malignant Cervical Lymph Nodes. Eur J Radiol. 2009;72(3):381–387.; Maeda M, Kato H, Sakuma H et al. Usefulness of the Apparent Diffusion Coefficient in Line Scan Diffusionweighted Imaging for Distinguishing Between Squamous Cell Carcinomas and Malignant Lymphomas of the Head and Neck. AJNR Am J Neuroradiol. 2005;26(5):1186–1192.; King AD, Ahuja AT, Yeung DK et al. Malignant Cervical Lymphadenopathy: Diagnostic Accuracy of Diffusion-weighted MR Imaging. Radiology. 2007;245(3):806–813.; Ichikawa Y, Sumi M, Sasaki M et al. Efficacy of Diffusion-weighted Imaging for the Differentiation Between Lymphomas and Carcinomas of the Nasopharynx and Oropharynx: Correlations of Apparent Diffusion Coefficients and Histologic Features. AJNR Am J Neuroradiol. 2012;33(4):761–766.; Sumi M, Nakamura T. Head and Neck Tumours: Combined MRI Assessment Based on IVIM and TIC Analyses for the Differentiation of Tumors of Different Histological Types. Eur Radiol. 2014;24(1):223–231.; Vandecaveye V, De Keyzer F, Vander Poorten V et al. Head and Neck Squamous Cell Carcinoma: Value of Diffusion-weighted MR Imaging for Nodal Staging. Radiology. 2009;251(1):134–146.; Abdel Razek AA, Soliman NY, Elkhamary S et al. Role of Diffusion-weighted MR Imaging in Cervical Lymphadenopathy. Eur Radiol. 2006;16(7):1468–1477.; de Bondt RB, Hoeberigs MC, Nelemans PJ et al. Diagnostic Accuracy and Additional Value of Diffusionweighted Imaging for Discrimination of Malignant Cervical Lymph Nodes in Head and Neck Squamous Cell Carcinoma. Neuroradiology. 2009;51(3):183–192.; Lee MC, Tsai HY, Chuang KS et al. Prediction of Nodal Metastasis in Head and Neck Cancer Using a 3T MRI ADC Map. AJNR Am J Neuroradiol. 2013;34(4):864–869.; Barchetti F, Pranno N, Giraldi G et al. The Role of 3 Tesla Diffusion-weighted Imaging in the Differential Diagnosis of Benign Versus Malignant Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma. Biomed Res Int. 2014;2014:532095.; Zhong J, Lu Z, Xu L et al. The Diagnostic Value of Cervical Lymph Node Metastasis in Head and Neck Squamous Carcinoma by Using Diffusion-weighted Magnetic Resonance Imaging and Computed Tomography Perfusion. Biomed Res Int. 2014;2014:260859.; De Felice F, Musio D, Bulzonetti N et al. Target Volume Delineation Based on Diffusion-weighted Magnetic Resonance Imaging for Locally Advanced Head and Neck Cancer. Anticancer Res. 2016;36(8):4181–4185.; Baba Y, Furusawa M, Murakami R et al. Role of Dynamic MRI in the Evaluation of Head and Neck Cancers Treated with Radiation Therapy. Int J Radiat Oncol Biol Phys. 1997;37(4):783–787.; Korostishevskaya AM. Proton MR Spectroscopy Diagnostic Value (Review of Perspective Fields). Medical imaging. 2007;3:130–143. In Russian [Коростышевская А. М. Диагностические возможности магнитно-резонансной спектроскопии (обзор перспективных направлений) Медицинская визуализация. 2007;3:130–143].; Sinson G, Bagley LJ, Cecil KM et al. Magnetization Transfer Imaging and Proton MR Spectroscopy in the Evaluation of Axonal Injury: Correlation with Clinical Outcome after Traumatic Brain Injury. AJNR Am J Neuroradiol. 2001;22(1):143–151.; Mascalchi M, Cosottini M, Lolli F et al. Proton MR Spectroscopy of the Cerebellum and Pons in Patients with Degenerative Ataxia. Radiology. 2002;223(2):371– 378.; Bogdanov AV. Proton MR Spectroscopy (Review). Bulletin of KRSU. 2016;16(3):151–156. In Russian [Богданов А. В. Магнитно-резонансная спектроскопия (обзор литературы). Вестник КРСУ. 2016;16(3):151–156].; Abdel Razek AA, Poptani H. MR Spectroscopy of Head and Neck Cancer. Eur J Radiol. 2013;82(6):982–989.; Yeung DK, Fong KY, Chan QC et al. Chemical Shift Imaging in the Head and Neck at 3T: Initial Results. J Magn Reson Imaging. 2010;32(5):1248–1254.; Yuan J, Chen S, King AD et al. Amide Proton Transfer-weighted Imaging of the Head and Neck at 3 T: a Feasibility Study on Healthy Human Subjects and Patients with Head and Neck Cancer. NMR Biomed. 2014;27(10):1239–1247.; Wang J, Hwang K, Fuller C et al. SU-E-J-225: CEST Imaging in Head and Neck Cancer Patients. Med Phys. 2015;42(6):3317.; King AD, Yeung DK, Ahuja AT et al. Human Cervical Lymphadenopathy: Evaluation with In Vivo 1 H-MRS at 1.5 T. Clin Radiol. 2005;60(5):592–598.; Bisdas S, Fetscher S, Feller AC et al. Primary B Cell Lymphoma of the Sphenoid Sinus: CT and MRI Characteristics with Correlation to Perfusion and Spectroscopic Imaging Features. Eur Arch Otorhinolaryngol. 2007;264(10):1207–1213.; Yu Q, Yang J, Wang P et al. Preliminary Assessment of Benign Maxillofacial and Neck Lesions with In Vivo Single-voxel 1H Magnetic Resonance Spectroscopy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(2):264–270.; Brandao LA, Castillo M. Adult Brain Tumors: Clinical Applications of Magnetic Resonance Spectroscopy. Neuroimaging Clin N Am. 2013;23(3):527–555.; Galban CJ, Mukherji SK, Chenevert TL et al. A Feasibility Study of Parametric Response Map Analysis of Diffusion-weighted Magnetic Resonance Imaging Scans of Head and Neck Cancer Patients for Providing Early Detection of Therapeutic Efficacy. Transl Oncol. 2009;2(3):184–190.; Vandecaveye V, Dirix P, De Keyzer F et al. Predictive Value of Diffusion-weighted Magnetic Resonance Imaging During Chemoradiotherapy for Head and Neck Squamous Cell Carcinoma. Eur Radiol. 2010;20(7):1703–1714.; Chen Y, Liu X, Zheng D et al. Diffusionweighted Magnetic Resonance Imaging for Early Response Assessment of Chemoradiotherapy in Patients with Nasopharyngeal Carcinoma. Magn Reson Imaging. 2014;32(6):630–637.; Martins EB, Chojniak R, Kowalski LP et al. Diffusion-weighted MRI in the Assessment of Early Reatment Response in Patients with Squamous-cell Carcinoma of the Head and Neck: Comparison with Morphological and PET/CT Findings. PLoS One. 2015;10(11):e0140009.; Wong KH, Panek R, Welsh L et al. The Predictive Value of Early Assessment after 1 Cycle of Induction Chemotherapy with 18F-FDG PET/CT and Diffusionweighted MRI for Response to Radical Chemoradiotherapy in Head and Neck Squamous Cell Carcinoma. J Nucl Med. 2016;57(12):1843–1850.; King AD, Chow KK, Yu KH et al. Head and Neck Squamous Cell Carcinoma: Diagnostic Performance of Diffusion-weighted MR Imaging for the Prediction of Treatment Response. Radiology. 2013;266(2):531–538.; King AD, Mo FK, Yu KH et al. Squamous Cell Carcinoma of the Head and Neck: Diffusion-weighted MR Imaging for Prediction and Monitoring of Treatment Response. Eur Radiol. 2010;20(9):2213–2220.; Abdel Razek AA, Kandeel AY, Soliman N et al. Role of Diffusion-weighted Echo-planar MR Imaging in Differentiation of Residual or Recurrent Head and Neck Tumors and Posttreatment Changes. AJNR Am J Neuroradiol. 2007;28(6):1146–1152.; Vandecaveye V, De Keyzer F, Nuyts S et al. Detection of Head and Neck Squamous Cell Carcinoma with Diffusion Weighted MRI after (chemo) Radiotherapy: Correlation Between Radiologic and Histopathologic Findings. Int J Radiat Oncol Biol Phys. 2007;67(4):960–971.; Gouhar GK, El-Hariri MA. Feasibility of Diffusion Weighted MR Imaging in Differentiating Recurrent Laryngeal Carcinoma from Radionecrosis. Egypt J Radiol Nucl Med. 2011;42(2):169–175.; Vandecaveye V, Dirix P, De Keyzer F et al. Diffusion-weighted Magnetic Resonance Imaging Early after Chemoradiotherapy to Monitor Treatment Response in Head-and-neck Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys. 2012;82(3):1098–1107.; Tshering Vogel DW, Zbaeren P, Geretschlaeger A et al. Diffusion-weighted MR Imaging Including Biexponential Fitting for the Detection of Recurrent or Residual Tumour after (Chemo)radiotherapy for Laryngeal and Hypopharyngeal Cancers. Eur Radiol. 2013;23(2):562–569.; Ravanelli M, Farina D, Rizzardi P et al. MR with Surface Coils in the Follow-up after Endoscopic Laser Resection for Glottic Squamous Cell Carcinoma: Feasibility and Diagnostic Accuracy. Neuroradiology. 2013;55(2):225– 232.; King AD, Keung CK, Yu KH et al. T2-weighted MR Imaging Early after Chemoradiotherapy to Evaluate Treatment Response in Head and Neck Squamous Cell Carcinoma. AJNR Am J Neuroradiol. 2013;34(6):1237– 1241.; https://transmed.almazovcentre.ru/jour/article/view/448

  10. 10
    Academic Journal

    Πηγή: Current issues in pharmacy and medicine: science and practice; Vol. 11 No. 1 (2018) ; Актуальные вопросы фармацевтической и медицинской науки и практики; Том 11 № 1 (2018) ; Актуальні питання фармацевтичної і медичної науки та практики; Том 11 № 1 (2018) ; 2409-2932 ; 2306-8094

    Περιγραφή αρχείου: application/pdf

  11. 11
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 5 (2018); 600-605 ; Вавиловский журнал генетики и селекции; Том 22, № 5 (2018); 600-605 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1596/1106; Biessels G.J., Braun K.P., de Graaf R.A., van Eijsden P., Gispen W.H., Nicolay K. Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study. Diabetologia. 2001; 44:346-353. DOI 10.1007/s001250051625.; Duarte J.M., Carvalho R.A., Cunha R.A., Gruetter R. Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J. Neurochem. 2009;111: 368-379. DOI 10.1111/j.1471-4159.2009.06349.x.; Dufrane D., van Steenberghe M., Guiot Y., Goebbels R.M., Saliez A., Gianello P. Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and beta-cell plasticity. Transplantation. 2006;15;81(1):36-45. DOI 10.1097/01.tp.0000189712.74495.82.; Elsner M., Guldbakke B., Tiedge M., Munday R., Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000;43:1528-1533. DOI 10.1007/s001250051564.; Geissler A., Frund R., Scholmerich J., Feuerbach S., Zietz B. Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton magnetic resonance spectroscopy. Exp. Clin. Endocrinol. Diabetes. 2003;111(7):421-427. DOI 10.1055/s-2003-44289.; Gruetter R. Automatic, localized in vivo adjustment of all first-and second-order shim coils. Magn. Reson. Med. 1993;29:804-811. DOI 10.1002/mrm.1910290613.; Gurley S.B., Clare S.E., Snow K.P., Hu A., Meyer T.W., Coffman T.M. Impact of genetic background on nephropathy in diabetic mice. Am. J. Physiol. 2006;290(1):F214-F222. DOI 10.1152/ajprenal.00204. 2005.; Heikkila O., Lundbom N., Timonen M., Groop P.H., Heikkinen S., Makimattila S. Hyperglycaemia is associated with changes in the regional concentrations of glucose and myo-inositol within the brain. Diabetologia. 2009;52:534-540. DOI 10.1007/s00125-0081242-2.; Huber J.D., VanGilder R.L., Houser K.A. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am. J. Physiol. Heart Circ. Physiol. 2006;291(6):H2660-H2668. DOI 10.1152/ajpheart.00489.2006.; Hussy N., Deleuze C., Desarménien M.G., Moos F.C. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog. Neurobiol. 2000; 62(2):113-134. DOI 10.1016/S0301-0082(99)00071-4.; Ito T., Schaffer S.W., Azuma J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012;42(5): 1529-1539. DOI 10.1007/s00726-011-0883-5.; Jederstrom G., Grasjo J., Nordin A., Sjoholm I., Andersson A. Blood glucose-lowering activity of a hyaluronan-insulin complex after oral administration to rats with diabetes. Diabetes Technol. Ther. 2005; 7(6):948-957. DOI 10.1089/dia.2005.7.948.; King A.J. The use of animal models in diabetes research. Br. J. Pharmacol. 2012;166(3):877-894. DOI 10.1111/j.1476-5381.2012.01911.x.; Kreis R., Ross B.D. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology. 1992;184(1):123-130. DOI 10.1148/radiology.184.1.1319074.; Lapidot A., Haber S. Effect of endogenous beta-hydroxybutyrate on glucose metabolism in the diabetic rabbit brain: A C-13-magnetic resonance spectroscopy study of [U-C-13] glucose metabolite. J. Neurosci. Res. 2001;64(2):207-216. DOI 10.1002/jnr.1067.; Lenzen S. The mechanisms of alloxanand streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226. DOI 10.1007/s00125007-0886-7.; Lenzen S., Tiedge M., Panten U. Glucokinase in pancreatic B-cells and its inhibition by alloxan. Acta Endocrinol. 1987;115:21-29.; Lien Y.H., Shapiro J.I., Chan L. Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 1990;85(5):1427-1435. DOI 10.1172/ JCI114587.; Lien Y.H., Shapiro J.I., Chan L. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J. Clin. Invest. 1991;88(1):303-309. DOI 10.1172/JCI115292.; Mangia S., Kumar A.F., Moheet A.A., Roberts R.J., Eberly L.E., Seaquist E.R., Tkáč I. Neurochemical profile of patients with type 1 diabetes measured by 1H-MRS at 4T. J. Cereb. Blood Flow Metab. 2013;33:754-759. DOI 10.1038/jcbfm.2013.13.; Moshkin M.P., Akulov A.E., Petrovski D.V., Saik O.V., Petrovskiy E.D., Savelov A.A., Koptyug I.V. Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-D-glucose and lipopolysaccharides. NMR Biomed. 2014;27:399-405. DOI 10.1002/nbm.3074.; Northam E.A., Rankins D., Lin A., Wellard R.M., Pell G.S., Finch S.J., Werther G.A., Cameron F.J. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009;32:445-450. DOI 10.2337/dc08-1657.; Obrosova I.G., Fathallah L., Stevens M.J. Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy. Exp. Neurol. 2001;172(1):211-219. DOI 10.1006/exnr.2001.7789.; Provencher S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993;30(6):672679. DOI 10.1002/mrm.1910300604.; Qinna N.A., Badwan A.A. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Des. Devel. Ther. 2015;9:2515-2525. DOI 10.2147/DDDT.S79885.; Revsin Y., Rekers N.V., Louwe M.C., Saravia F.E., De Nicola A.F., de Kloet E.R., Oitzl M.S. Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice. Neuropsychopharmacology. 2009;34(3):747-758. DOI 10.1038/npp.2008.136.; Rose S.J., Bushi M., Nagra I., Davies W.E. Taurine fluxes in insulin dependent diabetes mellitus and rehydration in streptozotocin treated rats. Adv. Exp. Med. Biol. 2000;483:497-501. DOI 10.1007/0-30646838-755.; Salceda R., Vilchis C., Coffe V., Hernandez-Munoz R. Changes in the redox state in the retina and brain during the onset of diabetes in rats. Neurochem. Res. 1998;23(6):893-897. DOI 10.1023/A:1022467230259.; Sandler S., Swenne I. Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetologia. 1983; 25(5):444-447.; Sarac K., Akinci A., Alkan A., Aslan M., Baysal T., Ozcan C. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus. Neuroradiology. 2005;47:562-565. DOI 10.1007/s00234-005-1387-3.; Schmidt R.E., Dorsey D.A., Beaudet L.N., Frederick K.E., Parvin C.A., Plurad S.B., Levisetti M.G. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy a new experimental model of diabetic autonomic neuropathy. Am. J. Pathol. 2003;163(5):20772091. DOI 10.1016/S0002-9440(10)63565-1.; Schnedl W.J., Ferber S., Johnson J.H., Newgard C.B. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes. 1994;43(11):1326-1333. DOI 10.2337/diab.43.11.1326.; Sheshala R., Peh K.K., Darwis Y. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Drug Dev. Ind. Pharm. 2009;35(11): 1364-1374. DOI 10.3109/03639040902939213.; Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001;50(6):537-546. DOI 10.1097/01.tp.0000189712.74495.82.; Tanabe M., Nitta A., Ono H. Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory syn¬aptic transmission in the hippocampus. J. Pharmacol. Sci. 2010; 113(4):378-386. DOI 10.1254/jphs.10150FP.; Terada T., Hara K., Haranishi Y., Sata T. Antinociceptive effect of intrathecal administration of taurine in rat models of neuropathic pain. Can. J. Anaesth. 2011;58(7):630-637. DOI 10.1007/s12630-0119504-8.; Timbrell J.A., Seabra V., Waterfield C.J. The in vivo and in vitro protective properties of taurine. Gen. Pharmacol. 1995;26(3):453-462. DOI 10.1016/0306-3623(94)00203-Y.; van Harten B., de Leeuw F.E., Weinstein H.C., Scheltens P., Biessels G.J. Brain imaging in patients with diabetes: a systematic review. Diabetes Care. 2006;29:2539-2548. DOI 10.2337/dc061637.; Wang W.T., Lee P., Yeh H.W., Smirnova I.V., Choi I.Y. Effects of acute and chronic hyperglycemia on the neurochemical profiles in the rat brain with streptozotocin-induced diabetes detected using in vivo 1H MR spectroscopy at 9.4T. J. Neurochem. 2012;121:407-417. DOI 10.1111/j.1471-4159.2012.07698.x.; Weiss R.B. Streptozocin: a review of its pharmacology, efficacy, and toxicity. Cancer Treat. Rep. 1982;66:427-438.; https://vavilov.elpub.ru/jour/article/view/1596

  12. 12
    Academic Journal

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 10, No 1S (2018): СПЕЦВЫПУСК: ЭПИЛЕПСИЯ; 51-55 ; Неврология, нейропсихиатрия, психосоматика; Vol 10, No 1S (2018): СПЕЦВЫПУСК: ЭПИЛЕПСИЯ; 51-55 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2018-1S

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/909/759; Карлов ВА. Эпилепсия у детей и взрослых женщин и мужчин. Москва: Медицина; 2010. 720 c. [Karlov VA. Epilepsiya u detey i vzroslykh zhenshchin i muzhchin [Epilepsy in children and adult women and men]. Moscow: Medicine; 2010. 720 p. (In Russ.)].; Дмитренко ДВ, Строганова МА, Шнайдер НА и др. Гистологическая классификация мезиального темпорального склероза. Неврология, нейропсихиатрия, психосоматика. 2016;8(2):74-9 [Dmitrenko DV, Stroganova MA, Shnayder NA, et al. Histological classification of mesial temporal sclerosis. Nevrologiya, Neiropsikhiatriya, Psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2016;8(2):74-9 (In Russ.)]. doi:10.14412/2074-2711-2016-2-74-79; Шнайдер НА, Дмитренко ДВ, Батухтин ЕН, Молгачев АА. Современные методы нейровизуализации в диагностике эпилепсии. Красноярск; 2007. 102 с. [Shnayder NA, Dmitrenko DV, Batuhtin EN, Molgachev AA. Sovremennye metody neyrovizualizatsii v diagnostike epilepsii [Modern methods of neuroimaging in the diagnosis of epilepsy]. Krasnoyarsk; 2007. 102 p. (In Russ.)].; Kousi E, Tsougos I, Eftychia K. Novel frontiers of advanced neuroimaging. In: Proton magnetic resonance spectroscopy of the central nervous system. 2013 CC BY 3.0 license. doi:10.5772/53892; Aun AA, Mostafa AA, Fotouh AM, et al. Role of magnetic resonance spectroscopy (MRS) in nonlesional temporal lobe epilepsy. Egypt J Radiol Nucl Med. 2016;47(1):217-31. doi:10.1016/j.ejrnm.2015.09.008; Хоружик СА. Магнитно-резонансная спектроскопия при опухолях головного мозга (обзор литературы). Онкологический журнал. 2007;(3):51-62 [Horuzhik SA. Magnetic resonance spectroscopy for tumors of the brain (review). Onkologicheskiy Zhurnal = Oncological Journal. 2007;(3):51-62 (In Russ.)].; Окользин АВ. Магнитно-резонансная спектроскопия по водороду в характеристике опухолей головного мозга. Онкология. 2007;(8):132-51 [Okolzin AB. Magnetic resonance spectroscopy on hydrogen in the characteristics of brain tumors. Onkologiya = Oncology. 2007;(8):132-51 (In Russ.)].; Богданов АВ. Магнитно-резонансная спектроскопия (обзор литературы). Вестник Кыргызско-Российского Славянского Университета. 2016;16(3):151-6 [Bogdanov AV. Magnetic resonance spectroscopy (literature review). Vestnik Kyrgyzsko-Rossiyskogo Slavyanskogo Universiteta = Bulletin of the Kyrgyz-Russian Slavic University. 2016;16(3):151- 6 (In Russ.)].; Wellard RM, Briellmann RS, Prichard JW, et al. Myoinositol Abnormalities in Temporal Lobe Epilepsy. Epilepsia. 2003;44(6):815-21. doi:10.1046/j.1528-1157.2003.44102.x; Maton B, Gilliam F, Sawrie S, et al. Correlation of scalp EEG and 1H-MRS metaboli abnormalities in temporal lobe epilepsy. Epilepsia. 2001;42(3):417-22. doi:10.1046/j.1528-1157.2001.25999.x; Hammen T, Schwarz M, Doelken M, et al. 1H-MR spectroscopy indicates severity markers in temporal lobe epilepsy: correlations between metabolic alterations, seizures, and epileptic discharges in EEG. Epilepsia. 2007;48(2):263-9. doi:10.1111/j.1528-1167.2006.00856.x; Mueller SG, Ebel A, Barakos J, et al. Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol. 2011;258(4):603- 12. doi:10.1007/s00415-010-5799-6; Крылов ВВ, Гехт АБ, Трифонов ИС и др. Клинические рекомендации по предоперационному обследованию и хирургическому лечению пациентов с фармакорезистентными формами эпилепсии. Москва; 2015 [Krylov VV, Gekht AB, Trifonov IS, et al. Klinicheskie rekomendatsii po predoperatsionnomu obsledovaniyu i khirurgicheskomu lecheniyu patsientov s farmakorezistentnymi formami epilepsii [Clinical recommendations for preoperative examination and surgical treatment of patients with pharmaco-resistant forms of epilepsy]. Moscow; 2015 (In Russ.)].; Zhang J, Liu Q, Mei S, et al. Identifying the affected hemisphere with a multimodal approach in MRI-positive or negative, unilateral or bilateral temporal lobe epilepsy. Neuropsychiatr Dis Treat. 2014;10:71-81. doi:10.2147/NDT.S56404; Pan JW, Kuzniecky RI. Utility of magnetic resonance spectroscopic imaging for human epilepsy. Quant Imaging Med Surg. 2015;5(2):313-22. doi:10.3978/j.issn.2223-4292.2015.01.03; Шнайдер НА, Мартынова ГП, Строганова МА и др. Фебрильные приступы как триггер мезиального вмсочного склероза. Клинический случай. Проблемы женского здоровья. 2015;10(1):69-78 [Schnayder NA, Martynova GP, Stroganova MA, et al. Febrile seizures as a trigger for mesial sclerosis. Clinical case. Problemy Zhenskogo Zdorov'ya = Problems of Women's Health. 2015;10(1):69-78 (In Russ.)].

  13. 13
    Report

    Συνεισφορές: Губарев, Федор Александрович

    Περιγραφή αρχείου: application/pdf

    Relation: Быкова М. В. Выявление изменений структур головного мозга на МРТ при различных заболеваниях : магистерская диссертация / М. В. Быкова; Национальный исследовательский Томский политехнический университет (ТПУ), Исследовательская школа химических и биомедицинских технологий (ИШХБМТ), Исследовательская школа химических и биомедицинских технологий (ИШХБМТ); науч. рук. Ф. А. Губарев. — Томск, 2019.; http://earchive.tpu.ru/handle/11683/54756

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/54756

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Πηγή: Andrology and Genital Surgery; Том 16, № 1 (2015); 53-61 ; Андрология и генитальная хирургия; Том 16, № 1 (2015); 53-61 ; 2412-8902 ; 2070-9781 ; 10.17650/2070-9781-2015-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/132/126; Parkin D.M., Bray F., Ferlay J., Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55(2):74–108.; Sim H.G., Cheng C.W. Changing demography of prostate cancer in Asia. Eur J Cancer 2005;41(6):834–45.; Ramon J., Denis L.J. (eds.) Recent results in cancer research. Vol. 175: Prostate cancer. Berlin, Heidelberg: Springer-Verlag, 2007. P. 271.; Jemal A., Siegel R., Ward E. et al. Cancer statistics, 2009. CA Cancer J Clin 2009;59(4):225–49.; Ferlay J., Parkin D.M., Sterliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010;46(4):765–81.; Чиссов В.И., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2011 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена, 2013. 289 с. [Chissov V.I., Starinskiy V.V. Petrova G.V. Malignant neoplasms in Russia in 2011 (morbidity and mortality). Moscow: P.A. Herzen Moscow Scientific and Research Oncological Institute, 2013. 289 p. (In Russ.)].; Давыдов M.И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2012 году. М.: РОНЦ им. Н.Н. Блохина, 2014. 48 с. [Davydov M.I., Aksel E.M. Statistics of malignancies in Russia and the CIS in 2012. Moscow: N.N. Blokhin RCRC, 2014. 48 p. (In Russ.)].; Лопаткин Н.А., Аполихин О.И., Даренков С.П., Чернышев И.В. Онкология и урология: связь между специальностями. Урология 2006;(6):3–5. [Lopatkin N.A., Apolikhin O.I., Darenkov S.P., Chernyshev I.V. Oncology and urology: connection between specialties. Urologiya = Urology 2006;(6):3–5. (In Russ.)].; Аляев Ю.Г., Винаров А.З., Безруков Е.А. Рак предстательной железы. Врач 2003;(10):24–9. [Alyaev Yu.G., Vinarov A.Z., Bezrukov E.A. Prostate cancer. Vrach = Physician 2003;(10):24–9. (In Russ.)].; Gleason D.F. Classification of prostatic carcinoma. Cancer Chemother 1996;50:125–8.; Шария М.А., Коробкин А.С. Современные методики магнитно-резонансной томографии (МРТ) в диагностике рака предстательной железы. REJR 2011;1(4):11–7. [Sharia M.A., Korobkin A.S. Modern techniques of magnetic resonance imaging (MRI) in the diagnosis of prostate cancer. REJR 2011;1(4):11–7. (In Russ.)].; Мищенко А.В. Комплексное магнитно-резонансное исследование в диагностике заболеваний внутренних половых органов у мужчин. Дис. . д-ра мед. наук. СПб., 2009. 286 с. [Mishchenko A.V. Integrated magnetic resonance imaging in the diagnosis of diseases of the internal genital organs in men. Thesis . of doctor of medical scienses. Saint Petersburg, 2009. 286 p. (In Russ.)].; Москаленко Е.А. Современный подход к диагностике рака предстательной железы с использованием магнитно-резонансной спектроскопии (клиническое исследование). Дис. . канд. мед. наук. СПб., 2010. 145 с. [Moskalenko E.A. Modern approach to the diagnosis of prostate cancer using magnetic resonance spectroscopy (clinical research). Thesis . of candidate of medical scienses. Saint Petersburg, 2010. 145 p. (In Russ.)].; Дубицкий Д.Л. Возможности высокопольной магнитно-резонансной томографии в дифференциальной диагностике рака предстательной железы. Дис. . канд. мед. наук. СПб., 2011. 194 с. [Dubitsky D.L. The possibility of high field magnetic resonance imaging in the differential diagnosis of prostate cancer. Thesis . of candidate of medical scienses. Saint Petersburg, 2011. 194 p. (In Russ.)].; Chen M., Dang H.D., Wang J.Y. et al. Prostate cancer detection: comparison of T2-weighted imaging, proton magnetic resonance spectroscopic imaging, and the three techniques combined. Acta Radiol 2008;49(5):602–10.; De Souza N.M., Riches S.F., Vanas N.J. et al. Diffuzion-weighted magnetic resonance imaging: a potential non-invasive marker of tumor aggressiveness in localized prostate cancer. Clin Radiol 2008;63(7):774–82.; Ren J., Huan Y., Wang H. et al. Seminal vesicle invasion in prostate cancer: prediction with combined T2-weighted and diffusionweighted MR imaging. Eur Radiol 2009;19(10):2481–6.; Choi Y.J., Kim J.K., Kim N. et al. Functional MR imaging of prostate cancer. Radiographics 2007;27(1):63–75.; Переверзев А.С., Коган М.И. Рак простаты: монография. Харьков: Факт, 2004. 231 с. [Pereverzev A.S., Kogan M.I. Prostate Cancer: Monograph. Kharkov: Fact, 2004. 231 p. (In Russ.)].; Sala E., Akin O., Moskowitzetal C.S. Endorectal MR imaging in the evaluation of seminal vesicle invasion: diagnostic accuracy and multivariate feature analysis. Radiology 2006;238(3):929–37.; Wang L., Mazaheri Y., Zhang J. et al. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 2008;246(1): 168–76.; Wang W., Epstein J.I. Small carcinoma of the prostate. A morphologic and immunohistochemical study 0f 95 cases. Am J Surg Pathol 2008;32(1):65–71.; Sciarra A., Barentsz J., Bjartell A. et al. Advances in magnetic resonance imaging: how they are changing management of prostate cancer. Eur Urol 2011;59(6):962–77.; Otto J., Thormer G., Seiwerts M. et al. Value of endorectal magnetic resonance imaging at 3T for the local staging of prostate cancer. Rofo 2014;186(8):795–802.; Мазаев А.А. Новые методики магнитно-резонансной томографии в комплексной диагностике заболеваний предстательной железы. Дис. . канд. мед. наук. М., 2004. 140 с. [Mazayev A.A. New methods of magnetic resonance imaging in the complex diagnosis of prostate diseases. Thesis . of candidate of medical scienses. Moscow, 2004. 140 p. (In Russ.)].; Аляев Ю.Г., Синицын В.Е., Григорьев Н.А. Магнитно-резонансная томография в урологии. М.: Практическая медицина, 2005. С. 244–53. [Alyaev Yu.G., Sinitsyn V.E., Grigoriev N.A. Magnetic resonance imaging in urology. Moscow: Prakticheskaya Meditsina, 2005. Pp. 244–53. (In Russ.)].; Синицын В.Е., Терновой С.К. Магнитно-резонансная томография в новом столетии. Радиология – практика 2005;(4):17–22. [Sinitsyn V.E., Ternovoy S.K. Magnetic resonance imaging in the new century. Radiologiya – praktika = Radiology – Practice 2005;(4):17–22. (In Russ.)].; Hricak H., Choyke P.L., Eberhardt S.C. et al. Imaging prostate cancer: a multidisciplinary perspective. Radiology 2007;243(1):28–53.; Futterer J.J., Heijmink S.W., Spermon J.R. Imaging the male reproductive tract: current trends and future directions. Radiol Clin North Am 2008;46(1):133–47.; Futterer J.J., Heijmink S.W. Carcinoma, prostate. In: Baert A.L. (ed.) Encyclopedia of diagnostic imaging. Berlin, Heidelberg, New York: Springer-Verlag, 2008. Vol. 1. Pp. 283–7.; https://agx.abvpress.ru/jour/article/view/132

  20. 20