Εμφανίζονται 1 - 12 Αποτελέσματα από 12 για την αναζήτηση '"МУЛЬТИФРАКТАЛЬНіСТЬ"', χρόνος αναζήτησης: 0,56δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: Bulletin of Cherkasy State Technological University; No. 4 (2022): VISNYK Cherkaskogo derzhavnogo tehnologichnogo universitetu; 58-66
    Вестник Черкасского государственного технологического университета; № 4 (2022): Вісник Черкаського державного технологічного університету; 58-66
    Вісник Черкаського державного технологічного університету; № 4 (2022): Вісник Черкаського державного технологічного університету; 58-66
    urn:2306:44554.2022

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://vtn.chdtu.edu.ua/article/view/269137

  4. 4
    Academic Journal

    Συγγραφείς: Radivilova, Tamara

    Πηγή: Problemi telekomunìkacìj; № 1(24) (2019); 24-33
    Проблеми телекомунікацій; № 1(24) (2019); 24-33

    Περιγραφή αρχείου: application/pdf

  5. 5
    Academic Journal

    Πηγή: Eastern-European Journal of Enterprise Technologies; Том 3, № 3 (99) (2019): Control processes; 22-29
    Восточно-Европейский журнал передовых технологий; Том 3, № 3 (99) (2019): Процессы управления; 22-29
    Східно-Європейський журнал передових технологій; Том 3, № 3 (99) (2019): Процеси управління; 22-29

    Περιγραφή αρχείου: application/pdf

  6. 6
    Academic Journal

    Συνεισφορές: Національний університет 'Львівська політехніка', Інститут фізики конденсованих систем НАН України, Lviv Polytechnic National University, Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine

    Πηγή: Mathematical Modeling and Computing. 6:58-68

    Περιγραφή αρχείου: application/pdf; image/png

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Συνεισφορές: Національний університет “Львівська політехніка”, Інститут фізики конденсованих систем НАН України, Lviv Polytechnic National University, Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine

    Θέμα γεωγραφικό: Львів, Lviv

    Περιγραφή αρχείου: 58-68; application/pdf; image/png

    Relation: Mathematical Modeling and Computing, 1 (6), 2019; 1. OldhamK.B., Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Books on Mathematics, Dover Publications (2006).; 2. Samko S.G., KilbasA.A., MarichevO. I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers (1993).; 3. Podlubny I., KennethV.T.E. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198, Academic Press (1998).; 4. MandelbrotB.B. The fractal geometry of nature. W. H. Freeman and Company (1982).; 5. UchaikinV.V. Fractional Derivatives Method. Artishock-Press, Uljanovsk (2008), (in Russian).; 6. SahimiM. Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Physics Reports. 306 (4–6), 213–395 (1998).; 7. Koro˘sakD., CviklB., Kramer J., JeclR., PrapotnikA. Fractional calculus applied to the analysis of spectral electrical conductivity of clay–water system. Journal of Contaminant Hydrology. 92 (1-2), 1–9 (2007).; 8. MetzlerR., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports. 339 (1), 1–77 (2000).; 9. HilferR. Fractional Time Evolution, chapter II, pp. 87–130. World Scientific, Singapore, New Jersey, London, Hong Kong (2000).; 11. Bisquert J., CompteA. Theory of the electrochemical impedance of anomalous diffusion. Journal of Electroanalytical Chemistry. 499 (1), 112–120 (2001).; 12. Koszto lowiczT., LewandowskaK.D. Hyperbolic subdiffusive impedance. Journal of Physics A: Mathematical and Theoretical. 42 (5), 055004 (2009).; 13. PyanyloY.D., PrytulaM.G., PrytulaN.M., LopuhN.B. Models of mass transfer in gas transmission systems. Mathematical Modeling and Computing. 1 (1), 84–96 (2014).; 14. ZhokhA., TrypolskyiA., Strizhak P. Relationship between the anomalous diffusion and the fractal dimension of the environment. Chemical Physics. 503, 71–76 (2018).; 15. ZhokhA.A., Strizhak P.E. Effect of zeolite ZSM-5 content on the methanol transport in the ZSM-5/alumina catalysts for methanol-to-olefin reaction. Chemical Engineering Research and Design. 127, 35–44 (2017).; 16. ZhokhA., Strizhak P. Non-Fickian diffusion of methanol in mesoporous media: Geometrical restrictions or adsorption-induced? The Journal of Chemical Physics. 146 (12), 124704 (2017).; 17. ScherH., MontrollE.W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B. 12 (6), 2455–2477 (1975).; 18. BerkowitzB., ScherH. Theory of anomalous chemical transport in random fracture networks. Phys. Rev. E. 57 (5), 5858–5869 (1998).; 19. Bouchaud J.P., GeorgesA. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports. 195 (4), 127–293 (1990).; 20. NigmatullinR.R. To the Theoretical Explanation of the “Universal Response”. Physica Status Solidi (B). 123 (2), 739–745 (1984).; 21. NigmatullinR.R. On the Theory of Relaxation for Systems with “Remnant” Memory. Physica Status Solidi (B). 124 (1), 389–393 (1984).; 22. NigmatullinR.R. The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (B). 133 (1), 425–430 (1986).; 23. NigmatullinR.R. Fractional integral and its physical interpretation. Theoretical and Mathematical Physics. 90 (3), 242–251 (1992).; 24. NigmatullinR.R., RyabovY.E. Cole–Davidson dielectric relaxation as a self-similar relaxation process. Physics of the Solid State. 39 (1), 87–90 (1997).; 25. NigmatullinR.R. Dielectric relaxation phenomenon based on the fractional kinetics: theory and its experimental confirmation. Physica Scripta. T136, 014001 (2009).; 26. KhamzinA.A., NigmatullinR.R., Popov I. I. Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization. Theoretical and Mathematical Physics. 173 (2), 1604–1619 (2012).; 27. Popov I. I., NigmatullinR.R., Koroleva E.Y., NabereznovA.A. The generalized Jonscher’s relationship for conductivity and its confirmation for porous structures. Journal of Non-Crystalline Solids. 358 (1), 1–7 (2012).; 28. Grygorchak I. I., KostrobijP.P., Stasjuk I.V., TokarchukM.V., VelychkoO.V., Ivaschyshyn F.O., MarkovychB.M. Fizichni procesy ta ih mikroskopichni modeli v periodychnyh neorganichno/organichnih klatratah. Rastr-7, Lviv (2015), (in Ukrainian).; 29. KostrobijP.P., Grygorchak I. I., Ivaschyshyn F.O., MarkovychB.M., ViznovychO.V., TokarchukM.V. Mathematical modeling of subdiffusion impedance in multilayer nanostructures. Mathematical Modeling and Computing. 2 (2), 154–159 (2015).; 30. KostrobijP., Grygorchak I., Ivashchyshyn F., MarkovychB., ViznovychO., TokarchukM. Generalized Electrodiffusion Equation with Fractality of Space-Time: Experiment and Theory. The Journal of Physical Chemistry A. 122 (16), 4099–4110 (2018).; 31. BalescuR. Anomalous transport in turbulent plasmas and continuous time random walks. Phys. Rev. E. 51 (5), 4807–4822 (1995).; 32. TribecheM., Shukla P.K. Charging of a dust particle in a plasma with a non extensive electron distribution function. Physics of Plasmas. 18 (10), 103702 (2011).; 33. Gong J., Du J. Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution. Physics of Plasmas. 19 (2), 023704 (2012).; 34. CarrerasB.A., LynchV.E., ZaslavskyG.M. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Physics of Plasmas. 8 (12), 5096–5103 (2001).; 35. TarasovV.E. Electromagnetic field of fractal distribution of charged particles. Physics of Plasmas. 12 (8), 082106 (2005).; 36. TarasovV.E. Magnetohydrodynamics of fractal media. Physics of Plasmas. 13 (5), 052107 (2006).; 37. MoninA. S. Uravnenija turbulentnoj difuzii. DAN SSSR, ser. geofiz. 2, 256–259 (1955), (in Russian).; 38. Klimontovich J. L. Vvedenie v fiziku otkrytyh sistem. Moskva, Janus (2002), (in Russian).; 39. ZaslavskyG.M. Chaos, fractional kinetics, and anomalous transport. Physics Reports. 371 (6), 461–580 (2002).; 40. TarasovV.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Nonlinear Physical Science, Springer Berlin Heidelberg (2010).; 41. ZaslavskyG.M. Fractional kinetic equation for Hamiltonian chaos. Physica D: Nonlinear Phenomena. 76 (1), 110–122 (1994).; 42. SaichevA. I., ZaslavskyG.M. Fractional kinetic equations: solutions and applications. Chaos. 7 (4), 753–764 (1997).; 43. ZaslavskyG.M., EdelmanM.A. Fractional kinetics: from pseudochaotic dynamics to Maxwell’s Demon. Physica D: Nonlinear Phenomena. 193 (1–4), 128–147 (2004).; 44. NigmatullinR. ‘Fractional’ kinetic equations and ‘universal’ decoupling of a memory function in mesoscale region. Physica A: Statistical Mechanics and its Applications. 363 (2), 282–298 (2006).; 45. ChechkinA.V., GoncharV.Y., Szyd lowskiM. Fractional kinetics for relaxation and superdiffusion in a magnetic field. Physics of Plasmas. 9 (1), 78–88 (2002).; 46. GafiychukV.V., DatskoB.Y. Stability analysis and oscillatory structures in time-fractional reactiondiffusion systems. Phys. Rev. E. 75 (5), 055201 (2007).; 47. Koszto lowiczT., LewandowskaK.D. Time evolution of the reaction front in a subdiffusive system. Phys. Rev. E. 78 (6), 066103 (2008).; 48. ShkilevV.P. Subdiffusion of mixed origin with chemical reactions. Journal of Experimental and Theoretical Physics. 117 (6), 1066–1070 (2013).; 49. HobbieR.K., RothB. J. Intermediate Physics for Medicine and Biology. Springer-Verlag, New York (2007).; 50. Jeon J.H., MonneH.M. S., JavanainenM., MetzlerR. Anomalous Diffusion of Phospholipids and Cholesterols in a Lipid Bilayer and its Origins. Phys. Rev. Lett. 109 (18), 188103 (2012).; 51. H¨ofling F., FranoschT. Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics. 76 (4), 046602 (2013).; 52. UchaikinV.V. Fractional phenomenology of cosmic ray anomalous diffusion. Physics-Uspekhi. 56 (11), 1074–1119 (2013).; 53. Szymanski J., WeissM. Elucidating the Origin of Anomalous Diffusion in Crowded Fluids. Phys. Rev. Lett. 103 (3), 038102 (2009).; 54. SandevT., Tomovski Z., DubbeldamJ. L.A., ChechkinA. Generalized diffusion-wave equation with memory kernel. Journal of Physics A: Mathematical and Theoretical. 52 (1), 015201 (2018).; 55. SandevT., MetzlerR., ChechkinA. Generalised Diffusion and Wave Equations: Recent Advances. arXiv:1903.01166 (2019).; 56. GiustiA. Dispersion relations for the time-fractional Cattaneo–Maxwell heat equation. Journal of Mathematical Physics. 59 (1), 013506 (2018).; 57. KostrobijP., MarkovychB., ViznovychO., TokarchukM. Generalized diffusion equation with fractional derivatives within Renyi statistics. Journal of Mathematical Physics. 57 (9), 093301 (2016).; 58. KostrobijP., MarkovychB., ViznovychO., TokarchukM. Generalized electrodiffusion equation with fractality of space–time. Mathematical Modeling and Computing. 3 (2), 163–172 (2016).; 59. Glushak P.A., MarkivB.B., TokarchukM.V. Zubarev’s Nonequilibrium Statistical Operator Method in the Generalized Statistics of Multiparticle Systems. Theoretical and Mathematical Physics. 194 (1), 57–73 (2018).; 60. KostrobijP., MarkovychB., ViznovychO., TokarchukM. Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method. Physica A: Statistical Mechanics and its Applications. 514, 63–70 (2019).; 61. ZubarevD.N. Modern methods of the statistical theory of nonequilibrium processes. Journal of Soviet Mathematics. 16 (6), 1509–1571 (1981).; 62. ZubarevD.N., MorozovV.G., R¨opkeG. Statistical mechanics of nonequilibrium processes. Vol. 1. Moscow, Fizmatlit (2002), (in Russian).; 63. ZubarevD.N., MorozovV.G., R¨opkeG. Statistical mechanics of nonequilibrium processes. Vol. 2. Moscow, Fizmatlit (2002), (in Russian).; 64. MarkivB., TokarchukR., KostrobijP., TokarchukM. Nonequilibrium statistical operator method in Renyi statistics. Physica A: Statistical Mechanics and its Applications. 390 (5), 785–791 (2011).; 65. Cottrill-ShepherdK., NaberM. Fractional differential forms. Journal of Mathematical Physics. 42 (5), 2203–2212 (2001).; 66. Mainardi F. Fractional Calculus. Springer, Vienna (1997).; 67. CaputoM., Mainardi F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics. 91 (1), 134–147 (1971).; 20. NigmatullinR.R. To the Theoretical Explanation of the "Universal Response". Physica Status Solidi (B). 123 (2), 739–745 (1984).; 21. NigmatullinR.R. On the Theory of Relaxation for Systems with "Remnant" Memory. Physica Status Solidi (B). 124 (1), 389–393 (1984).; Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations / P. Kostrobij, B. Markovych, O. Viznovych, I. Zelinska, M. Tokarchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 58–68.; https://ena.lpnu.ua/handle/ntb/46157

    Διαθεσιμότητα: https://ena.lpnu.ua/handle/ntb/46157

  11. 11
  12. 12