Showing 1 - 3 results of 3 for search '"МУЛЬТИФОТОННОЕ ВОЗБУЖДЕНИЕ"', query time: 0.43s Refine Results
  1. 1
    Academic Journal

    Source: Biomedical Photonics; Том 7, № 1 (2018); 4-12 ; 2413-9432 ; 10.24931/2413-9432-2018-7-1

    File Description: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/213/179; Escudero A., Carrillo-Carrión C., Zyuzin M.V., Parak W.J. Luminescent rare-earth-based nanoparticles: a summarized overview of their synthesis, functionalization, and applications // Top Curr Chem (Cham). – 2016. – Vol. 374(4). – P. 48. https://doi.org/10.1007/s41061-016-0049-8.; Ma D., Xu X., Hu M., et al. Rare-earth-based nanoparticles with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion luminescence for multimodal imaging // Chem Asian J. – 2016. – Vol. 11(7). – P. 1050-1058. http://dx.doi.org/10.1002/asia.201501456.; Li X., Wang R., Zhang F., et al. Nd3+ Sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm // Sci. Rep. – 2013. – Vol. 3. – P. 3536. http://dx.doi.org/10.1038/srep03536.; Wang Z., Zhang P., Yuan Q., et al. Nd³+-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation // Nanoscale. – 2015. – Vol. 7(42). – P. 17861-17870. http://dx.doi.org/10.1039/C5NR04889C.; Zhong Y., Tian G., Gu Z., et al. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles // Adv. Mater. – 2014. – Vol. 26(18). – P. 2831-2837. http://dx.doi.org/10.1002/ adma.201304903.; Zhan Q., Wang B., Wen X., He S. Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing // Opt. Mater. Express. – 2016. – Vol. 6. – P. 1011-1023. https://doi.org/10.1364/OME.6.001011.; Kushida T., Marcos H.M., Geusic J.E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet // Phys. Rev. – 1968. – Vol. 167. – P. 289-291. https://doi.org/10.1103/PhysRev.167.289.; Xu B., Zhang X., Huang W., et al. Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application // J. Mater. Chem. B. – 2016. – Vol. 4. – P. 2776-2784. http://dx.doi.org/10.1039/C6TB00542J.; Wang Y.F., Liu G.Y., Sun L.D., et al. Nd(3+)-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect // ACS Nano. – 2013. – Vol. 7. – P. 7200-7206. doi:10.1021/nn402601d.; Qin Q.-S., Zhang P.-Z., Sun L.-D., et al. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging // Nanoscale. – 2017. – Vol. 9. – P. 4660-4664. http://dx.doi.org/10.1039/C7NR00606C.; Rocha U., Hu J., Rodriguez E.M., Vanetsev A.S., Rähn M., Sammelselg V., Orlovskii Y.V., García Sole J., Jaque D., Ortgies D.H. Subtissue Imaging and Thermal Monitoring of Gold Nanorods through Joined Encapsulation with Nd-Doped Infrared-Emitting Nanoparticles, Small, 2016, Vol. 12, pp. 5394-5400. Available at: http://dx.doi.org/10.1002/smll.201600866; Pichaandi J., Boyer J.-C., Delaney K.R., van Veggel F.C.J.M. Two-pho-evaluation of their performance and potential in bioimaging // J. Phys. Chem. C. – 2011. – Vol. 115. – P. 19054-19064. doi:10.1021/jp206345j.; Zhan Q., He S., Qian J., et al. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield // Theranostics. – 2013. – Vol. 3. – P. 306-316. doi:10.7150/thno.6007.; Wu R., Zhan Q., Liu H., et al. Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy // Opt. Express. – 2015. – Vol. 23. – P. 32401-32412. https://doi.org/10.1364/OE.23.032401.; Wang B., Zhan Q., Zhao Y., et al. Visible-to-visible fourphoton ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals // Opt. Express.– 2016. – Vol. 24(2). – A302-A311. https://doi.org/10.1364/OE.24.00A302.; Vanetsev A., Kaldvee K., Puust L., et al. Relation of crystallinity and fluorescent properties of LaF3:Nd3+ nanoparticles synthesized with different water-based techniques. // Chemistry Select. – 2017. – Vol. 2. – P. 4874-4881. http://dx.doi.org/10.1002/slct.201701075.; Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., et al. Cerium fluoride nanoparticles protect cells against oxidative stress // Mater Sci. Eng. C Mater Biol. Appl. – 2015. – Vol. 50. – P. 151-159. https://doi.org/10.1016/j.msec.2015.01.094.; Carnall W.T., Crosswhite Hannah, Crosswhite H.M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3. – United States, 1978. doi:10.2172/6417825.; Carnall W.T., Goodman G.L., Rajnak K., Rana R.S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 // J. Chem. Phys. – 1989. – Vol. 90. – P. 3443. http://dx.doi.org/10.1063/1.455853.; Pollnau M., Gamelin D.R., Luthi S.R., et al. Power dependence of upconversion luminescence in lanthanide and transition-metalion systems // Phys. Rev. B. – 2000. – Vol. 61. – P. 3337-3346. https://doi.org/10.1103/PhysRevB.61.3337.; Jacinto C., Oliveira S.L., Catunda T., et al. Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials // Opt. Express. – 2005. – Vol. 13. – P. 2040-2046. https://doi.org/10.1364/OPEX.13.002040.; Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles // Int. J. Nanomedicine. – 2012. – Vol. 7. – P. 5577-5591. https://doi.org/10.2147/IJN.S36111.; Sojka B., Liskova A., Kuricova M., et al. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes // J. Nanopart. Res. – 2017. – Vol. 19. – P. 68. https://doi.org/10.1007/s11051-0173779-9.

  2. 2
  3. 3