Εμφανίζονται 1 - 20 Αποτελέσματα από 502 για την αναζήτηση '"МОЛОЧНАЯ СЫВОРОТКА"', χρόνος αναζήτησης: 0,83δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal

    Συγγραφείς: E. I. Magradze, Е. И. Маградзе

    Πηγή: Vegetable crops of Russia; № 1 (2025); 108-113 ; Овощи России; № 1 (2025); 108-113 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2556/1634; Shahwar D., Mushtaq Z., Mushtaq H., Alqarawi A.A., Younghoon Park Y., Alshahran T.S., Faizan S. Role of microbial inoculants as bio fertilizers for improving crop productivity: a review. Heliyon. 2023;9(6):e16134. https://doi.org/10.1016/j.heliyon.2023.e16134; Yadav A., Yadav K. Challenges and Opportunities in Biofertilizer Commercialization. SVOA Microbiology. 2024;5(1):1-14. https://doi.org/10.58624/SVOAMB.2024.05.037; Santos F., Melkani S., Oliveira Paiva C., Bini D., Pavuluri K., Gatiboni L., Mahmud A., Torres M. Eric McLamore E., Bhadha J.H. Biofertilizer use in the United States: defnition, regulation, and prospects. Applied Microbiology and Biotechnology. 2024;108(1):511. https://doi.org/10.1007/s00253-024-13347-4; Wei X., Xie B., Wan C, Song R., Zhong W, Xin S, Song K. Enhancing soil health and plant growth through microbial fertilizers: mechanisms, benefits, and sustainable agricultural practices. Agronomy. 2024;(14):609. https://doi.org/10.3390/agronomy14030609; Потетня К.М. Влияние химических удобрений на окружающую среду. Научно-технический вестник: технические системы в АПК. 2022;3-4(15-16);42-47. https://elibrary.ru/crepec; Потетня К.М. Питательный стресс почвы как следствие использования непропорциональных норм химических удобрений. Научно-технический вестник: технические системы в АПК. 2023;1(17):35-43. https://elibrary.ru/ijxgrh; Ammar E.E., Rady H.A., Khattab A.M., Amer, M.H., Mohamed, S.A., Elodamy, N.I., Al Farga A., A Aioub A.A. A comprehensive overview of ecofriendly bio-fertilizers extracted from living organisms. Environmental Science and Pollution Research. 2023;30(53):113119-113137. https://doi.org/10.1007/s11356-023-30260-x; Khan A., Singh A.V., Gautam S.S., Agarwal A., Punetha A., Upadhayay V.K., Kukreti B., Bundela V., Jurgan A.K., Goel R. Microbial bioformulation: a microbial assisted biostimulating fertilization technique for sustainable agriculture. Frontiers in Plant Science. 2023;(14):1270039. https://doi.org/10.3389/fpls.2023.1270039; Kaari M., Manikkam R., Annamalai K.K., Joseph J. Actinobacteria as a source of biofertilizer/biocontrol agents for bio-organic agriculture. Journal of Applied Microbiology. 2023;(134). https://doi.org/10.1093/jambio/lxac047; Nazari M.T., Schommer V.A., Braun J.C.A., dos Santos L.F., Lopes S.T., Simon V., Machado B.S., Ferrari V., Colla L.M., Piccin J.S. Using Streptomyces spp. as plant growth promoters and biocontrol agents. Rhizosphere. 2023;(27):100741. https://doi.org/10.1016/j.rhisph.2023.100741.; Olanrewaju O.S., Babalola O.O. Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology. 2019;(103):1179–1188. https://doi.org/10.1007/s00253-018-09577-y; Oumaima B., Faouzi E. Streptomyces at the heart of several sectors to support practical and sustainable applications: a review. Progress In Microbes & Molecular Biology. 2023;6(1). https://doi.org/10.36877/pmmb.a0000345; Youseif S.H., El-Megeed F.H.A., Salous M.S., Mohamed A.H. Streptomyces biostimulants: an effective sustainable approach to reduce inorganic N input and maintain high yield of wheat crop in different soil types. Journal of Applied Microbiology. 2023;134(8):156. https://doi.org/10.1093/jambio/lxad156; Orouji E., Baba M.F.G., Sadeghi, A., Gharanjik S., Koobaz P. Specific Streptomyces strain enhances the growth, defensive mechanism, and fruit quality of cucumber by minimizing its fertilizer consumption. BMC Plant Biol. 2023;(23):246. https://doi.org/10.1186/s12870-023-04259-y; Широких И.Г., Назарова Я.И., Бакулина А.В., Абубакирова Р.И. Новые штаммы стрептомицетов как перспективные биофунгициды. Теоретическая и прикладная экология. 2021;(1):172-180. https://doi.org/10.25750/1995-4301-2021-1-172-1801 https://elibrary.ru/suhxuy; Aallam Y., Dhiba D, El Rasafi T., Abbas Y., Haddioui A., Tarkka M., Hamdali H. Assessment of two endemic rock phosphate solubilizing Streptomyces spp. on sugar beet (Beta vulgaris L.) growth under field conditions. Scientia Horticulturae. 2023;(316):112033. https://doi.org/10.1016/j.scienta.2023.112033; Al-Tammar F.K., Khalifa A.Y. An update about plant growth promoting Streptomyces species. J. Appl. Biol. Biotechnol. 2023:1-10. https://doi.org/10.7324/JABB.2023.130126; Prastiti R.D., Indrawan A.D., Mujoko P.S.T., Widjajani B.W. Survivability and Benefit Evaluation of Streptomyces sp. and Trichoderma sp. as Active Ingredients of Biopesticides and Soil Fertility Enhancer in Shallot Fields at Wates Village Tulungagung. IOP Conf. Ser.: Earth Environ. Sci. 2023;(1131):012011. https://doi.org/10.1088/1755-1315/1131/1/012011; Маградзе Е.И., Кузнецова В.А. Влияние биоудобрения, полученного на основе молочной сыворотки, и содержащего Streptomyces coelicolor, на развитие рассады петунии. Проблемы агрохимии и экологии. 2023;(4):17-21. https://doi.org/10.26178/AE.2023.77.19.004 https://elibrary.ru/ihzhaf; Гланц С. Медико-биологическая статистика. Пер. с англ. М., Практика, 1998. 459 с.; Лакин Г.Ф. Биометрия. М., Высшая школа, 1990. 352 с.; Виноградова К.А., Филиппова С.Н., Полин А.Н. Морфогенез, программируемая клеточная смерть и антибиотикообразование у стрептомицетов в условиях погруженного роста. Антибиотики и антибиотикотерапия. 2017;62(7-8):56-68. https://elibrary.ru/ynzesn; https://www.vegetables.su/jour/article/view/2556

  7. 7
    Academic Journal

    Πηγή: BIOAsia-Altai; Том 4 № 1 (2024): Международный биотехнологический форум «BIOAsia–Altai»; 11-14
    BIOAsia-Altai; Vol 4 No 1 (2024): International Biotechnology Forum “BIOAsia-Altai”; 11-14

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journal.asu.ru/bioasia/article/view/16069

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Συνεισφορές: This research was funded by Russian Science Foundation No. 23-26-00153, https://rscf.ru/project/23-26-00153/., Исследование выполнено при финансовой поддержке Российского научного фонда № 23-26-00153, https://rscf.ru/ project/23-26-00153.

    Πηγή: Food systems; Vol 7, No 1 (2024); 44-51 ; Пищевые системы; Vol 7, No 1 (2024); 44-51 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/410/286; Зинина, О. В., Николина, А. Д., Хвостов, Д. В., Ребезов, М. Б., Завьялов, С. Н., Ахмедзянов, Р. В. (2023). Белковый гидролизат как источник биоактивных пептидов в пищевой продукции диабетического питания. Пищевые системы, 6(4), 440-448. https://doi.org/10.21323/2618-9771-2023-6-4-440-448; Lima, K. O., de Quadros, C. D. C., da Rocha, M., de Lacerda, J. T. J. G., Juliano, M. A., Dias, M. et al. (2019). Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). LWT, 111, 408–413. https://doi.org/10.1016/j.lwt.2019.05.043; Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings — A review. Trends in Food Science and Technology, 106, 298–311. https://doi.org/10.1016/j.tifs.2020.10.022; Chaari, M., Elhadef, K., Akermi, S., Akacha, B.B., Fourati, M., Mtibaa, A. C. et al. (2022). Novel active food packaging films based on gelatin-sodium alginate containing beetroot peel extract. Antioxidants, 11, Article 2095. https://doi.org/10.3390/antiox11112095; Tanjung, M. R., Rostini, I., Ismail, M. R., Pratama, R. I. (2020). Characterization of edible film from catfish (Pangasius sp.) surimi waste water with the addition sorbitol as plasticizer. World News of Natural Sciences, 28, 87–102.; Firouz, S. M., Mohi-Alden, K., Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, Article 110113. https://doi.org/10.1016/j.foodres.2021.110113; Rebezov, M., Chughtai, M. F. D., Mehmood, T., Khaliq, A., Tanweer, S., Semenova, A. et al. (2022). Novel techniques for microbiological safety in meat and fish industries. Applied Sciences, 12(1), Article 319. https://doi.org/10.3390/app12010319; Huang, T., Qian, Y., Wei, J., Zhou, C. (2019). Polymeric antimicrobial food packaging and its applications. Polymers, 11(3), Article 560. https://doi.org/10.3390/polym11030560; Bhandari, D., Rafiq, S., Gat, Y., Gat, P., Waghmare, R., Kumar, V. (2020). A review on bioactive peptides: Physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics, 26, 139–150. https://doi.org/10.1007/s10989-019-09823-5; Matemu, A., Nakamura, S., Katayama, S. (2021). Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants, 10(2), Article 316. https://doi.org/10.3390/antiox10020316; Sanchez, A., Vazquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29–46. https://doi.org/10.1093/fqsafe/fyx006; Lorenzo, J. M., Munekata, P. E. S., Gómez, B., Barba, F. J., Mora, L., Pérez-Santaescolástica, C. et al. (2018). Bioactive peptides as natural antioxidants in food products — A review. Trends in Food Science and Technology, 79, 136–147. https://doi.org/10.1016/j.tifs.2018.07.003; Loi, C. C., Eyres, G. T., Birch, E. J. (2019). Effect of milk protein composition on physicochemical properties, creaming stability and volatile profile of a protein-stabilised oil-in-water emulsion. Food Research International, 120, 83–91. https://doi.org/10.1016/j.foodres.2019.02.026; Alves, S. G. T., Prudêncio-Ferreira, S. H. (2002). Functional properties of collagenous material chicken feet. Archivos Latinoamericanos de Nutrición, 52(3), 289–293.; Sousa, S. C., Fragoso, S. P., Penna, C. R. A., Arcanjo N. M. O., Silva F. A. P., Ferreira V. C. S. et al. (2017). Quality parameters of frankfurter-type sausages with partial replacement of fat by hydrolyzed collagen. LWT-Food Science and Technology, 76(Part B), 320–325. https://doi.org/10.1016/j.lwt.2016.06.034; Mora, L., Reig, M., Toldrá, F. (2014). Bioactive peptides generated from meat industry by-products. Food Research International, 65(Part C), 344–349. https://doi.org/10.1016/j.foodres.2014.09.014; Moraes, M. C., Cunha, R. L. (2013). Gelation property and water holding capacity of heat-treated collagen at different temperature and pH values. Food Research International, 50(1), 213–223. https://doi.org/10.1016/j.foodres.2012.10.016; Li, Z., Wang, B., Chi, C., Gong, Y., Luo, H., Ding, G. (2013). Influence of average molecular weight on antioxidant and functional properties collagen hydrolysates from Sphyrna lewini, Dasyatis akajei and Raja porosa. Food Research International, 51(1), 283–293. https://doi.org/10.1016/j.foodres.2012.12.031; Vichare, R., Hossain, C. M., Ali, K. A., D. Dutta, Sneed, K., Biswal, M. R. (2021). Collagen-based nanomaterials in drug delivery and biomedical applications. Chapter in a book: Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Academic Press. 2021. https://doi.org/10.1016/B978-012-820874-8.00008-7; Achilli, M., Mantovani, D. (2010). Tailoring mechanical properties of collagenbased Scaffolds for vascular tissue engineering: The effects of pH, temperature and ionic strength on gelation. Polymers, 2(4), 664–680. https://doi.org/10.3390/polym2040664; Zareie, Z., Yazdi, F. T., Mortazavi, S. A. (2020). Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydrate Polymers, 244, Article 116491. https://doi.org/10.1016/j.carbpol.2020.116491; Wang, L., Ding, J., Fang, Y., Pan, X., Fan, F., Li, P. et al. (2020). Effect of ultrasonic power on properties of edible composite films based on rice protein hydrolysates and chitosan. Ultrasonics Sonochemistry, 65, Article 105049. https://doi.org/10.1016/j.ultsonch.2020.105049.; Al-Hilifi, S. A., Al-Ibresam, O. T., Al-Hatim, R. R., Al-Ali, R. M., Maslekar, N., Yao, Y. et al. (2023). Development of Chitosan/Whey Protein Hydrolysate Composite Films for Food Packaging Application. Journal of Composites Science, 7(3), Article 94. https://doi.org/10.3390/jcs7030094; Меренкова, С.П., Зинина, О.В. (2023). Исследование структуры и микробиологических показателей ферментированных растительных напитков. Ползуновский вестник, 1, 58-64. https://doi.org/10.25712/ASTU.20728921.2023.03.008; Hasanzati Rostami, A., Motamedzadegan, A., Hosseini, S. E., Rezaei, M., Kamali, A. (2017). Evaluation of plasticizing and antioxidant properties of silver carp protein hydrolysates in fish gelatin film. Journal of Aquatic Food Product Technology, 26, 457–467. https://doi.org/10.22092/ijfs.2022.127951; Zinina, O., Merenkova, S., Galimov, D. (2021). Optimization of microbial hydrolysis parameters of poultry by-products using probiotic microorganisms to obtain protein hydrolysates. Fermentation, 7(3), Article 22. https://doi.org/10.3390/fermentation7030122; Brand-Williams, W., Cuvelier, M., Berset C. (1995). Use of a free radical method to evaluate antioxidant activity. LWTFood Science and Technology, 28(1), 20–30. https://doi.org/10.1016/S0023-6438(95)80008-5; Assaad, H. I., Zhou, L., Carroll, R. J., Wu, G. (2014). Rapid publication-ready MS-Word tables for one-way ANOVA. Springer Plus, 3, Article 474. https://doi.org/10.1186/2193-1801-3-474; Giménez, B., Gómez-Estaca, J., Alemán, A., Gómez-Guillén, M. C., Montero, M. P. (2009). Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin. Food Hydrocolloids, 23(5), 1322–1327. https://doi.org/10.1016/j.foodhyd.2009.04.005; Sathivel, S., Smiley, S., Prinyawiwatkul, W., Bechtel, P. J. (2005). Functional and nutritional properties of red salmon (Oncorhynchus nerka) enzymatic hydrolysates. Journal of Food Science, 70(6), 401–406. http://doi.org/10.1111/j.1365-2621.2005.tb11437.x; Riahi, Z., Priyadarshi, R., Rhim, J.-W., Lotfali, E., Bagheri, R., Pircheraghi, G. (2022). Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications. Colloids and Surfaces B: Biointerfaces, 215, Article 112519. http://doi.org/10.1016/j.colsurfb.2022.112519; Oliveira Filho, J. G., Rodrigues, J. M., Valadares, A. C. F., de Almeida, A. B., de Lima, T. M., Takeuchi, K. P. et al. (2019). Active food packaging: Alginate films with cottonseed protein hydrolysates. Food Hydrocolloids, 92, 267–275. https://doi.org/10.1016/j.foodhyd.2019.01.052; Fan, X., Han, Y., Sun, Y., Zhang, T., Tu, M., Du, L. et al. (2023). Preparation and characterization of duck liver-derived antioxidant peptides based on LC–MS/MS, molecular docking, and machine learning. LWT, 175, Article 114479. https://doi.org/10.1016/j.lwt.2023.114479; Sun, J., Zhou, C., Cao, J., He, J., Sun, Y., Dang, Y. et al. (2022). Purification and characterization of novel antioxidative peptides from duck liver protein hydrolysate as well as their cytoprotection against oxidative stress in HepG2 cells. Frontiers in Nutrition, 9, Article 848289. https://doi.org/10.3389/fnut.2022.848289; Hu, Z., Cao, J., Liu, G., Zhang, H., Liu, X. (2020). Comparative transcriptome profiling of skeletal muscle from black Muscovy duck at different growth stages using RNA-seq. Genes, 11(10), Article 1228. https://doi.org/10.3390/genes11101228; Zhang, C., Wang, Z., Li, Y., Yang, Y., Ju, X., He, R. (2019). The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chemistry, 272, 694–701. https://doi.org/10.1016/j.foodchem.2018.08.097; da Rocha, M., Alemán, A., Romani, V. P., López-Caballero, M. E., Gómez-Guillén, M. C., Montero, P. et al. (2018). Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocolloids, 81, 351–363. https://doi.org/10.1016/j.foodhyd.2018.03.017; Kruk, J., Tkaczewska, J., Szuwarzyński, M., Mazur, T., Jamróz, E. (2023). Influence of storage conditions on functional properties of multilayer biopolymer films based on chitosan and furcellaran enriched with carp protein hydrolysate. Food Hydrocolloids, 135, Article 108214. https://doi.org/10.1016/j.foodhyd.2022.108214; Abdelhedi, O., Salem, A., Nasri, R., Nasri, M., Jridi, M. (2022). Food applications of bioactive marine gelatin films. Current Opinion in Food Science, 43, 206–215. https://doi.org/10.1016/j.cofs.2021.12.005; Salgado, P. R., Fernández, G. B., Drago, S., Mauri, A. N. (2011). Addition of bovine plasma hydrolysates improves the antioxidant properties of soybean and sunflower protein-based films. Food Hydrocolloids, 25(6), 1433–1440. https://doi.org/10.1016/j.foodhyd.2011.02.003; https://www.fsjour.com/jour/article/view/410

  20. 20